

5th World Congress on Diabetes & Metabolism November 03-05, 2014 Embassy Suites Las Vegas, USA

Selective inhibition of PKC- β 2 attenuates nitroglycerine-induced tolerance and prevents TNF- α induced toxicity in endothelial cells

Shaoqing Lei Renmin Hospital of Wuhan University, China

Introduction: Continuous treatment with organic nitrates causes tolerance and endothelial dysfunction by inducing reactive oxygen species (ROS) production, which is involved in PKC β isoform activation. In the present study, we determine whether selective inhibition of PKC- β 2 attenuates nitrate tolerance induced by chronic administration with nitroglycerine and inhibits TNF- α induced toxicity in endothelial cells.

Methods: Primary cultured human umbilical vein endothelial cells (HUVECs) were either not treated or treated with TNF- α (40 ng/mL) alone, or with TNF- α in the presence of CGP53353 (1 μ M)), nitroglycerine (10 μ M), or CGP53353 plus nitroglycerine, respectively, for 24 h.

Results: TNF- α increased the levels of superoxide, NOx, MDA and nitrotyrosine production, accompanied by increased protein expression of p-PKC- β 2 and endothelial cell apoptosis, whereas all these changes were further enhanced by nitroglycerine, indicating nitrate tolerance. Inhibition of PKC- β 2 with CGP53353 decreased the protein expression of p-PKC- β 2, and reduced TNF- α induced oxidative stress and cell toxicity with or without nitroglycerine.

Conclusions: It is concluded that selective inhibition of PKC- β 2 attenuates nitroglycerine-induced tolerance and TNF- α induced toxicity in endothelial cells.

leishaoqing@163.com