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Introduction
The critical role of androgenic hormones in prostate cancer (PCa) 

has been well-recognized for almost seventy years, ever since Huggins 
and Hodges first reported the significant clinical effects of suppressing 
serum androgen levels in men with advanced PCa in 1941[1]. Today, 
clinical intervention for this one of the most common and deadly 
cancers [2] still capitalizes on this early appreciation and the mechanistic 
understanding of how androgens are synthesized and function through 
the signaling pathway anchored on the androgen receptor (AR). The 
therapeutic regimens to suppress testicular androgen production 
(surgical or medical castration, termed “androgen deprivation 
therapies”, or ADTs), alone or in combination with antiandrogens 
that block AR activity, still remain the mainstay of treatment of locally 
advanced or metastatic PCa.

Yet patients receiving these androgen-AR axis targeting treatments, 
despite initial beneficial responses, almost invariably relapse with 
a more aggressive and typically deadly form of PCa that has been 
termed castration resistant PCa (CRPC). Although it is possible that 
CRPC may arise as a consequence of selection pressure imposed by 
ADTs that favours the growth of androgen-insensitive cells [3,4], 
recent evidence indicates that growth of the vast majority of cancer 

cells in tumors relapsing from castration still depend heavily on the AR 
signaling axis [5-11], in an adaptation process called “AR reactivation” 
that involves a variety of mechanisms (reviewed in ref [12-14]). Based 
on this understanding, multiple novel AR signaling-targeting reagents 
for CRPC have been under active trial or development, some of which 
have shown promising clinical effects (reviewed in ref [13,15-17]).

The past five years have seen several new advances in the field, which 
have greatly invigorated our views about this seemingly old pathological 
pathway. As these new findings demonstrate, the scope of and the 
extent to which the androgen-AR axis contributes to the pathogenesis 
and progression of PCa may be significantly underestimated. This 
minireview intends to summarize these new advances, and discuss 
their potential significance in the basic, translational and clinical 
research in PCa. 

AR Signaling: Established Knowledge
Androgens are a class of steroid hormones that control the 

development and maintenance of male characteristics [18]. 
Testosterone represents the most abundant androgenic hormone that 
is primarily synthesized in and secreted from testis under the endocrine 
control of the luteinizing-hormone-releasing hormone (LHRH)-
luteinizing hormone (LH) axis [19]. Within prostate, circulating 
testosterone is converted irreversibly into a more potent androgen 
dihydrotestosterone(DHT), through the activities of 5α-reductases 
(SRD5A1 and SRD5A2) [20,21]. 
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Abstract
Secretory leukocyte protease inhibitor is a multifunctional protein with a variety of activities attributed to it. A 

significant increase in the expression of Secretory leukocyte protease inhibitor was noticed in syncytiotrophoblasts 
following differentiation of cytotrophoblasts in to syncytiotrophoblasts by addition of Forskolin. Using the BeWo cells 
which are derived from choriocarcinoma, the effect of addition of progesterone and estradiol on the expression of 
Secretory leukocyte protease inhibitor by Reverse Transcription Polymerase Chain Reaction was assessed. It was 
found that while addition of low concentration of progesterone resulted in a significant increase in expression of 
Secretory leukocyte protease inhibitor, addition of estradiol even at high concentration had no effect. The specificity 
of effect of progesterone was established by the observation that addition of Progesterone along with progesterone 
receptor antagonist (RU484) resulted in decrease in the level of expression of Secretory leukocyte protease inhibitor. 
These results suggest that Secretory protease leukocyte protease inhibitor is a progesterone regulated gene.
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The effects of androgens are mediated by androgen receptor 
(AR), a ligand-dependent transcription factor and member of nuclear 
receptor superfamily [22,23]. In the absence of androgen binding, 
AR is held inactive in cytoplasm by association with inhibitory 
chaperone proteins such as heat shock proteins (HSPs)[24,25]. 
Binding of testosterone, or more potently of DHT, causes a dramatic 
conformational change of AR that releases it from inhibitory HSPs and 
induces its homodimerization, post-translational modification, nuclear 
translocation, and association to specific DNA sequences termed 
“androgen-responsive elements (AREs)” [26-28]. The AREs-bound AR 
homodimers then serve as a platform to recruit basal transcriptional 
machinery and other transcriptional co-regulators (coactivators and 
corepressors) to initiate or modulate the transcriptional program of 
androgen-responsive genes [27,29-31]. Expression of these AR target 
genes combinatorially determines a variety of phenotypes including 
differentiation, proliferation, survival, apoptosis, and metastasis [32-
37]. In prostate, the intact androgen-AR signaling axis is required for 
the development and maintenance of normal prostatic tissues [38]. 
It is notable that the dependence of prostate cells on AR signaling 
persists after neoplastic transformation, which essentially underlies 
the androgen-driven hypothesis to explain the oncogenesis and 
progression of PCa, and forms the basis of all AR blocking therapies. 

The detailed mechanistic understanding of how androgens are 
synthesized and functioned through AR signaling has facilitated 
development of various strategies for targeted interference of the 
androgen-AR signaling axis to manage PCa. Some of the treatments 
aim at the LHRH-LH-testosterone axis to cut or reduce androgen 
supplies to prostate tumors, which include surgical castration 
(orchiectomy, for removal of testosterone-producing testes), LHRH 
antagonists (e.g. Abarelix and Degarelix, for direct inhibition of LHRH 
receptors), and LHRH agonists (e.g. leuprolide, goserelin and histrelin, 
for downregulation of LHRH receptors). Others (e.g. flutamide, 
bicalutamide, and nilutamide) compete with testosterone and DHT 
for binding with AR are thus termed “antiandrogens”. These various 
androgen-AR targeting regimens have proved to be effective, causing 
tumor remission, symptomic palliation, and improved patient survival. 
For example, ADT typically results in >90% reduction of serum 
androgens [39], leading to improved survival in high-risk localized 
disease and 80-90% response rate in patients with metastatic PCa [40]. 

However, as mentioned above, PCa patients receiving ADTs almost 
always end up developing CRPCs, in an adaptive process that reactivates 
AR signaling. A variety of mechanisms have been implicated in this 
process, among which include: 1) increased expression or activity of 
AR, by AR amplification, overexpression, gain-of-function mutations, 
or alternative splicing; 2) increased AR signaling, by aberrant post-
translational modifications of AR, deregulation of AR coactivators, or 
loss of AR corepressors; 3) increased intra-tumor androgen synthesis 
to increase androgen levels in CRPC tumors, mediated primarily 
by overexpression of enzymes involved in the steroid biosynthesis 
(reviewed in ref [12-14,41]). Several novel CRPC-targeting drugs 
under development are based on these mechanistic understanding. 
Abiraterone acetate (ZYTIGATM), a specifc inhibitor for CYP17A1 
that blocks the intra-tumor and extragonadal synthesis of testosterone, 
was shown to cause beneficial responses in CRPC patients [42] and 
has been approved to treat CRPC patients receiving prior docetaxel 
chemotherapy in combination with prednisone. Several other new AR 
signaling-targeting reagents, such as the AR antagonists MDV-3100 
[42] and BMS-641988 [43] and the androgen biosynthesis inhibitors 
TAK-700 [44] and VN/124-1 [45], have also shown promising effects 
and are under clinical trials. 

Due to these successes in our mechanistic understanding of AR 
signaling and in our utilization of this knowledge in the management 
of PCa, current consensus goes that AR signaling plays a pivotal 
role in the oncogenesis and progression of PCa. Significant gaps 
and challenges, however, still remain to be resolved. First, although 
the androgen-driven hypothesis is tantalizing in explanation of the 
PCa etiology and progression, the epidemiological evidence for 
it has remained conflicting for many studies and less convincing 
for others. Second, great inter-individual variations are frequently 
observed among men in their susceptibility for PCa, their pathological 
progression into metastatic diseases, and their responses to the 
aforementioned AR blocking therapies, which are yet to be sufficiently 
explained. Third, almost all of the AR blocking therapies ultimately 
fail, leaving the question wide open as what molecular mechanisms 
account for these failures. These gaps are arguably all attributable to 
our underappreciation of the complexity of PCa and our far from 
sufficient knowledge of the genetic and molecular details delineating 
the AR signaling pathway. 

AR Signaling: New Advances in the Mechanistic Study
Recently by combining chromatin immunoprecipitation with tiled 

oligonucleotide microarrays (ChIP-on-chip) or with massively parallel 
sequencing (ChIP-Seq), the genome-wide AR binding sites (termed 
“AR cistrome”) have been identified from a variety of PCa cell lines 
in multiple independent studies [46-50]. It was found that contrary to 
our expectation, most of the experimentally defined AR binding sites 
contain noncanonical AREs that are shown to be functional. One of 
these noncanonical ARE, located ~13.5 kb upstream of androgen-
responsive TMPRSS2 gene, was demonstrated to be a functional 
enhancer participating in transcriptional regulation of TMPRSS2 and 
TMPRSS2-ETS fusion genes[46]. Furthermore, the majority of the AR 
binding sites were found to be located far (>10 kb) from any androgen-
regulated genes [46,50], and are frequently found to contain acetylated 
histones H3/H4, PolII and p160 coactivators [46,50], in consistency of 
their role as functional enhancers.

By comparing the androgen-dependent cell line (ADPC) and its 
androgen-independent derivative (AIPC), generated after prolonged 
androgen deprivation, considerable differences in the AR cistromes as 
well as the AR-controlled transcriptional programs were observed [47]. 
One difference is in the M-phase cell cycle genes. Enhancers of these 
genes were found to have greater AR occupancy in AIPC cells than 
in ADPC cells in the presence of androgen, with high expression of 
these genes seen in the former correspondingly. Thus by investigating 
this CRPC-mimicking cell line model, this study suggests that AR 
may regulate a distinct transcription program in CRPC cells than in 
ADPC cells, which may account for their distinctive phenotypes such 
as androgen-independent cell proliferation. 

Another noteworthy discovery is that co-occupancy of AR with 
other transcription factors, such as FOXA1, TEF1, PU1, GATA2 and 
OCT1 [46,49], was frequently found in AR-binding sites, suggesting that 
AR may be working in collaboration with other transcription factors 
to control the expression of androgen-responsive genes. In support of 
this view, FOXA1, the DNA-binding transcription factor that contains 
chromatin-remodeling activity, has been found to serve as a pioneer 
factor binding to the FKH motif that is often concurrent with the AREs 
(> 60% concurrent rate in PCa cells at the basal state[51]), opening 
the compacted chromatin, and allowing subsequent association of AR 
at the AREs within these enhancers to cooperatively regulate target 
gene expression. The initial binding of FOXA1 to chromatin is found 
to be dependent on H3K4me1/me2 distribution in a cell lineage-
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specific manner [47,51]. The critical role of FOXA1 in AR signaling is 
further confirmed by the observation that FOXA1 knockdown triggers 
dramatic reprogramming of the hormonal response by causing a 
massive switch in AR binding to a distinct cohort of pre-established 
enhancers [52]. As another supportive example, ERG, a transcription 
factor of the ETS family that is not expressed in normal prostate 
epithelium but is highly expressed in PCa cells as a result of TMPRSS2-
ERG gene fusion, has been found to bind with and suppress AR. 
Because there is an extraordinary degree (> 40%) of overlap between 
AR and ERG binding sites in TMPRSS2-ERG fusion-positive PCa cells, 
it is speculated that ERG may play a crucial role in PCa progression of 
these fusion-positive tumors by disrupting AR signaling in favor of a 
dedifferentiation program induced by EZH2, an ERG target [48]. 

Based on these new findings, it is evident that AR signaling is more 
complex than we previously thought. As demonstrated in these PCa cell 
line models, AR signaling pathway may involve thousands of enhancers 
and possibly more target genes genome-wide, and may be dynamically 
regulated by both epigenetic factors and other collaborating protein 
factors, whose context-dependent interplay may determine the various 
cell-lineage-specific phenotypes. This growing knowledge of the 
molecular details of AR signaling pathway are expected to bring about 
significant impact on our understanding of the mechanisms by which 
altered AR signaling influences oncogenesis and progression of PCa, 
and on our development of novel strategies for better management of 
the disease. 

AR Signaling in PCa Etiology: Emerging Evidence
Given the central role of androgens in the development of normal 

prostate and the success of ADTs in the management of PCa, it has 
long been suggested that the AR signaling may be causally related to the 
etiology of PCa. Indirect evidences come from observations that men 
with deficiency in androgen synthesis, such as eunuchs or individuals 
with inactive 5α-reductase [53,54], and those with reduced or absent 
AR signaling, such as males with androgen insensitivity syndrome 
[55] or with spinal and bulbar muscular atrophy [56], do not develop 
PCa, although the prostates in these men are largelyundeveloped.
Furthermore, androgen administration has been demonstrated to 
induce or accelerate prostate cancer in some animal models [57,58]. 

This androgen-driven hypothesis, however, has so far remained 
challenging to prove. In one attempt to correlate serum androgen levels 
with incidence of PCa, several studies observed positive associations 
between elevated levels of serum androgens (testosterone, DHT, etc.) 
with occurrence of PCa [59-61], yet these associations failed to be 
confirmed in several other similar studies [62-66] and the subsequent 
meta-analyses [67,68]. In addition, several studies have reported 
an association between PCa susceptibility of the polymorphic CAG 
repeat in AR gene, which codes for a polyglutamine (PolyQ) tract 
in the N-terminal domain (exon 1) of the AR protein [69,70]. This 
association was nonetheless not supported by several large studies 
[71,72]. Conflicting results have also been reported for multiple genetic 
polymorphisms within genes participating in the androgen synthesis 
or AR signaling pathways. So far the only endogenous factors that 
have reached a consensus to be associated with increased PCa risk are 
increasing age, recent African ancestry, and family history[73].

Genome-wide association studies (GWAS) have been successfully 
applied in the reliable search for genetic variants associated with PCa. 
By the end of 2010, at least 33 PCa risk-associated single nucleotide 
polymorphisms (SNPs) had been identified by GWAS [74-85] and 
subsequently confirmed [86-89], thus most likely represent true genetic 

variants that influence the susceptibility of PCa. An overview of these 33 
PCa risk-associated SNPs indicates that the majority of these PCa SNPs 
reside in non-coding genomic regions or within genes that are poorly 
characterized, leaving the molecular mechanism underlying these SNPs 
largely unknown. Recently by mapping these 33 established PCa risk 
loci to the AR cistrome identified by Wang et al. [47], our group found 
that they are significantly enriched in AR binding sites compared with 
other genomic regions [90]. Additionally, as many as one third (11 out 
of 33) of the PCa risk loci, containing these risk SNPs and the SNPs 
in linkage disequilibrium with them, are found to be overlapped with 
genomic regions containing AR-binding sites (Table 1), which notably 
include three PCa risk-associated SNPs at 8q24, a gene desert yet hot 
spot for multiple cancers. These bioinformatics analysis results were 
subsequently confirmed in our interrogation of genotyping data from 
two PCa GWAS populations [91], which showed that SNPs in the AR 
binding sites are more likely associated with PCa risk compared with 
SNPs across the genome. Although these studies provide only statistical 
evidence which still require experimental confirmation, they are in favor 
of the androgen etiology of PCa and suggest that altered AR signaling 
may underlie these genetic loci to confer PCa risk. 

Two recent large clinical trials have lent a further support to the 
androgen-driven hypothesis. Reports show that administration of 
finasteride or dutasteride was able to cause ~25% reduction of PCa 
risk compared with placebos [92,93], although at an unfortunate cost 
to increase the incidence of high-grade prostate cancers. These two 
reagents belong to a class of drugs termed 5α-reductase inhibitors, 
which both block the prostatic conversion of testosterone into DHT 
and thus can inhibit the AR activity in prostate tissues. These findings 
thus strongly argue for AR signaling as a common and crucial 
mechanism underlying the PCa etiology and pathogenesis. However, 
there is still a long way to go as the evidence from these studies is at 
present only statistical, and more in-depth mechanistic approaches and 
understanding is urgently required.

AR Signaling in PCa Oncogenesis: An Emerging Role of 
AR-Induced Gene Fusions

Ever since Tomlins et al. made the seminal discovery that gene 
fusions between androgen regulated TMPRSS2 and ETS family 
transcription factors ERG and ETV1 were a frequent somatic alteration 
in PCa [94], intensive efforts have been invested to search for new fusion 
genes, investigate the underlying mechanism of their formation, and 
evaluate their specific roles in the pathogenesis of PCa.TMPRSS2-ERG/
ETV1 occur as a result of intra- or interchromosomal translocations, 
which create gene fusions between the 5’-untranslated region of 

SNPs CHR Position† Regions Known genes 
rs12621278 2 173,019,799 2q31.1 ITGA6 
rs17021918 4 95,781,900 4q22.3 PDLIM5 
rs10486567 7 27,943,088 7p15 JAZF1 
rs2928679 8 23,494,920 8p21.2 NKX3.1 
rs1512268 8 23,582,408 8p21.2 NKX3.1 
rs16901979 8 128,194,098 8q24 
rs620861 8 128,404,855 8q24 
rs1447295 8 128,554,220 8q24 
rs10993994 10 51,219,502 10q11 MSMB 
rs1859962 17 66,620,348 17q24.3 
rs9623117 22 38,782,065 22q13 TNRC6B

†Position is based on NCBI build 36

Table 1: GWAS-identified PCa risk-associated SNPs that reside within the ChIP-
on-chip defined AR binding sites.
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TMPRSS2 (21q22.2) and the 3’- coding regions of ERG (21q22.3) or 
ETV1 (7p21.2). ERG and ETV1 are normally not expressed in prostate 
epithelium (ERG is highly expressed in endothelial cells in the prostate), 
but the TMPRSS2-ERG/ETV1 fusion genes are overexpressed in PCa 
cells, mainly due to the acquired androgen-responsive promoter activity 
in the 5’ promoters of the two fusion genes contributed byTMPRSS2 
[94]. To date more than 10 similar fusion genes have been identified 
in PCa, which involve different combination of 5’ partners such as 
TMPRSS2, SLC45A3, KLK2, ACSL2, and 3’ ETS partners including 
ERG, ETV1, ETV4 and ETV5 [95-100]. Among these, TMPRSS2-ERG 
represents the most frequent gene fusion events in PCa, found in as 
many as 40-70% PCa tumors [94,101-103]. All others comprise about 
5% to 10% of all PCas [94-100]. It is also of note that besides TMPRSS2, 
many of these fusion genes’ 5’-partners, including SLC45A3, KLK2, 
ACSL2, are demonstratively androgen-regulated genes. Thus one 
notable common feature shared by the majority of these fusion genes 
is androgen-regulated overexpression in PCa cells compared with 
normal prostatic epithelium.

Recently the molecular mechanism by which the two most frequent 
fusion genes TMPRSS2-ERG [104,105] and TMPRSS2-ETV1 [104] are 
formed has been identified, which notably requires the activity of AR. 
According to the proposed models, as a consequence of AR mediated 
gene activation, androgen-liganded AR first binds to the intronic 
regions of both translocation partners at presumable regulatory regions 
near the future breakpoints, which creates spatial proximity for the 
subsequent intra- and interchromosomal interaction. AR then triggers 
recombinogenic DNA double-stranded breaks (DSBs) at translocation 
loci by recruiting several genotoxic stress-induced enzymes such as 
activation-induced cytidine deaminase (AID), LINE-1 repeat-encoded 
ORF2 endonuclease, and/or topoisomerase II beta (TOP2B). Finally, 
the illegitimate repair of these AR-induced DSBs gives rise to the 
TMPRSS2-ERG/ETV1 rearrangements. Given that many other fusion 
genes also involve androgen-regulated genes (e.g. SLC45A3, KLK2, 
ACSL2) as the 5’ partners, it seems a plausible hypothesis that AR is 
causally related to the formation of these fusion genes as well. 

Accumulating evidence suggests that the recurrent AR-induced 
ETS rearrangements may play a crucial role in the tumorigenesis of 
PCa. It has been consistently demonstrated that the ETS gene fusions 
are present only in the neoplastic cells, but not in benign epithelial cells 
or stromal cells [94,102,106]. Additionally, the TMPRSS2-ERG fusion 
was observed in ~20% of high-grade prostatic intraepithelial neoplasia 
(HGPIN) lesions [102,107], which were notably intermingled with PCa 
that carried the same fusion pattern. Yet no such fusion was seen in 
HGPINs geographically distant to PCa, even if it was demonstrated 
in the PCa from the same individual [102], suggesting that the 
fusion-containing HGPINs may represent a subset of true neoplastic 
precursors for the fusion-positive PCa. Using in vitro and in vivo models 
recapitulating fusion-induced overexpression of ETS oncogenes, it was 
demonstrated that the ETV1or ERG overexpression confers neoplastic 
changes in benign prostate cells and induces epithelial hyperplasia and 
focal PIN lesions in the mouse prostate [108-110]. However no malignant 
phenotypes, such as increase of cellular proliferation and anchorage-
independent growth, were identified, suggesting that formation of 
the fusion genes and the resultant overexpression of ETS oncogenes 
alone may not be sufficient for the malignant transformation, which 
may require additional genetic/molecular lesions. In concordance 
with this concept, PCa specimens containing the TMPRSS2-ERG 
rearrangement were consistently reported to be concurrent with loss of 
the tumor suppressor PTEN [111-113], and importantly it was further 
demonstrated that these two somatic alterations may cooperate to 

promote PCa tumorigenesis using two independent transgenic mice 
models[111,112]. A synergy of ERG overexpression with AR signaling 
in transformation of primary prostate cells was also identified [110]. 
Taken these findings together, it is plausible that AR-induced recurrent 
ETS gene fusions may represent an early crucial genetic lesion which, 
in collaboration with other genetic/ molecular alterations, drive the 
whole oncogenic process of PCa. 

The fact that AR is essential in both the formation and overexpression 
of the recurrent oncogenic TMPRSS2-ERG/ETV1 fusion genes in PCa 
is prominent and significant, as it epitomizes the critical role that AR 
signaling plays in the oncogenesis of PCa, and reveals that this AR-
induced somatic alteration may function as a common and important 
mechanism. 

Conclusion and Future Directions
Combining the established knowledge and the novel findings 

reviewed in this paper, it is evident that AR signaling is much more 
complicated than previously envisioned and that its role in PCa may 
have been significantly underappreciated. As has been illustrated, AR 
signaling is essentially composed of a complex regulatory network 
that involves DNA elements (canonical and noncanonical AREs), 
epigenetic factors (histone code, most notably H3K4me1/me2), 
and collaborating protein factors (coactivators, corepressors, and 
crosstalking proteins from other pathways), which are hierarchically 
organized and dynamically regulated. Deregulation of AR signaling 
is, as has also been demonstrated, deeply rooted in most, if not all, 
processes in the pathophysiology of PCa: before and after oncogenesis, 
during progression into more advanced PCa tumors, and through 
ADT-induced adaptation into CRPC. A better understanding of the 
genetic and molecular details of AR signaling pathway is highly ideal 
for an improved therapeutic prevention, diagnosis, treatment and 
prognosis of this common and deadly disease. 

With this appreciation in mind, several crucial future directions 
should be considered. First, a thorough understanding of the genetic and 
molecular details of the AR signaling pathway is highly required. This 
may include comparative studies on the histone code, AR cistromes and 
the expression profiles in tissues/tumors under different pathological 
stages (such as normal, prostatic intraepithelial neoplasia, local, 
metastatic, and castration-resistant PCa), and from different prostatic 
tumor tissues (e.g. stromal VS tumoric), identification of disease stage/
cell lineage-specific AR target genes, and search for protein cofactors 
that play significant roles in modulating AR transcription activity. These 
studies are expected to provide the framework of and pave the path for 
utilizing the knowledge for an improved management of the disease. 
Second, a better profiling and a systematic evaluation of germline 
and somatic, genetic, epigenetic and molecular alterations within the 
general AR signaling pathway that are associated to each individual 
disease stage is highly wanted. This will facilitate identification of 
individuals with higher risks for developing PCa or progressing into 
a metastatic and more deadly disease, or with worse prognosis for a 
given AR-targeting therapy. Finally, development and improvement 
of novel or available strategies by taking advantage of this increasing 
knowledge is highly needed. This may include developing new AR 
blocking therapies against novel therapeutic targets, and improving 
available clinical regimens by implementing personalized medicine, 
i.e. by identifying PCa patients who are expected to benefit the most.
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