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Introduction
Diabetes mellitus (DM) long-term complications are progressive 

and almost resulting by chronic exposure to high blood levels 
of glucose resulting from defects in insulin metabolism and 
dysfunction in carbohydrate, lipid and protein metabolism [1]. The 
diabetes complications are equally associated with the both types 
of DM. However, the severity of the disease is related to the long-
term exposure to uncontrolled glycemia [2]. The incidence of DM, 
especially in industrialized countries has dramatically increased over 
the past two decades and it is expected to increase [3] in future. This 
disease has become one of the most challenging health problems of 
the 21st century. It affects more than 230 million people worldwide, 
and this number is expected to reach 350 million by 2025 [1]. Globally 
the affected people are unaware of the disease and only half receive 
adequate treatment. It is therefore not surprising that diabetic 
retinopathy (DR) is the leading cause of blindness in people aged 25-
74 years worldwide [4-5].

The vascular commitment is the most serious and common 
condition in DM. Mediators of vascular damage of DM include poor 
glycemic control, lipoprotein abnormalities, hypertension, oxidative 
stress (OS), inflammation and advanced glycation end-products 
(AGEs), which are modified proteins formed by nonenzymatic 
glycation [6-7]. Pathological vascular dysfunction related with DM 
include DR like all diabetes conditions, is a progressive disease 

caused by chronic exposure to hyperglycemia, and recognized as 
a characteristic vascular disease [7], diabetic nephropathy (kidney) 
and diabetic neuropathy (peripheral nervous system) [5]. There is 
also evidence that hyperglycemia may induce diabetic angiopathy 
through the generation of OS [8], per se, or through the accumulation 
of AGEs, leading to nitrous oxide systems (NOS) [9]. 

Retinopathy is characterized by increased vascular permeability, 
by vascular closure mediated by the formation of new blood vessels 
— neovascularization, on the retina and posterior surface of the 
vitreous [10]. Generally, neovascularization results from occlusion 
of fragile capillaries and frequently originate pre-retinal and vitreous 
hemorrhage in case of vitreous detachment [11].

Without an effective medical treatment, cells and tissues of 
the retina become malnourished and progressively degenerate, 
which leads to damage in cells responsible for vision, leading to the 
inevitable loss of vision [5]. Approximately 25% of patients with type-
1 DM have been shown to be affected with retinopathy, with the 
incidence increasing to 60% after 5 years and 80% after 10 to 15 years 
of affliction [11]. The type-2 DM accounts for a higher proportion of 
patients with visual impairment [11]. Moreover, in general there are 
more adult onset cases than juvenile ones. 
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Abstract
Diabetic retinopathy is a disease resulting from diabetic chronic hyperglycemia characterized by microvascular 

complications in the retina, where neuronal elements responsible for vision are located. It is the main cause of adult 
blindness in developed countries. Oxidative stress has been widely regarded as the key factor for the emergence of 
ocular disease and has been involved in increased vascular permeability, disruption of blood-retinal barrier, apoptotic 
loss of retinal capillary cells, microvascular abnormalities and retinal neovascularization. Dietary supplementation 
with antioxidants has been related with inhibition of diabetes-induced abnormalities of retinal metabolism, reduction 
of apoptosis and partial restoration of pericytes. Moreover, the use of topical antioxidants to treat or delaying oxidative 
stress-related ocular manifestations is still poorly explored, while current diabetic retinopathy therapy includes invasive 
methods, like surgery. Ocular antioxidant potential therapy represents a non-invasive, safe and less painful methodology, 
which slows the natural progress of the disease and improves the effectiveness of treatment without significant systemic 
toxicity. This review underlines the innovative medicines exploited for ocular conditions, a further insight on ocular 
delivery, benefiting from the advantages of the eye for drug delivery and, additionally, offering new potential applications 
of antioxidants for the prevention, treatment and control of diabetic retinopathy. 
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Although the pathogenesis of DR has not been clearly elucidated, 
multiple hypotheses have been proposed for this condition [5,10].

However, more recently, much attention has been focused on the 
role of OS, and has been suggested that this may constitute the cause 
of different pathogenesis in diabetic complications, such as DR [3]. 

The retina is highly susceptible to OS because of intense exposure 
to light and oxygen and its high polyunsaturated fatty acid (PUFA) 
content that is prone to lipid peroxidation [12]. These oxidation 
products are toxic to the microvascular walls and therefore, may have 
a causal role in diabetic microvascular damage and also in the blood–
ocular barrier alteration [3]. Since OS is increased in the diabetic retina, 
the levels of oxidatively modified DNA and nitrosylated proteins are 
elevated, and antioxidant defense enzymes are impaired [13]. It 
has been reported that the level of antioxidant enzymes along with 
potential antioxidant vitamins are decreased in diabetic experimental 
animals and humans [10].Due to this intimate relationship between 
OS and dysmetabolisms implicated in the pathogenesis of DR, the 
use of appropriate antioxidants may have potential on the metabolic 
and functional abnormalities in DR. Antioxidants may act at different 
levels, including the inhibition of the formation of reactive oxygen 
species (ROS), scavenging free radicals, or increasing the antioxidants 
defense enzyme capabilities [1]. This suggests that potential 
management of diabetes could benefit from use of dietary or local 
biofactors of medicinal and aromatic plants. There is, therefore, 
research specificities to focus on the molecular mechanisms of action 
of the biofactors such as flavonoids, proanthocyanidins and alkaloids 
and/or extracts derived from plants [10].

Numerous drugs have been developed based on the current 
understanding of the complicated and intricate biochemical and 
pathophysiological aspects of the DR. However current therapy for 
DR includes laser photocoagulation, surgery, and metabolic control 
[5,10]. Having this in mind this paper suggests the high potential of 
antioxidants and the major importance of natural medicines to avoid 
the DR progression and consequent blindness. 

Ocular structure and permeability 

It is of extremely importance when considering eye diseases a 
deep knowledge of ocular structure so that it can be perceived what 
could be compromised in the eye ball, as well as the whole natural and 
complex process of ocular drug absorbing. This review chapter will 
start for a further insight in ocular anatomy and ocular permeability, 
so that the physiopathology and antioxidant activity could be easily 
comprehended in DR condition.  

It is well known that the eyeball consists of two anatomical 
regions: the anterior segment, in which the cornea and conjunctiva 
are the main prominent structures, and the posterior segment, in 
which the retina plays the most important function on transduction 
and adaptation to different levels of light [14-15]. 

Anterior segment consists of front one-third of eye that mainly 
includes pupil, cornea, iris, ciliary body, aqueous humor, and lens 
while the posterior segment consists of the back two-thirds of the 
eye that includes vitreous humor, retina, choroid, macula, and optic 
nerve (Figure 1). 

In the anterior segment of the eye, covering both corneal and 
conjunctival surfaces and forming part of the tear film, is a mucus 
layer, which is secreted by the goblet cells of the conjunctiva. The 
lachrymal film plays a multifunctional role, since it hydrates, cleanses, 
lubricates and serves as a defense against the pathogens. It is also 

involved in additional obstacle to any drug penetration, because the 
lachrymal film is a dynamic fluid that undergoes a constant renewal 
and therefore limits the time of residence of the drugs on the surface 
of the eye [15]. 

The cornea is a transparent and avascular hydrophobic barrier, 
continuous with the bulbar conjunctiva, organized into five layers: 
epithelium (a major lipophilic barrier), Bowman’s membrane, stroma 
(a major hydrophilic barrier), Descemet’s membrane, and endothelium 
(a minor lipophilic barrier). It is the primary route of drug entry into 
the eye following topical administration, but applied drugs also reach 
intraocular tissues by conjunctiva–scleral pathway [16]. Because of its 
nature, lipophilic drugs can easily cross the corneal epithelium by a 
transcellular pathway either by facilitated transport or by diffusion 
through the lipid bilayer [15,17]. 

This tissue has a smaller surface area compared to the conjunctiva 
which, moreover, is a leakier epithelium than the cornea [18]. The 
conjunctiva is a mucus membrane that lines the inner surfaces of 
eyelids and folds back to cover the front surface of the eyeball, except 
for the central portion of the outer eye [19]. The conjunctiva covers 
most of the ocular surface area, only a small fraction (called the 
bulbar region) covers the anterior sclera, which has an air interface 
exposed to the environment during “open-eye” intervals. It continues 
through the fornicial and palpebral regions as highly vascularized, 
thin/semitransparent, elastic, and heterogeneous tissue [16]. 
Traditionally the role of the conjunctiva has been considered to be 
mainly protective and functioning as a passive physical barrier [15].

The conjunctiva can be divided into three layers, the outer 
epithelium, substantia propias, and submucosa and it has a higher 
permeability for large hydrophilic compounds that are transported 
via paracellular pathways. However, since lipophilic drugs mainly use 
a transcellular transport, the corneal route currently dominates [16, 
18].

For eye protection the cornea and conjuctiva.epitheliums are 
considered similarly with respect to the organization of epithelial 
cells, including tight junctions in the apical pole and which makes 
them a relatively impermeable barriers [19]. Tight junctions provide 
a continuous seal around the epithelial cells, thereby preventing the 
entry of polar drug molecules into the subsequent tissues [19]. Other 
than cellular tight-junctional complexes in epithelium, the expression 

Figure 1: Schematic illustration of eye structure and subsequent critical 
biological barriers that drugs need to overcome after topical administration 
onto the eye surface.
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of efflux transporters is another important factor that contributes to 
the barrier properties, such as P-glycoprotein efflux pump (P-gp), and 
multi-drug-resistance protein (MRP) [15,17].

The retina is a thin, transparent, highly organized structure of 
neurons, glial cells, and blood vessels. Of all structures within the 
eye, the neurosensory retina has been the most widely studied. In 
short, the retina can be divided into neural retina and retinal pigment 
epithelium (RPE) [19]. The first is involved in signal transduction, 
leading to vision. Light enters through the retinal ganglion cell layer 
and penetrates all the layers. The transduced signal is taken by several 
retinal neurons to the optic nerve. The latter then drives the signal 
to the brain, where it is registered and formed an image. RPE, on the 
other hand, is a single cell layer that separates the outer surface of 
the choroid and neural retina and appears as a uniform, continuous 
layer that extends through the retina and a have an essential role in 
the viability of the neural retina [19]. 

Limited permeation into the retina primarily occurs due to the 
blood–aqueous barrier (BAB) and blood-retinal-barrier (BRB). These 
two barriers together comprise the blood–ocular barrier [19].

In addition to the physical barriers, ocular tissues contain 
metabolic enzymes, such as esterases, aldehyde and keton reductases 
[20-21], which may degrade the drugs and reduce their efficacy. As 
a result of these anatomical and physiological constraints [22] after 
topical application, a major fraction of the administered drug is lost 
by different mechanisms, resulting in very low ocular bioavailability. 

Only about 1–5% of a topically applied drug dose often reaches 
the anterior segment of the eye. Therefore, subsequent diffusion of 
absorbed drugs toward the posterior segment of the eye will often 
be relatively low. Moreover eye drops in solution are eliminated from 
the pre-corneal area within 90 seconds and absorbed systemically 
through the highly vascular conjunctival stroma and nasolachrymal 
ducts [16].

This means that drugs topically administered have a low 
probability of reaching the posterior segment in significant amounts, 
as they have to pass through several metabolic and physical barriers 
to reach the retina, namely the corneal and conjunctival epithelium, 
then aqueous humor, and lens [19] (Figure 2). As shown in Figure 2, 
one of the main problems encountered with the topical administration 
of liquid forms is the rapid and extensive loss of drugs to the limited 

capacity of drug retention in the ocular surface and also as a result of 
the blinking process, which normally is stimulated after instillation. 
Obviously, the extent to which topically applied drugs remain on the 
surface of the eye or penetrate inside the eye is dependent not only 
on the physiological characteristics of the corneal barrier, but also on 
the physicochemical properties of the drug and the specific behavior 
of the vehicle.

Contrary to lipophilic drugs, hydrophilic drugs can be easily 
formulated as aqueous eye-drop solutions. Moreover, hydrophilic 
drugs have great difficulties in passing from the tear film to the corneal/
conjunctival epithelia. The paracellular entry through both corneal 
and non-corneal epithelia becomes the most important penetration 
route for hydrophilic drugs [23]. As regards to the absorption by 
the non-corneal route, studies have conclusively proved that the 
conjunctiva is a leakier epithelium that plays an important role in the 
absorption of large hydrophilic molecules [16,18].

Altogether, for the successful treatment of pathologies that 
affect the posterior segment of the eye, improving the corneal and/or 
conjunctival tissues permeability becomes one of the main challenges 
in ocular drug delivery. Alternative routes other than topical, i.e. the 
systemic route or intrachameral injections, have also been considered 
for increasing the bioavailability of drugs in the internal structures of 
the eye. In the case of systemic administration, a major drawback is 
that only 1–2% of the administered drug reaches the vitreous cavity 
[15], especially blocked by the BRB, which is selectively permeable 
to more lipophilic molecules and mainly governs the entry of drug 
molecules into the posterior segment of the eye [24]. This results in 
frequent administration of high amounts of drug that may lead to 
important systemic side effects [25]. Some alternatives involve either 
injections of a drug, a drug delivery carrier or a drug delivery device 
into the vitreal cavity of the eye, or a periocular delivery following 
a transcleral route to the back of the eye that allows it to penetrate 
the RPE [17]. 

Local and new therapeutic improvements involving routes of 
administration easier and with a better performance upon biological 
barriers are essential for ocular delivery and effectiveness. 

Diabetic retinopathy 

The major risk factors for DR are known to be predominantly 
the hyperglycemia and the increased duration of diabetes. Other 
risk factors include hypertension, hyperlipidemia, pregnancy, and 
microalbuminuria [27-28]. All of these risk factors contribute and 
exacerbate retinal metabolic changes and microvascular injury 
that result in DR condition. Intensive glycemic control, like in 
other diabetes conditions, substantially reduces the incidence and 
progression of DR in type I and II diabetes [29], as well as blood 
pressure control [30]. Evidences of a causal relationship between 
insulin resistance and hypertension is increasing [31]. It is also 
increasingly clear that antihypertensive medications have disparate 
effects on insulin sensitivity in patients with essential hypertension, 
which makes the administration of specific antihypertensive agents 
relevant in these patients [32-34].

Abnormalities in retinal metabolism, including elevated polyol 
pathway activity [35], increased nonenzymatic glycation [36], 
accumulation of AGEs [5], uncontrolled OS [37], protein kinase C 
activity (PKC) [13] and the expression of vascular endothelial growth 
factor (VEGF) [13], result from glucose dysmetabolism and evidently 
also contribute to the development of retinopathy. However the 
exact mechanism is still elusive.

Figure 2: Schematic view of the ocular permeability, physiological barriers, 
and transport pathways of a drug applied topically onto the eye (modified from 
ref. [26]).
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The initial disease is characterized by increased vascular 
permeability due to a breakdown in the blood-retinal barrier (BRB), 
which causes macular edema, with a progressive vascular occlusion 
and retinal neovascularization [38]. 

Medical diagnosis, support, advices and treatment are 
fundamental, to avoid the malnourished and degenerative retinal 
cells/tissues, which leads to damage in the cells responsible for vision 
[5]. The clinical profile of this condition is chronologically subdivided 
in two stages, nonproliferative (NPDR) and the proliferative diabetic 
retinopathy (PDR). NPDR is the initial stage of the disease progression. 
Loss of retinal capillary pericytes and endothelial cells has been 
demonstrated early in diabetes [39] and underlies the clinical signs 
of NPDR, which include intra-retinal dot-blot hemorrhages, 
microaneurysms, and venous beading [13]. At this stage, blood and 
fluid leak from the blood vessel into the retinal tissue, resulting in 
retinal swelling and the formation of lipoprotein exudates deposits 
[5]. When neuronal cells in the retina begin to be compromised 
the process of neurodegeneration begins and culminates in more 
advanced stages of diabetic retinopathy.

The retinal edema is asymptomatic, if it occurs outside of the 
macula, but will impair vision when the macula is affected [13,29]. 
With progression of the disease to moderate or severe NPDR, blood 
vessels may be blocked in the retina, which, in turn, causes ischemia, 
hypoxia and deprival of nutrient nourishment in the affected area. 

This blockade subsequently leads to pathologic growth of new 
blood vessels, which often causes catastrophic loss of vision and 
featuring the main serious stage of the disease - PDR [3,40,41]. 
The occlusion of capillaries in retinopathy induces angiogenesis 
in the afflicted retina, leading to the release of VEGF and insulin-
like growth factor (IGF), which induce growth of new vessels on 
the optic disk, iris, retinal surface and into the vitreous, known as  
retinal neovascularization  [13,29]. New blood vessels are fragile and 
may hemorrhage into the vitreous or form fibrous bands, causing 
tractional retinal detachment [5,29]. Neovascularization of the iris 
may occlude aqueous outflow, resulting in neovascular glaucoma 
[29]. New vessels are sometimes accompanied by a fibrovascular 
ridge extending into the vitreous cavity or along the surface of retina 
[40,41]. As microvascular damage weakens the BRB, plasma leaks 
from vessels into the retina; when this fluid is reabsorbed, lipid and 
lipoprotein elements are retained in the retina and are visible as 
yellow exudates [29]. Thus, retinal detachment may occur and lead 
to vision loss and blindness [40,41]. These features are detectable 
by ophthalmoscopy, because the pigment (hemoglobin) in blood or 
the lipid exudates stand out in contrast to the otherwise transparent 
retina. These changes have led to the general assumption that DR is 
solely a microvascular abnormality [42].

Most patients with DR are asymptomatic until very late stages of 
the disease [13]. The clinical signs of PDR are similar to those of NPDR 
in venous dilation, venous beading, and abnormal microvasculatures, 
and patients may complain about glare, blurred and vision loss [5]. 

The progression and evolution of the disease depends largely on 
glycemic control, medical surveillance, exposure to the disease and 
patient natural genetic predisposition.

If used appropriately, a number of tests ancillary to the clinical 
examination may enhance patient care. The most common tests 
include direct and indirect ophthalmoscopy, stereoscopic color film 
fundus photography, optical coherence tomography, fluorescein 
angiography and mydriatic or nonmydriatic digital color or 
monochromatic photography, ultrasonography [43].

Medical intervention and treatments for DR at present are 
focused on metabolic control of blood glucose and blood pressure 
and surgical procedures [29] which includes laser photocoagulation, 
surgery and the commonly intravitreal injection (IVT) [5].

Oxidative stress clinical impairment

In diabetes, the retina exhibit increased OS [37,44] since the 
eye is constantly subjected to light irradiation, atmospheric oxygen, 
environmental chemicals, and physical abrasion. The retina has also a 
natural high content of PUFA and possess the highest oxygen uptake 
and glucose oxidation relative to any other tissue, which makes it 
more susceptible to OS than other organs or structures [1]. All 
these factors, if not controlled induces can ultimately contribute to 
ocular surface damage and disease. Natural protective components 
like water-soluble antioxidants (e.g., vitamin C, L-cystine, reduced 
glutathione - GSH, uric acid, pyruvate, and tyrosine), lipid-soluble 
antioxidants (e.g., tocopherols and retinols), and highly specialized 
enzymes (e.g., superoxide dismutase - SOD, catalase, and 
Gluthathione peroxidase - GPx) have all been identified in human 
tear fluid collected at normal and stimulated secretion rates. These 
components are thought to serve as a frontline defense for the ocular 
surface tear film and underlying tissues. However, mechanisms or 
glandular sources of these antioxidants have not been identified [16].

So it can be clearly assumed that OS and ROS maybe a causal link 
between elevated glucose and the important metabolic abnormalities 
in the development of DR [45] (Table 1).

Free radicals are defined as an atoms or molecules that contain 
one or more unpaired electrons, making them unstable and highly 
reactive [46]. ROS are produced continuously in all cells to support 
normal cellular functions. Under normal physiological conditions, 
approximately 0.1%–5% of oxygen that enters the electron transport 
chain is reduced to superoxide, ROS and the rest is used in metabolic 
processes [1]. ROS can also be generated from other sources 
including cytochrome P450, the NAD(P)H oxidase(s) and Nitric Oxid 
(NO) synthases [47]. 

Excess production of ROS originated from endogenous or 
exogenous sources, and/or inefficient removal by scavenging system 
of ROS, can result in excessive levels of either molecular oxygen or 
ROS, thus resulting in increased OS, which often leads to damage 
of cellular macromolecules and destruction of small antioxidant 

Sources of oxidative stress

Sources of vascular oxidative stress

Acute and chronic hyperglycaemia; Lipoprotein abnormalities; Hypertension; OS; Inflammation and AGEs accumulation; 
Glycation; Glycoxidation; Lipoxidation; Extracellular metal ions; Superoxide and HOCl; NADPH/NADH oxidase; NO 
synthase; Cyclooxygenase; Lipoxygenase; Myeloperoxidase; P450 monooxygenases; Enzymes of mitochondrial oxidative 
phosphorylation;

Increased generation of ROS
Autoxidation of carbohydrates, fatty acids, triglycerides, phospholipids and cholesteryl esters; Acute and chronic 
hyperglycemia; Glycation, advanced glycation and glycoxidation;

Alterations in enzymatic pathways
Increased polyol pathway activity; Decreased glyoxalase pathway activity; Alteration in mitochondrial oxidative metabolism; 
Altered prostaglandin and leukotriene metabolism;

Other mechanisms Ischemia-reperfusion injury, hypoxia and pseudohypoxia;

Table 1: Possible conditions that may be sources of oxidative stress in diabetes mellitus (modified from ref. [46]).
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molecules [1,46]. These events are central to the pathogenesis of 
diabetes and its complications [5,48]. Major ROS include superoxide, 
peroxynitrite, NO and a combination of superoxide and NO [5]. 
These ROS oxidize proteins, lipids (lipoxidation), and carbohydrates 
(glycoxidation). The resulting oxidized molecules can cause further 
oxidative damage to cells leading to structural and functional 
changes of cellular organelles, especially when oxidized molecules 
accumulate intracellularly [46]. 

In general, in non-diabetic people these reactive species are 
effectively eliminated of several intracellular and extracellular 
antioxidant systems. However, in diabetes the increased intracellular 
concentrations of ROS appear to overwhelm the ability of many 
cells to neutralize radicals [48]. So the OS seems to be caused by an 
imbalance between the high increased production of ROS and the 
sharp reduction in antioxidant defenses and altered cellular redox 
status [46]. Antioxidant defenses are further depleted by other 
mechanisms, but it is initiated by high glucose levels. This includes 
increases in the polyol pathway whereby aldose reductase, reduces 
glucose to sorbitol at the expense of NADPH, usually used for 
regeneration of GSH from glutathione disulfide (GSSG) [49]. Damage 
from ROS and depleted cellular antioxidant defenses is manifested 
in several tissues, including the kidney, eye, and nervous system, for 
which the end results are often end-stage renal disease, blindness, 
and limb amputation, respectively [48]. 

In retinopathy, OS has been widely involved in decreased retinal 
blood flow [50], increased vascular permeability, disruption of BRB 
[51] and the appearance of acellular capillaries from the apoptotic 
loss of retinal capillary cells [52]. OS has also been linked to 
microvascular abnormalities in DR, degenerative process of retinal 
neovascularization, and the suppression of antioxidants systems 
[53]. Activation of the proapoptotic enzyme, caspase-3, and nuclear 
transcriptional factor-kappaB (NF-κB) occurred in the retinas of 

diabetic rats and in pericyte exposed to high glucose levels [53]. 
Diminished endogenous scavengers of oxidants and decreased 
activities of glutathione reductase (GR), GPx, SOD and catalase 
occur in the diabetic retina when compared to controls [54]. The 
overexpression of the cell death protease gene in retinal pericytes in 
diabetes is reported to correlate with the altered gene profile of the 
scavenging enzymes, suggesting an important role of OS in pericyte 
dropout seen in DR [13]. Further, increased OS has been shown to play 
a critical role in AGEs products-induced apoptosis of retinal capillary 
cells [55]. ROS can indirectly induce apoptosis by changing cellular 
redox potentials, depleting GSH and reducing ATP levels [56]. The 
release of ROS also increases mitochondrial pore permeability that 
in turn triggers the release of cytochrome c and other proapoptotic 
factors from retinal mitochondria, initiating apoptosis via activation 
of caspases [57-58] and increased cytochrome c is observed in 
the retina and its capillary cells in diabetes [13,59]. ROS-induced 
mitochondrial dysfunction pertaining to the release of cytochrome 
c can result in activation of caspase-9, which initiates a cascade of 
events that activates caspase-3 responsible for fragmenting DNA [58].

OS creates a vicious cycle of damage to macromolecules by 
amplifying the production of more ROS and also activates other 
metabolic pathways that are detrimental to the development of DR 
(Figure 3). These include the polyol pathway [60], AGE pathway [61], 
PKC pathway [62], hexosamine biosynthesis pathway [63], alteration in 
the expressions of VEGF [64], IGF-1 [65] and elevation in mitochondrial 
overproduction of superoxide and mitochondrial dysfunctions [13]. It 
is worthy to mention the various factors related to DR and underline 
the prominent importance of OS in the development and progression 
of DR. Several diabetes-induced abnormalities in the retina that are 
postulated in the development of retinopathy are influenced by OS 
and are considered to be interrelated [1].

Treatment with antioxidants is associated with partial restoration 
of diminished pericytes in retinal vessels in diabetic rats [5, 66]. 
Moreover, the pericytes isolated from the retinas of diabetic donors 
highly expressed death proteases in the apoptotic pathway. These 
results clearly suggest that the OS is linked to apoptosis of retinal 
capillary cells and involved in microvascular cell loss during the 
course of DR [67].

Several biomarkers of DNA oxidation, lipid peroxidation, amino 
acids oxidation, glycoxidation and lipoxidation reactions have been 
identified and can be measured in short-lived intracellular proteins, 
plasma proteins, long-lived extracellular proteins and in urine by 
chemical methods (Table 2). These markers, measured by sensitive 
high-performance liquid chromatography or gas chromatography-
mass spectrometry, enzyme linked immuno sorbent assay (ELISA) and 
immunochemical techniques, are becoming an increasingly important 
part of the methodology for detection and measurement of oxidation 
products in tissues [46].

The etiology of OS and the subsequent issues of the oxidative 
tissue damaging have been widely exploited. However, the exact 
mechanism by which OS could contribute to the development 
of diabetic complications still remains to be clarified. Table 1 
summarizes some possible issues associated with OS, diabetes 
deficient metabolism, as well as the possible sources of vascular OS 
in vascular smooth muscle cells and endothelial cells.

Antioxidants as potential therapeutic agents

Wellestablished antioxidants derived from the diet are vitamins 
C, E, A, and carotenoids, which have been studied intensively 

Figure 3: Oxidative stress-mediated dysmetabolisms in diabetic retinopathy 
(modified from ref. [1]).

Figure 4: Antioxidants structure classification.
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[68]. Vegetables and fruits have in their natural composition other 
substances besides these antioxidant vitamins which guarantees 
health benefits associated with its consumption. Over the past 
decade evidence has been accumulated that plant polyphenols are an 
important class of defense antioxidants (Figure 4). These compounds 
are widespread virtually in all plant foods, often at high levels, and 
include phenols, phenolic acids and flavonoids [68].

Antioxidants may act at different levels, inhibiting the formation 
of ROS or scavenge free radicals, or increase the antioxidants defense 
enzyme capabilities [1,4,69] (Table 3).

However, in the case of macrovascular/microvascular 
complications the antioxidant therapy is beneficial together with 
blood pressure control, management of dyslipidemia and optimal 
glucose control [46].

Generally, the antioxidant pharmacotherapy can be divided in 
the use of antioxidant enzyme and substrates, biogenic elements, 
combined drugs, synthetic antioxidants and drugs with antioxidant 
activity. There are also a large number of natural cellular defense 
mechanisms as the naturally existing antioxidant components, which 
neutralizes free radical damage. The enzymatic antioxidant systems, 
such as Copper (Cu), Zinc (Zn), manganese superoxide dismutase 
(MnSOD), GPx, GR and catalase may remove the ROS directly or 
sequentially, preventing their excessive accumulation and consequent 
adverse effects [30]. Non-enzymatic antioxidant systems consist of 
scavenging molecules that are endogenously produced such as GSH, 
ubichinol and uric acid or derivatives of the diet such as vitamins C 
and E, carotenoids, lipoic acid, selenium, etc [70].

The consideration for both — the intake of antioxidants special 
monitoring through diet or through supplementation should 
include a careful analysis of data, including the role of antioxidants 

physiologically relevant as well as the concentrations to alleviate 
diabetic complications, with minimal side effects. Indeed, antioxidants 
such as N-acetylcysteine (NAC) [71], vitamin C [72] and α-lipoic acid 
[48] are effective in reducing diabetic complications, indicating that 
it may be beneficial either by ingestion of natural antioxidants or 
through dietary supplementation [73]. 

Administration of antioxidants to diabetic rats is able to 
prevent the development of retinopathy and also retinal metabolic 
abnormalities postulated to be involved in the development of 
retinopathy [74,75]. Following positive results of the prevention of 
diabetes-associated vascular dysfunction in a diabetic rat model, high 
doses of vitamin E, the major antioxidant in lipid phase were studied 
in the clinic and found to restore retinal blood flow in diabetic type 
I patients to control levels [48,50]. The potential benefit of vitamin 
E, has been shown in DR by its free radical scavenger activity outside 
the cell through nonenzymatic mechanisms[50]. Studies in humans 
suggested that antioxidant therapy with vitamin E might normalize 
diabetic retinal hemodynamics. [46]. Trolox is a water soluble analog 
of vitamin E with potent antioxidant properties. Trolox is shown to 
partially prevent the loss of pericytes in diabetic rats via reducing 
membrane lipid peroxidation [76]. 

Superoxide production in the retina was suppressed by 
a combination of vitamins C and E and partial reductions in 
neovascularization of the retina were observed in diabetic rats 
that received this vitamin combination [76]. Multiantioxidants 
supplementation of these vitamins in diabetic rats also prevents the 
inhibition of retinal GR, GPx and SOD activities [77]. The benefits 
related to the survival of retinal cells are more notorious when 
associated with the consumption of other antioxidants as ascorbic 
acid, acetate, α-tocopherol, trolox cysteine, NAC, β-carotene and 
selenium [12,77,78]. The same components can also reduce the 

Biomarkers of oxidative stress

ROS and RNS
SOD radical, H2O2, NO, HOCL, peroxides, peroxyl radical, peroxynitrite, metal-oxo complexe, semiquinone radical, heme 
proteins, singlet oxygen;

Products of lipid peroxidation MDA, 4-HNE, hydroperoxides, conjugated dienes, F2-isoprostanes dicarboxylic acids;
Products of DNA oxidation Modified bases, 8-oxo-2' deoxyguanosine, strand breaks;

Primary products of protein oxidation o-tyrosine, o,o.-dityrosine, 3 chlorotyrosine,3-nitrotyrosine, dihydroxyphenylalanine, protein disulfides, methionine sulfoxide, 
hydroperoxides of isoleucine, leucine, valine, protein carbonyls adipic semialdehyde, 2-oxohistidine;

Secondary products of protein 
oxidation

AGEs, ALEs, EAGLEs, Pentosidine, MDA-Lys, MDA-LDL, CML, CMA, CEL, Crosslines HNE (Lys, His, Cys) Argpyrimidine, 
Vesperlysines, Pyrroles, GOLD, MOLD;

Antioxidant defense systems and 
total antioxidant status Levels of enzymes and antioxidants;

Table 2: Biomarkers of oxidative stress in diabetes mellitus (adapted from ref. [46]).

Table 3: Antioxidants described to have high therapy potential in diabetic retinopathy and their way of action.

Antioxidant Mechanism of Action References

Aminoguanidine Inhibits the accelerated death of retinal capillary cells and development of retinopathy, inhibits lipid
peroxidation and AGEs formation; [85-87]

Ascorbic acid, acetate, α- tocopherol, trolox 
cysteine, NAC, β-carotene and selenium Reduce PKC in the retina, and lipid peroxides, prevents the drecrease of SOD, GR and catalase; [12, 77-78]

Benfotiamine Inhibits MnSOD, increases the inhibiton of acellular capillaries in the retina blocking the major pathways 
involved in hyperglycemia induced retinal dysmetabolism; [88]

Caffeic acid Anti-angiogenic activity in retinal endothelial cells and retinal neovascularization, suppression of the  
ROSinduced and VEGF expression; [81, 97]

Calcium dobsilate Decreases retinal permeability, stabilized BRB and reduced overexpression of VEGF; [11, 79-80]
Curcumin Ocular anti-inflammatory multipotent activities; [44, 91]

Lipoic acid Attenuates the apoptosis of retinal capillary cells and acellular capillaries, decreases the levels of 
nitrotyrosine, VEGF and oxidatively modified proteins, activation of NF-kB; [73, 83]

Nicanartine Inhibits pericyte loss; [8]
Pycnogenol Free radical scavenger, antiinflammatory properties; [92]
Pyridoxamine Inhibits the formation of diabetes-induced retinal acellular strands; [88]

Rosmarinic acid Anti-angiogenic activity to retinal neovascularization, inhibits the proliferation of retinal endothelial cells, 
and the angiogenesis of tube formation; [84]

Selenium Down-regulate VEGF production in the retina of diabetics; [90]
Trolox Partially prevents the loss of pericytes via reducing membrane lipid peroxidation; [76]
Vitamin C and E Reduce neovascularization, prevent the inhibition of retinal GR, GPx and SOD activities; [76-77, 98]
Vitamin E Restores retinal blood flow, free radical scavenger, normalize diabetic retinal hemodynamics; [46, 48, 50]
Zinc Prevents diabetes-induced GSH loss in the retina; [89]
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activity of PKC in the retina, reduces lipid peroxides and prevents 
the decrease of SOD, GR and catalase [77]. Thus, it is considered that 
increasing the application or consumption of a greater diversity of 
antioxidants is the best way to prevent retinopathy

Genetic engineering techniques demonstrated that 
overexpression of mitochondrial SOD in mice can decrease retinal 
OS and protect mitochondria dysfunction[67], which raises the 
possibility of a pharmacological approach attractive to inhibit the 
development of DR.

Another antioxidant, calcium dobsilate decreased retinal 
permeability, stabilized BRB and reduced overexpression of VEGF in 
diabetic rats [11]. Independent of diabetes control in the patients, 
calcium dobesilate, prevented BRB disruption [79]. These effects of 
calcium dobesilate appear to be related to its antioxidant activity. 
However, the precise mechanism of the drug-induced protection from 
DR is poorly understood, although it has been used to treat DR in 
many countries [80]. Caffeic acid has anti-angiogenic activity in retinal 
endothelial cells and retinal neovascularization, which may be related 
to suppression of the ROS-induced and VEGF expression [81] without 
retinal toxicity[82]. Suggesting that might be pharmacologically 
applied to vaso-proliferative retinopathy including DR, age macular 
degeneration (AMD), as well as retinopathy of prematurity (ROP). 
Lipoic acid attenuates the apoptosis of rat retinal capillary cells and 
decreases the levels of nitrotyrosine [83]. Lipoic acid supplementation 
completely prevents diabetes-induced increase in nitrotyrosine 
and activation of NF-kB while decreasing the levels of VEGF and 
oxidatively modified proteins in the rat retina [83]. This antioxidant 
also inhibits diabetes-induced decreases in retinal mitochondrial 
and cytosolic ratios of NAD+ to NADH [73,83]. Rosmarinic acid has 
an anti-angiogenic activity to retinal neovascularization in a mouse 
model of retinopathy. Significantly inhibited the proliferation of 
retinal endothelial cells in a dose-dependent manner, and inhibited 
in vitro angiogenesis of tube formation. Moreover, rosmarinic acid 
showed no retinal toxicity. These data suggest rosmarinic acid 
could be a potent inhibitor of retinal neovascularization and may be 
applied in the treatment of other vasoproliferative retinopathies [84]. 
Aminoguanidine a compound with antioxidant potential has been 
found to inhibit the accelerated death of retinal capillary cells and 
development of retinopathy [85]. It also inhibits lipid peroxidation, 
AGEs formation in experimental models, and the development of 
nephropathy and neuropathy [86,87]. However, all clinical trials with 
aminoguanidine (Pimagidine) in Europe and then in the U.S. were 
discontinued due to its long-term toxicity. 

Benfotiamine, a lipid soluble thiamine derivative that inhibits 
MnSOD, has been shown to increases the inhibition of acellular 
capillaries in the retina of diabetic rats via blocking the major pathways 
involved in hyperglycemia induced retinal dysmetabolism, including 
AGEs, PKC, and hexosamine pathways [88]. Pyridoxamine inhibits the 
formation of diabetes-induced retinal acellular strands in rats [88]. 
Nicanartine, an antioxidant with cholesterol lowering properties, can 
partially inhibit pericyte loss in diabetic rats. However, in the same 
animals it fails to provide any benefit in normalizing diabetes-induced 
increase in retinal acellular capillaries [8]. Zinc, a trace element with 
antioxidant properties, is shown to prevent diabetes-induced GSH 
loss in the retina [89]. Further, another trace element, selenium, is 
reported to down-regulate VEGF production in the retina in diabetes 
[90].

Owing to its antioxidative and anti-inflammatory multipotent 
activities, curcumin, a naturally occurring yellow pigment, could 

represent a preventive treatment option for inflammatory retinal 
diseases such as AMD, DR and light-induced retinal degeneration 
(LIRD)[44,91]. Pycnogenol, a compound with both free radical 
scavenging and anti-inflammatory properties, is also reported to 
have beneficial effects on the progression of retinopathy in diabetic 
patients [92].

Taurine and vitamin E supplementation along with selenium also 
reduced biochemical retinal alterations in diabetic rats [93]. Tempol 
is a membrane-permeable and metal-independent superoxide 
dismutase (SOD) mimetic and has been used for the removal of 
intracellular and extracellular free radicals and it seems that in obese 
Zucker rats, tempol reduced blood pressure, blood glucose, insulin, 
renal oxidative stress, and protein kinase C activity [94].

Supplemental treatment based on extracts could be also very 
attractive since major compounds may work together, like in the 
green tea, which is highly rich in polyphenols with great antioxidant 
potency and inhibits lipid peroxidation, scavenges hydroxyl and 
superoxide radicals [76]. Green tea supplementation in diabetic rats 
reported an improvement of the SOD levels and GSH, reduction on 
the serum glucose levels, and reduce retinopathy signs as evident by 
reductions in acellular capillaries and pericyte ghosts [95]. Evidences 
also suggest that green tea significantly inhibited diabetic cataracts 
in streptozotocin-induced rat model of diabetes [96]. This provides 
encouraging rationale for its possible therapeutic use to inhibit 
retinopathy in diabetic patients.

As cited in this section, many agents may have antioxidant activity 
and protect the retina from the natural progression of DR (Table 3). 
However, more studies should be explored considering the topical 
and additional administration of antioxidants to patients with the 
first sights of the disease. Nevertheless, antioxidant therapy cannot 
be considered a unique action in the prevention and treatment of 
DR. It should be taken into account multiantioxidant administration 
or supplementation, as well as a regular diet, hyperglycemic control 
and medical surveillance.

Emergent clinical trials

The need to improve the ocular drug bioavailability, effectiveness 
and higher retention time becomes an emerging field in medicine, 
considering the exponential rise of diabetes worldwide and the 
consequent increase of DR condition. Although there are at least 60 
agents in the clinic touted as anti-angiogenic, many more potential 
anti-angiogenic candidates are currently in preclinical development, 
with the distinct possibility of moving into ocular clinical studies 
[97,98]. On the other hand, and until now, no molecular therapies 
have received FDA approval for the treatment of diabetic macular 
edema and PDR [4,99]. Recent data from very important multicenter 
clinical trials have emphasized the importance of new and evolutional 
therapies. A clinical trial concluded that emerging treatments 
like protein kinase C inhibitors and reduction of oxidative stress/
superoxide possibly used in combination with standard therapy, 
offer the hope of effective and safe treatment that may allow us to 
improve visual outcomes and prevent the damaging consequences 
of DR [100].

However and conciedering antioxidants therapy the results from 
clinical trials may seem ambiguous, since many drugs for DR control 
with antioxidant potential and actual effects in vivo, did not result 
when administrated in human volunteers [5,97]. The differences for 
such discrepancies are not clear, but it is possible that the initiation of 
antioxidants could be subsequent to the development of background 
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retinopathy, in contrast to the animal studies where antioxidants have 
been administered soon after establishment of diabetes. Another 
reason for this discrepant results observed in clinical trial might be 
also due to antioxidants unspecific actions, or not so specific as it 
could be expected.  The antioxidant concentrations in the retina 
could be also not sufficient to produce beneficial effects in humans 
[78,101]. 

However antioxidants appear to be promising in inhibiting the 
development of DR in animal models, but further clinical studies are 
needed to determine the appropriate regimen, and also whether these 
therapies could have long-term effects that may slow the progression 
of this sight-threatening complication of diabetes [1]. If the treatment 
does not completely inhibit the targeted metabolic abnormality, this 
could result in partial inhibition of other interrelated abnormalities. It 
would be prudent not have just one single drug that could effectively 
treat this complication of diabetes, but the use of a group of drugs 
with divergent mechanisms of action to combat this multifactorial 
complication, in which antioxidants could be an integral part of that 
healing [1].

Conclusion
The use of topical antioxidants to treat or delaying oxidative 

stress-related ocular manifestations is still unexplored, while current 
DR therapy includes invasive method like laser photocoagulation or 
surgery, which may also increase risk of endophthalmitis, cataract 
formation and retinal detachment. Besides the development of laser 
for DR, there have been no major advances in treatment for the 
disease, despite numerous clinical trials. Drugs applied directly to 
the eye represent a non-invasive and safe methodology, increasing 
the effectiveness of treatment and reducing toxicity associated with 
systemic administration. 

An ideal anti-angiogenic agent should be developed for 
neovascularization control and regression. It may inhibit and stabilize 
the disease, to improve the vision loss and prevent retinal scarring 
and detachment with no toxicity as well as the formulation should 
be for long term drug delivery. Agents should also be classified into 
early and late acting, specific and non-specific, and reversible and 
irreversible. The understanding of where a drug falls into these classes 
may help in the comprehension of the potential and/or limitation of 
the drug when used in the clinic, as well as how to predict potential 
serious adverse events. Considering this, there are a number of 
challenges associated to the treatment of ocular diseases. In general, 
the major problem in ocular therapeutics is to maintain an effective 
drug concentration at the site of action for an appropriate period 
of time, in order to achieve the expected pharmacological response. 
Polymeric adhesive nanoparticles have been utilized to enhance the 
performance of common drugs, increasing drug time retention, slow 
drug delivery, with a specific target while reducing systemic side 
effects compared with commercial aqueous eye drops. The smart 
symbiosis of these adhesive particles with a high potent antioxidant 
could be a hope for future therapies, considering the important effect 
of OS in the pathogenesis of DR. This therapeutic improvement is 
expected to offer real benefits in the stability, bioavailability, drug 
delivery and therapy of the diabetic patients. Thus, successful 
alternatives for ocular therapies are needed and they should provide 
non-invasive and a cost effective treatment reaching every economic 
status.
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