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INTRODUCTION 

Cytochalasans are a large class of fungal secondary metabolites with 

varying anti-tumoral, anti-microbial, and other biological activities [1]. 

Since their first discovery in 1967, the size of this class has steadily 

grown and is now made up of at least 300 compounds [2], which are 

characterized by a highly substituted isoindole ring fused to a larger 

often 11 or 12 membered macrocyclic ring (Figure 1). 

 

 
Figure 1: Representative planar structures of aspochalasin Z (1) with a 11-

membered macrocyclic ring and aspochalasin J (2) with 

a 12-membered macrocyclic ring. Isoindole unit is drawn in blue and 

macrocycle in green. 

Cytochalasans with a 2-methylpropyl substitution at C-3 of the 

isoindole unit are sub-grouped as aspochalasins (Figure 1). By 2004 only 

12 such compounds containing this substitution had been identified 

[3]. As of April 2021, this number has swelled to greater than 100; the 

associated online Supporting Information provides a compilation of 

names, structures and sources of those natural products, and thus serves 

as a reference for compounds whose structures are not presented in 

this article. A majority of aspochalasins have been isolated as white or 

pale-yellow amorphous powder from Aspergillus species; however, they have 

also been found to be produced by other fungal species such as Phoma, 

Periconia, Spicaria, Trichoderma or Westerdykella [4- 18]. This small 

but rapidly expanding group of fungal natural products have 

demonstrated proclivity for vast structural diversity and varying biological 

activities. This article aims to categorize the underline features of 

aspochalasins. 
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ABSTRACT 

Aspochalasins are a structurally diverse subgroup of cytochalasans produced by fungal secondary metabolism. While much is still 
unknown about their precise mechanisms of action, they appear to elicit cytostatic and cytotoxic effects  similarly as their parental 
group. Those effects include antibacterial, anti-tumoral, phytotoxic, anti-proliferative, and anti-viral activities. Their potencies 
are often as varying as their structures with minor modifications on their frequently substituted macrocyclic scaffold causing 
complete loss or significant enhancement of activity. Due to their various biomedically relevant effects and a large number of 
macrocyclic carbons with tolerance for diverse functional group substitutions, aspochalasins appear to be good candidates for 
structural optimization which may produce compounds with potent and targeted effects. This article aims to categorize the 
underline features of this subgroup of naturally produced compounds. 
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STRUCTURAL DIVERSITY AND CATEGORIZATION 

While aspochalasins are easily characterized and recognizable by their C-3 

2-methylpropyl group, the macrocycle affords the most opportunity for 

structural novelty via addition of functional groups or attachment of 

large complex molecules on the C-17, 

-18, -19, and/or -20 positions. 

Commonly, aspochalasins are described based upon their overall ring 

structure. The most common ring arrangement is the tricyclic 5/6/11 

organization as seen in aspochalasin Z 1; (Figure 1); however, other ring 

arrangements such as 5/6/12 as seen in aspochalasin J 2; (Figure 1), or 

5/6/6/7, 5/6/9, 5/6/7 have also been identified. 

In addition to the previously mentioned ring structural categorization, 

aspochalasins can also be classified as ketone 

aspochalasins for having a key C-21 ketone or ester aspochalasins for 

having a C-21 ester on the macrocycle fused to C-9 of the isoindole ring 

(Figure 1), or as open-ring aspochalasins for lack of a macrocyclic ring. 

The exceptions to this rule are a hydroxyl group seen on C-21 of 

aspochalazine A attributable to its iconic azabicyclo moiety [19], a 

replacement of the ester ketone with NH in flavichalasine O [20], and 

periconiasins D-F due to their severely truncated macrocycles [9]. 

Ketone Aspochalasins 

Roughly 2 of every 3 (80/117) aspochalasins identified to date contain 

what can be considered the basic form of the macrocycle with a C-21 

ketone moiety (Figure 2). 1 is thought to be the “basic version” of all 

aspochalasins with the emblematic C-5, -6, and -14 methyl groups but no 

further modifications to the macrocycle or the isoindole ring [21]. 

 

 
 

Figure 2: Representative planar structures of the ketone subgroup of aspochalasins. 
 

Though this group contains the most common and basic 5/6/11 ring 

structure, it nonetheless encompasses interesting compounds such as 

iizukine C (3) with a unique 1,2,4-triazole group attached to C-19 [22], in 

addition to the more familiar compounds such as aspochalasins C-E (4-

6) with hydroxyl groups at the frequently 

substituted C-17, -18, and/or -19 positions (Figure 3) [23]. Spicarins A-B 

(7-8) have four acetyloxy groups attached to C-17 and their macrocycle-

fused isobenzofuran ring [11]. Tricochalasin A (9) markedly contains a 

heavily modified 5/6/6 tricyclic ring attached to C-18, -19, and -20 [24]. 
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Figure 3: Occurrences of functional attachment to C-7, -14, -16, -17, -18, -19, and -20 of aspochalasins as well as their structural categorization (*) 

based upon the carbon connecting the macrocycle to the isoindole ring. With few exceptions, aspochalasins typically  have a methyl group attached at C-14 

and an unsubstituted C-16. For C-17, -18, -19, -21 and -21, substitutions are often oxygenated functional groups or larger high MW modifications. 

Despite the presumed availability of C-13 and C-15 on the macrocycle 

for functional group substitutions, there is no example of substitution on 

those atoms other than internal ring closure as seen in flavichalasines C-E 

(10-12), trichalasin H (13), aspergillin PZ (14), 16-hydroxymethylaspergillin 

PZ (15), and trichoderone B (16). Ring closure often generates an epoxy 

moiety fused to the macrocyclic ring [16-18,25,26]. 

Apart from C-13 and C-15, the next most uncommonly substituted atom in 

the macrocycle is C-16 (Figure 3). Phomacin C (17) [4,6] and several 

naturally occurring analogs of 17 have been isolated and found to have an 

atypical hydroxymethyl attachment at C-16 including bioactive 17 

diastereomer 19,20-dihydrophomacin C 

(18) [5]. Among these analogs, several were also determined to have an 

equally rare methoxy group. While methoxy has not yet been observed at 

C-17, it is seen at C-18 in aspochalasin K (19) [3]. Methoxy has also been 

seen at C-19 of trichalasin G (22) [16], which is an analog of aspochalasin 

I (20) [3] and flavichalasine F (21) [25]. Finally, a methoxy group is 

present at C-20 in flavichalasine L (23) [25]. 

Complex ring systems expand far past the relatively simple tricyclic, tetracyclic, 

and pentacyclic structures yielding compounds such as the cage-like 

hendecacyclic epicochalasines A-B, which are thought to be generated 

from the fusion of an epicoccine dimer to 5 [27] similar to 

asperflavipines A-B, which are characterized by their tetradecacylic and 

nonacyclic structures, respectively [2]. Epicoccine is likewise integrated 

into the structure of asperchalasines A-H which theoretically arise from 

aspochalasins B and P (24-25) and aspergilasines A-D from 5 [28-31]. 

Multifarious ring structures are not the only characteristics which give 

aspochalasins their rich diversity; many identified aspochalasins have 

interesting groups attached to their macrocycle rather than complex 

interconnections. Aspochalamins A-D is notable for tripeptide 

sequences attached to the macrocycle of 1 or 5 and were only found in 

stationary culture [21,32]. 

Within the ketone aspochalasin group are other oddities such as 

bisaspochalasin A wherein a 5 monomer is homodimerically 

linked at C-17, -18, and -19 to the cleaved macrocycle of another [33]. In 

the same way, bisaspochalasins B and C are homodimerized 24 but are 

instead linked by a peculiar thioether bridge and differentiated by 

bisaspochalasin C’s equally odd C-7 peroxy seen only one other time in 

trichalasin E [16,33]. While sulfur is rarer than carbon, nitrogen and 

oxygen in microbial natural products methylthio containing 

aspochalasins V and W [34] as well as modified cysteine containing 

cyschalasins A and B [35] have been described. Periconiasin H rounds 

out the sulfur-containing aspochalasins, however, its sulfoxide group is 

not its most striking structural feature. The periconiasins are much 

smaller than typical aspochalasins with ring structures as small as 5/6/7 

seen in periconiasin G [8]. Periconiasins D-F are technically not ester 

nor ketone aspochalasins due to a C-15/18 ring closure on their 

truncated macrocycle [7,9]. Regardless, the periconiasins still retain the 

other key aspochalasin characteristics such as the C-3 2-methylpropyl group 

and isoindole subunit [7-9]. 

The last common modification is addition of a hydroxyl group to C-7 

of the isoindole ring, as seen in 16, aspochalasins L, U and W [36,37], 

and trichalasin C [15]. This group of compounds represent the lone non-

macrocyclic aspochalasin modifications thus far documented (Figure 3). 

Ester Aspochalasins 

Ester aspochalasins have their macrocycle connected to the isoindole 

unit by what is now known to be a Baeyer-Villiger generated C-21 ester 

[38,39] and are largely 5/6/12 structured compounds, though 

unsurprisingly this is not the only possible ring structure (Figure 4). 

Aspochalasin F (26) was the first documented occurrence of a C-21 

ester aspochalasin reported in 1997 [40]. This group is no less diverse 

than the ketone aspochalasins and often contains compounds which 

share structural similarity with analogous ketone counterparts. For 

example, the uncommon 17, 18 epoxy group found in C-21- ketone 

aspochalasin G is also seen in the ester-containing 26 [40]. Likewise, many 

ester aspochalasins are also present with hydroxyl or carbonyl groups 

attached to C-17, -18, and/or -19 (Figure 3) 
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[3,22,25,38,41] with internal ring structures such as those seen in 

amiaspochalasins B and C (27-28) [38]. 

 

 
Figure 4: Representative planar structures of the ester subgroup of 

aspochalasins. 

Exceedingly unique amiaspochalasin A (29) has a methyl group affixed to 

C-16 rather than the largely ubiquitous 14-methyl placement seen in 

nearly all of its aspochalasin congeners (Figure 3) [38]. Similar absence of 

14-methyl is only seen in periconiasin F and flavichalasine A [25] which 

both contain 14-methylene making 29 the only recognized C-14 

unsubstituted aspochalasin. Similar C-16 methylation is seen in 16α-

methylaspochalasin J (30) 

[18] and phomacin A [41] which both, however, retain 14-methyl; 

interestingly, none of these 16-methyl bearing compounds were isolated 

from Aspergillus sp. 

Open-ring Aspochalas 

Opening of the macrocycle rather than a ring closure is the source of 

the last major category of aspochalasins (Figure 5) [42]. The products of 

those ring breakages have been from both ketone and ester aspochalasins 

and can occur at many locations on the macrocycle. For example, 

amiaspochalasin F and G (31-32) [38] are thought to be generated by 

cleavage of the C-21 ester group from their immediate precursors. 

Similar ring opening is seen in amiaspochalasin I [42], secochalasins A 

and B (33-34) [35], and a monomer of the strangely cross-linked 

bisaspochalasin A [33]. Overall, the open-ring aspochalasins are a small 

and rare subset of aspochalasins (Figure 3). 

 

 

Figure 5: Representative planar structures of the open-ring 

subgroup of aspochalasins. 

Whether those are true terminal secondary metabolites, shunt 

intermediates during biosynthesis or simply breakdown products from the 

isolation process is unknown as they have not been reported to have 

meaningful bioactivities. 

 
BIOSYNTHESIS OF ASPOCHALASINS 

While the biosynthesis of aspochalasins is not as thoroughly 

documented as cytochalasans, limited studies demonstrate that their 

formation is similar to the parental cytochalasan class which arises 

from hybrid polyketide synthase–nonribosomal peptide synthase 

(PKS–NRPS) biosynthetic pathways [43,44]. As aspochalasins are solely 

distinguished from cytochalasans by their characteristic C-3 2-

methylpropyl group, it was postulated that their origins are due to 

incorporation of leucine in the na- scent structure rather than 

tryptophan, phenylalanine, tyrosine, valine, or alanine [24,43] which 

gives rise to other well-known cytochalasan subgroups such as the 

chaetoglobosins, pyrichala- sins, and alachalasins [35,43]. 

Specifically, a 36,705-bp biosynthetic gene cluster, ffs, was iden- tified in 

marine-derived A. flavipes CNL-338 that yields many aspochalasins 

including 4, 6, 14, 21, aspochalasin M, TMC-169, and flavichalasine G 

[44]. The ffsA PKS module iteratively in- corporates malonyl-CoA 

building blocks followed by addition of L-leucine by an NRPS module 

[45]. 

Similarly, a PKS-NRPS gene cluster phm was upregulated by 

overexpression of transcriptional regulatory gene phmR in 

Parastagonospora nodorum, which resulted in the production of a 

previously characterized phomacin derivative [5] that was renamed 

phomacin D (35) and phomacins E-F 36-37; (Figure 6) [46]. Further, 

when phmA and phmE were expressed in A. nidulans, prephomacin 

(38) was produced. While 38 is not a conventional aspochalasin, it was 

proposed that this compound is the precursor to 35, which can logically 

be derived following enolization and a Diels-Alder addition [46]. 

 

 
Figure 6: Planar structures of phomacins D-F and prephomacin. 37 

notably has a C-20 acetonyl group [46], which is similarly 
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seen in aspochalasins N and O [13]. Whether this functional group is 

naturally occurring is unclear; though they appear to be an artifact of 

using acetone during extraction processes [13,46]. Experiments to verify 

this theory have emphasized the reactivity of C-20 [46]. 

Synthetically generating those often complex molecules from their 

biologic precursors complements the ability to understand their 

biosynthetic origin. This has proven to be an achievable endeavour 

even in the intricate asperchalasine structures [28,29] to aid in 

understanding their ability to selectively inhibit cell cycling [47]. 

The proposed biosynthetic pathway for the unique sulfur- containing 

aspochalasins involves a 1,4-addition of cysteine to intermediate 24 

followed by either a deamination-methylation or acylation 

decarboxylation step to arrive at the structure of cyschalasins A and B, 

respectively [35]. A similar biosynthetic strategy is proposed for the sulfur-

containing bisaspochalasins B and C wherein cysteine is also postulated 

to conduct a nucleo- philic addition to the unsaturated C-20 of 24 [33]. 

The complexly linked epicochalasines A and B are suggested to be 

formed through a Diels-Alder reaction of 5 and two epicoc- cine 

molecules followed by (3+2) cycloaddition and a subse- quent nucleophilic 

addition step to yield epicochalasines A or B depending on the original 

orientation of epicoccine at the time of cycloaddition [27]. A similar 

biogenetic pathway is proposed for the creation of aspergilasine A which 

undergoes an intramo- lecular (3+2) cycloaddition to arrive at its final 

structure [31]. 

Biological Activities 

As indicated by the Greek root meaning ‘cell relaxation’ [48], 

cytochalasans are known to elicit anti-proliferative activity through 

targeting and capping the actin cytoskeleton [49]. This actin capping 

affects normal cell processes such as cell adhesion, motility, signalling, and 

cytokinesis [1,35]. Though the biological activity of cytochalasans is well 

documented, aspochalasins have sporadically reported data (Table 1) 

which obfuscates our ability to determine their importance, structure-

activity relationship, and any specific mechanisms of action which vary 

from current understanding of cytochalasan activity. For example, 

cytochalasans have been shown to elicit cytotoxic as well as cytostatic 

effects, which would presumably allow for the use of the cytostatic 

compounds in cancer therapy despite their lack of cytotoxicity [43]; 

whether aspochalasins operate similarly is not extensively studied. 

Importantly, there is a need for some levels of modification on the 

macrocycle to cause cytotoxicity as the aspochalasin ‘basic version’, 1, 

has no documented bioactivities [21]. 

Table 1: Reported bioactivities of aspochalasins against cancerous or normal 

cell lines or microorganisms. 

 

Compound Notable Inhibitory Bioactivities 

 
aspochalasin C (4) 

B16-F10, HCT-116, NCI-H460, MCF- 7, SF-

268 

 
 
aspochalasin D (5) 

A. globiformis, A. aurescens, A. oxy- dans, 

A. pascens, B. [3, 15, subtilis, R. 

erythropolis, S. aureus, S. epidermid- is, 

Ba/F3, 21, 24, NCI-H460, MCF-7, 

SF-268, HeLa, PC3 41, 50] 

 
aspochalasin E (6) 

B16-F10, HCT-116, NCI-H460, MCF- 7, 

PC3, 

 Jurkat, HL60, NB4, HEP3B, RKO, 

Caspase 

 activation, PARP degradation 

aspochalasin F (26) HL60, MH60 

 
aspochalasin G 

B. subtilis, S. aureus, M. luteus, A. 

laidlawii, P. oryzae 

 HL60, MH60 

 
aspochalasin I (20) 

S. epidermidis, S. aureus, NCI-H460, 

MCF-7, SF-268, 

 Melanogenesis inhibition in Mel-Ab cells 

(IC50: 22.4 

 µM) 

aspochalasin J (2) MCF-7, SF-268 

aspochalasin K (19) NCI-H460, MCF-7, SF-268 

aspochalasin L Anti-HIV integrase (IC50: 71.7 µM) 

aspochalasin U TNF-α inhibition 

aspochalasin V PC3, HCT-116 

amiaspochalasin D HL60, A549, SW480 

amiaspochalasin E HL60, A549, Hep3B, U87, SW480 

 
asperchalasine A 

cyclin A, CDK2, CDK6, F-actin dis- 

ruption 

 
asperflavipine A 

MDA-MB-231, RKO, Hep3B, 

HCT116, Jurkat, NB4, HL60 

 
aspochalamin A 

A. pascens, B. brevis, R. erythropolis, 

HM02, MCF7 

 
aspochalamin B 

R. erythropolis, HM02, MCF7, 

HepG2, Huh7 

 
aspochalamin C 

A. globiformis, R. erythropolis, 

HM02, MCF7, HepG2, Huh7 
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aspochalamin D R. erythropolis 

 
aspergillin PZ (14) 

S. epidermidis, K. pneumoniae, P. 

aeruginosa, HL-60, 

 A2780, PC3, LNCaP, DU145, A2058 

 
bisaspochalasin A 

Anti-T-cell proliferation (IC50: 15.8 µM) 

 
cyschalasin A 

S. aureus, MRSA, C. albicans, HL60, 

Hep3B, MCF-7, SW480 

 
cyschalasin B 

MRSA, HL60, A549, Hep3B, MCF-7, 

SW480 

 
epicochalasine A 

Caspase activation, PARP degrada- tion 

 
epicochalasine B 

HL60, NB4, Caspase activation, 

PARP degradation 

 
flavichalasine F (21) 

Jurkat, HL60, NB4, Hep3B, HCT- 116, 

RKO, 

 Caspase activation, PARP degrada- tion 

iizukine C (3) HL-60, A549 

periconiasin A HCT-8, BGC-823 

periconiasin B HCT-8, BGC-823, Bel-7402 

phomacin A HT-29 

phomacin B (17) MCF-7, HT-29 

phomacin C (18) HT-29 

TMC-169 U937, Jurkat, HL-60, WiDr, HCT-116 

trichoderone B (16) HeLa 

35-36 inhibited actin polymerization and 37 did not. These findings 

suggest that aspochalasins block actin polymerization similar to 

cytochalasans but these activities are not present in the erroneously 

generated 37. Further supporting the suggestion of actin inhibition as a 

mechanism of action, 35-36 both exerted antigerminative phytotoxicity 

with 35 selectively [50] preventing germination of only monocot Avena 

sativum and not dicots Arabidopsis thaliana or Lepidium sativum [46]. 

To date, the most potent aspochalasin reported is TMC-169, a rather 

simple C-18-hydroxyl analog to 1. Despite or possibly due to its simplicity, 

it has shown remarkable cytotoxicity [51] against U937, Jurkat, HL-60, 

WiDr [52], and HCT-116 (IC50: 0.81, 0.2, 

0.68, 0.83, 0.78 µg/ml, respectively) [53]. Another minimally 

substituted compound, 5, caused cell death in dexamethasone inducible 

ras-dependent Ba/F3-V12 cells (IC50: 1.9 µg/ml), PC3 cells (IC50: 11.14 

µg/ml), and exhibits moderate antimicrobial effects against Gram-

positive microorganisms [50]. 

That is not to say that simplicity is a requirement for activity in 

aspochalasins. Complex compounds such as the tripeptide-linked 

aspochalamins elicited moderate growth inhibition zones against Gram-

positive microorganisms at 1 mg/ml and aspochalamins A-C had GI50 

less than 10 µg/ml against HM02, MCF7, 

HepG2, and Huh7 cancer cells [21]. Though it was cytotoxic to NCI-

H460, MCF-7, and SF-268 [3], 20 interestingly demonstrated no cytotoxic 

effect on Mel-Ab cells at <100 µM; however, 20 inhibited the ability of 

Mel-Ab to carry out melanogenesis (IC50: 

22.4 µM) by blocking tyrosinase activity [51]. 

Common to many aspochalasins is having a C-17 hydroxyl or C-18 

hydroxyl moiety (Figure 2). There is evidence to support the claim that 

hydroxyl at C-18 on the macrocycle can be necessary for antibacterial 

activity. The C-18 hydroxyl of aspochalamin C [21,32] was necessary 

for its activity against Arthrobacter globiformis when compared to the 

hydroxyl-lacking aspochalamin 

D. Similar activity against A. globiformis is seen in 5 which also bears a C-

18 hydroxyl. Interestingly, 5 exerted antibiotic activity against many Gram-

positive species which were not inhibited by aspochalamins A-D, 

indicating that their C-19 tripeptide linkage had a negative effect on their 

antibiotic potencies [21]. 

When compared for antibiotic activity, 5, 14, and 20 all caused growth 

inhibition against S. epidermidis and S. aureus; however, this inhibition 

is greatly diminished in 14 and 20 (MIC: 20 µM vs. 10 µM) [21,41]. 

Neither 14 nor 20 are inhibitory to E. coli or 

B. cereus whereas 5 (MIC: 10 µM) is. 24 was not inhibitory to any of these 

organisms (MIC: >20 µM) [41]. Given their structural similarities, it is 

clear that antibacterial potency among simple 17,18-diol compounds is 

greater in the C-21 ketone variant and this activity is not enhanced by 

changing C-17 hydroxyl to C-17 carbonyl or C-17 epoxy. Likewise, the C-

17,18-diol-19,20-epoxy bearing aspochalasin H, demonstrated no 

antibiotic activity against these targets [41]. Aspochalasin H also did not 

prompt cytotoxicity against Ba/F3 cells whereas 5 had high potency 

(IC50: 0.49 µg/ml) against the same target [54], indicating that this 

observed C-17 hydroxyl preference may carry over to anticancer effects 

as well. 

While there was little difference in the anticancer activity between 26 

and aspochalasin G against HL-60 and MH-60, there was a substantial 

difference in inhibition zones when 30 µg of either was added to cultures 

of Gram-positive and Gram-negative species. 26 was inactive whereas 

aspochalasin G was inhibitory to B. subtilis, S. aureus, M. luteus, A. 

laidlawii, P. oryzae, and L-form bacteria [40]. Given this, it appears that 

there is a role for C-21 ketone in antibiotic activity. 

As for the effects of internal epoxides, 13-15 have shown anticancer and 

antimicrobial effects [17,18,26]. Other uncommon compounds such as 

the 1,2,4-triazole-carrying 3 and the sulfur- containing cyschalasins also 

have documented cytotoxicity against cancer cells [22,35]. 

On the isoindole ring, aspochalasins with C-7 hydroxyl also exhibit 

important biological activities. Aspochalasin U has shown moderate dose-

dependent anti-TNFα activity in L929 cells which led to increased cell 

survivability by blocking necrotic cell death [36]. Aspochalasin L, which 

similarly contains C-7 hydroxyl, has shown to inhibit the HIV-1 

integrase activity but not HIV replication in HuT78 T-cells (IC50: 71.7 

µM) [37]. 
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22 is a C-7-H structural analog to aspochalasin L. Whether 22 has 

similar anti-HIV integrase activity is unknown. Further study of the 

comparative effects of these two compounds would aid in determining 

the importance or lack thereof for the uncommon yet often active C-7 

hydroxyl aspochalasins. No activity was observed in C-7 hydroxyl, C-20 

methylthio-containing aspochalasin V whereas its C-7 unsubstituted 

analog aspochalasin W was active against PC3 (IC50: 30.4 µM) and HCT-

116 (IC50: 39.2 µM) [34]. 

Further SAR is possible here due to the number of identified 

aspochalasins with hydroxyl or methoxy groups (Figure 3). 

The number of hydroxyl groups on the macrocycle is not necessarily 

indicative of the degree to which a compound will be cytotoxic. For 

example, amiaspochalasins D-E both have C-18 hydroxyl but 

amiaspochalasin D also has a C-17 hydroxyl. Despite being more 

substituted, amiaspochalasin D was significantly less cytotoxic to HL60, 

A549, Hep3B, U87, and SW480 than its structural analog [38]. 

Investigation of the role of C-16 methyl moiety is possible through 

comparison of 2 and 30. Though they have not been tested against the 

same targets, both compounds have shown moderate cytotoxicity [3,18]. 

Amiaspochalasin A lacked activity against a panel of cancer cell lines [38]. 

This deficiency in activity may have more to do with the absence of the 

extremely pervasive C-14 methyl rather than the presence of C-16 

methyl. 

Further, phomacin A demonstrated potent toxicity against HT- 29 cells 

(IC50: 0.6 µg/mL) but the toxicity is reduced in C-16 methoxy carrying 

phomacin B (IC50: 1.4 µg/mL) or its C-21 ketone analogue 17 (IC50: 

7.4 µg/mL) [6]. Of a group of six 

17 analogs which have been described, none demonstrated cytotoxicity 

(IC50: >50 µM) against HT-29 except for 18 (IC50: 

49.09 µM) [5]. 

Interestingly, the size of aspochalasins does not appear to be 

determinative of their activities. Compounds as small as a MW of 359.5 

and as large as a MW of 976.2 have been found to be biologically active 

[7,33]. The smallest active aspochalasins, periconiasins A-B, both showed 

sub-micromolar potency against HCT-8 (IC50: A: 0.9, B: 0.8 µM). 

Though they differed only by the orientation of their C-17 hydroxyl 

moiety, they had dissimilar potency against BGC-823 (IC50: A: 2.1, B: 

5.1 µM) and periconiasin B was the only compound of the two to be 

cytotoxic to Bel-7402 (IC50: 9.4 µM) [7]. The largest aspochalasin 

discovered to date, asperchalasine A, which consists of two 24 

monomers attached to a central epicoccine has exhibited ability to 

selectively arrest the cell cycle at G1 through inhibition of cyclin A, CDK2, 

and CDK6 in cancerous cells [47]. Other epicoccine- carrying 

aspochalasins, epicochalasins A-B and asperflavipine A, have shown 

cancer cell cytotoxicity through the activation of caspase-3 and 

degradation of PARP [2,27], a process similarly noted in flavichalasine F 

[25] (Figure 7). 

 

 
 

Figure 7: Proposed plausible relationships and biosynthetic derivations of various ketone aspochalasins from the ‘basic’ aspochalasin Z to more complexly 

substituted molecules. Compounds highlighted in green have documented biological activity; those n ot highlighted have no documented biological 

activity though are not necessarily inactive. Numbers in bracket are reference numbers. 

CONCLUSION 

Much is now known about the vastness of aspochalasin chemical space, 

though little is currently known about their structure- activity 

relationships which dictate their prolific anticancer, antimicrobial, 

phytotoxic and anti-viral profiles. As the size of the aspochalasin subgroup 

has now eclipsed 100 compounds, there is a necessity as well as an 

opportunity to delve deeper into their structure-activity relationships. 

Investigation of the responsible biosynthetic gene clusters may be 

helpful to discover more cryptic aspochalasins or further 

understand their biogenesis. Though their structures are often 

complex, many of these secondary metabolites have analogous 

compounds which differ by only one functional moiety. Because of this 

and considering their documented potential to elicit a wide array of 

biomedically relevant effects, the next sensible step is to methodically 

analyse the structure-activity relationships against common targets or to 

attempt synthetic structural optimization particularly on the macrocycle 

which has shown to permit attachment of substitutions that could 

potentially increase potency or targeting specificity. Given their well-

documented de 
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novo syntheses and reactive macrocyclic ring, aspochalasins may be 

appropriate scaffolds for further drug development as it is clear that size 

does not necessarily preclude aspochalasins from eliciting meaningful 

activity, though there is some bias for smaller molecules. 

Among the potential modifications to the macrocycle, C-14 methyl as 

well as C-17 and/or C-18 oxygenated functional groups appear to be 

preferred for bioactivity. 4, 5, and 24 appear to be functional 

‘starting blocks’ for building a large portion of this set of compounds 

and would thus be ideal candidates for any optimization attempts as 

their syntheses have been well documented. 

Most importantly, the precise mechanism of action of those 

compounds is still largely unknown. While their ability to cause 

cytotoxic or cytostatic activity is not disputed and there are suggestions 

that aspochalasins operate through actin capping, determining whether 

there are any other mechanistic activities which cause this wide range 

of intracellular effects is crucial to creating strategies to optimize their 

structures. 
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