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Diabetes Mellitus Development
Generally, in the evolution of Type 2 Diabetes mellitus (T2D) 

there are two main steps. Insulin resistance is usually an initial 
step, which is compensated by hyperinsulinemia that can maintain 
normoglycemia. With the development of the disease hyperglycemia 
arises as a consequence of insulin secretion failure. This disease has 
genetic and environmental factors in its pathogenesis, and the latter 
may contributing more for the recent T2D increase in epidemic 
proportion. It seems that environmental factors are more effective in 
the beginning of life, such as on the fetal period and in the newborn. 
Dorner et al. [1] already in 1975, was the first to associate a possible 
epigenetic transmission of diabetes mellitus that were more related to 
maternal than paternal influence, suggesting a stronger environmental 
link occurring through uterine milieu and lactation. Other authors had 
confirmed this association [2,3].

Developmental Programming Definition
During periods of rapid growth such as pregnancy, lactation, and 

the period of spurt growth that occurs at puberty, the body appears 
to be highly sensitive to influences of environmental stimuli. An 
unfavorable environment can disturb the process of cell proliferation 
and differentiation, leading to changes in the normal developmental 
pathways of tissues and organs. Events occurring in these critical 
periods of life, such as pregnancy, lactation and adolescence, are able to 
modify the epigenetic pattern (DNA methylation, histone acetylation 
and uncoded RNA) that does not change the DNA sequence but are 
mitotically and transgenerationally inherited, establishing adaptive 
phenotypes to meet environmental demands in the long term. This 
process is considered an adaptive response to ensure the maintenance 
of critical functions of tissues and survival to the insult. This 
phenomenon is called metabolic programming and more recently, 
developmental plasticity, since the phenomenon seems to be more 
probabilistic than deterministic, as programming could make us 
believe [4,5]. If this adverse condition is not permanent, the individual 
becomes more susceptible to developing metabolic disorders in 
adulthood, modulating the physiological function and susceptibility to 

disease (Figure 1). This concept was proposed for the first time in the 
90’s from the XX century, in studies showing an association between 
adverse intrauterine conditions, for example, maternal malnutrition, 
with the later development of obesity, hypertension and cardiovascular 
disease [6]. The intrauterine programming is more prone to cause 
morphological, besides functional alteration. When the programming 
occurs after birth, especially in early infant, the programming effect 
is more functional and can be different from those observed during 
gestation, even when the insult is similar.

Epidemiological Data - Geographical Differences 
Low Birth Weight (LBW) is associated with detrimental long-

term metabolic consequences in humans.  Several epidemiological 
studies have been investigating this new concept of the Developmental 
Origins of Health and Disease (DOHaD) hypothesis. The concept of 
developmental programming suggests that environmental insults 
during critical periods of development can trigger maladaptive changes 
in organ structure and function, thus increasing susceptibility to 
obesity, T2D, cardiovascular disease and metabolic syndrome in later 
life. 

The aforementioned hypothesis emerged in the 80s of last century 
with studies in the UK, where was observed an association between 
LBW and obesity and diabetes mellitus at adulthood [7]. Curiously, 
Indian babies with LBW when compared with the UK babies were 
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Abstract
Diabetes and its complications occur at high rates in the world population. Several epidemiological studies 

have associated perinatal adversities, such as nutritional disturbances or diseases during gestation and lactation, 
with the development of insulin resistance or failure on insulin secretion in the adult progeny. Only recently the 
mechanism by which this phenomenon occurs is being delineated through series of experimental studies and 
implies epigenetics changes as a main initializing event. In this review, the authors give a comprehensive report of 
the different models of fetal and developmental programming that can result either in insulin resistance or insulin 
inappropriate secretion, with the possible mechanistic explanation for these alterations. The changes in the female 
workforce, which implies in profound nutritional and hormonal changes, exposure to endocrine disruptor or addictive 
compounds during gestation and lactation, including the reduction of lactation period creates conditions that, are 
obesogenic for their progenies, increasing the risk of type 2 diabetes mellitus. Finally, neonatal insults might be an 
important ethiopathogenic factor for the development of metabolic disturbances in adulthood, including obesity and 
diabetes, contributing to the considerable increase in chronic diseases incidence in society. 
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shorter, thinner but fatter [8]. Contrary to observe in western countries, 
where T2D patients had higher body mass index (BMI) and are obese, 
T2D patients in India were thinner but had higher central obesity [9]. 
Thus, for the same kind of imprinting condition (LBW), postnatal 
nutritional conditions during development may produce different 
programming effects.

Observations in children from mothers exposed to Dutch famine 
during the nazi siege in World War II shows that the programming 
of diabetes mellitus is dependent on the period of gestation when 
the mother is exposed to malnutrition. The babies from mothers 
exposed to famine during early pregnancy did not presented LBW 
but were prone to develop obesity when adults and those who were 
exposed in late pregnancy had a LBW, tendency to develop glucose 
intolerance, despite lower risk to develop obesity [10]. After WWII 
the nutritional conditions of Dutches improves. A similar nazi siege in 
Russia, with consequent famine to Leningrad citizens, failed to produce 
programming effects, probably because after the War the nutritional 
conditions did not have enough improvement [11]. 

Accelerated postnatal growth, or ‘catch-up growth’, following 
intra-uterine growth restriction (IUGR) has also been shown to be 
important in the programming of later metabolic disease risk as well 
as being an independent risk factor for overweight that can manifest as 
early as childhood [12]. Babies with LBW have a rapid catch-up growth 
and a high risk to develop obesity and insulin resistance. Some studies 
show that children with high birth weight as well as children with LBW 
have higher chances of developing obesity in adulthood, demonstrating 
that the nutritional imbalance, both for more and for less, is able to 
programming for metabolic disorders in adult life. In fact, it seems that 
more important than the birth weight are the maternal conditions, such 
as body weight gain during pregnancy and the quality of the maternal 
diet during pregnancy and lactation [13].

Experimental Data - Models that Programs for Insulin 
Resistance or Deficient Insulin Secretion

The development of experimental programming models 
contributed to the advancement in understanding the mechanisms 
involved in the alterations found in glucose homeostasis. Experimental 
models using maternal malnutrition, such as protein or energy 
malnutrition, placental uterine artery ligation or glucocorticoids 

exposure are able to replicate findings related to LBW. On the other 
hand, maternal over nutrition usually given a high fat diet reproduces 
typical effects of maternal obesity that causes dysfunction in insulin 
secretion and glucose intolerance in offspring [14]. Maternal diabetes 
is more complex, because can be also associated with high birth weight 
and childhood obesity, if moderate, but if severe can cause LBW [15]. 
Interestingly, in most cases, offspring become obese in adulthood and 
therefore with a high risk of developing diabetes.

In rats, it has been shown that pancreatic islets and neurons are not 
fully mature at birth and that their development is completed in the 
immediate postnatal (suckling) period [16,17].

Some experiments show a programming effect increasing insulin 
sensitivity, such as maternal protein restriction during lactation, but 
most of the models of gestational or postnatal imprinting programs 
for insulin resistance and later insulin secretion failure with overt T2D. 
Below, were viewed some of the models more studied.

Maternal malnutrition (energy vs. protein malnutrition)

Nutrition has an important impact on some stages of life, especially 
during the fetal and early postnatal periods, having in some cases 
important consequences for health throughout the course of life. The 
growth of organs and tissues during the critical periods of development 
involves processes of differentiation, proliferation and migration of 
cells in organized structures. Although most of these processes occur 
during the intrauterine life, the neonatal phase is also considered a 
second important period for the physiological development. Thus, as it 
is well known that maternal malnutrition has a negative impact on the 
development of offspring, it is undisputable the merit of an adequate 
maternal nutrition during these stages of life. 

Experimental studies with dietary restrictions on critical windows 
of development showed that depending of the type of diet restriction 
and the stage of life, in which the insult occur, the outcomes is different. 
Several models of maternal protein restriction were studied, some of 
them with drastic diet protein restriction (0% of protein) to moderate 
reduction (8 to 10%). Most of those studies were performed during 
gestation, but some were done during gestation and lactation, and a 
more reduced number only during lactation.

Maternal under nutrition during pregnancy is associated with 
obesity, hyperinsulinemia and leptin resistance at adulthood [18]. 
Protein restriction in pregnant rats increases the risk of the offspring to 
develop higher blood pressure, obesity, hypertrophic adipocytes, higher 
insulin receptor expression and glucose metabolism alterations [19,20]. 
If protein restriction occurs only during lactation, the phenotype is 
different; the offspring shows low body weight, and higher insulin 
sensitivity in adult life [21-23]. It seems that this phase of higher insulin 
sensitivity turns in insulin resistance as the animal becomes older [24]. 

An insulin-resistant phenotype has been observed in both male 
and female adult rats born of dams fed a low-protein diet throughout 
pregnancy and lactation [24,25].  This was associated with impaired 
expression of key insulin-signalling proteins. Adipocytes isolated 
from low-protein offspring had significantly higher basal and insulin-
stimulated glucose uptakes than controls. This may be related to a 
threefold increase in insulin receptors in low-protein adipocytes. 
Consistent with these observed changes in glucose transport, 
adipocytes from low-protein animals had higher basal and insulin-
stimulated Insulin Receptor Substrate (IRS)-1-associated with 
phosphatidylinositol 3-kinase (PI 3-kinase) activities [26]. Recently, 
some studies, such as of Berends et al. [27], used cross-fostering to 
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Figure 1: Schematic representation of the developmental programming process.
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recuperate after birth, the pups whose mothers were protein restricted 
during gestation. The recuperated 3 months old male offspring had 
lower IRS-1, PI3K p110β and Akt phosphorylation in epididymal 
adipose tissue, but not significant changes in insulinemia or glycemia. 
By the contrary, the 3 months old offspring whose mothers were 
protein-restricted (0% protein) during the first ten days of lactation 
presented constitutively higher adipocyte levels of Akt, mTOR and 
GLUT4 that not respond to in vitro insulin administration [28].

Most of the experimental studies were done with rodents, mainly 
rats or some transgenic mice, and yet few studies with sheep that are 
more close to humans in relation to the type of gestation and lactation, 
since those animals usually produce only one offspring, instead of the 
10-12 pups produced at each rat parturition. However, the results 
obtained with sheep are still controversial to characterize a true insulin 
resistance when maternal malnutrition occurs during pregnancy or 
lactation. George et al. [29] showed that the female offspring of energy 
malnourished ewes during gestation, develops when adults, higher 
insulin secretion, insulin resistance as well as lipid and glycogen liver 
accumulation. While, Costello et al. [30] showed an altered AKT and 
GLUT 4 in muscles of adult male offspring of undernourished mothers 
during pregnancy, but the glucose tolerance was normal, indicating an 
adaptive mechanism. 

Glucocorticoid exposure or maternal stress 

It is well described in literature that early life stress, i.e. exposure to 
glucocorticoid excess, induces important alterations in emotional and 
social functioning increasing the risk for the development of aggressive 
behaviors in animal models or human studies. The hypothalamic-
pituitary-adrenocortical (HPA) axis is one of the main pathways to 
respond to a stressor [31-34].

It is well known that glucocorticoids cause hyperglycemia by 
increasing insulin resistance and inhibiting glucose-stimulated insulin 
release from pancreatic beta cells [35]. Concerning the programming 
for metabolic and endocrine disorders, changes in the secretion of HPA 
axis and/or in glucocorticoid action are good candidate mechanism in 
animals and humans to link LBW with cardiometabolic risk factors, 
such as obesity, dyslipidemia, hypertension and glucose intolerance 
[36-38]. In fact, prenatal glucocorticoid administration to women at 
risk of preterm delivery has adverse long-term effects on offspring 
metabolic health, as hyperinsulinemia at 30 years old [39].

The postnatal manipulations, such as different forms of maternal 
deprivation have been investigated in rodents, including early 
handling, early deprivation and single or repeated maternal separation 
[40-49] which gave new insights in the effects of early life stressors on 
future alterations in HPA status and glucocorticoid action. In part, 
these effects seem to be mediated by epigenetically-induced changes in 
neuroendocrine function. Liu et al. [50] have shown that offspring from 
mothers with low maternal care (for eg., low licking and grooming) are 
more anxious, and have a lower corticosterone response to stress and a 
lower Glucocorticoid Receptor (GR) expression in the hippocampus at 
adulthood compared with offspring from mothers with high maternal 
care. By the contrary, neonatal stress, such as maternal separation 
and followed by needle puncture is associated with higher visceral fat 
mass and hyperinsulinemia. If those animals were mechanically tactile 
stimulated those programmed changes were prevented [51].

To date DNA methylation is the most common mechanism 
investigated, because methylation patterns are established during 
development. This issue will be better addressed in item 5.2 of this 
review [52]. Few studies in humans evidence that methylation of 

genes involved in glucocorticoid action are altered by the early life 
environment, and concerning these recent findings on epigenetic 
issues, more information has been published in several recent reviews 
[53-55].

Maternal obesity and diabetes

The prevalence of maternal obesity has risen in worldwide at an 
alarming rate in the last two decades. In the UK, around one in five 
pregnant women is obese while in the USA, approximately 64% of 
women of reproductive age are overweight and 35% are obese [56]. 
Often, obese women give birth to large for gestational age babies, 
increasing the short-term risk complications during delivery as well 
as long-term influences on offspring health, either by direct effects of 
shared environmental or genetic factors or by programming effects 
[57]. 

In humans, maternal obesity has been associated with some long-
term adverse health offspring outcomes during infancy, adolescence 
and even adulthood, including risk of obesity and other dysfunctions 
as insulin resistance, dyslipidemia and hypertension [58-60]. In fact, 
Catalano et al. [61] were the first group who demonstrated that the 
fetuses of obese mothers had greater insulin resistance than fetuses of 
lean women, but the mechanisms by which the programming effects 
of maternal obesity are mediated are less well understood, for eg, 
compared with maternal undernutrition. 

Despite the mechanism of action is not yet completely known, 
evidence from experimental studies (with rodents and primates) has 
indicated that maternal obesity or fat diet exposure programs offspring 
for an increased risk of adult obesity and diabetes [62]. In mice, studies 
have shown that a maternal obesogenic diet (16% fat, 33% sugar) 
for 6 weeks before mating and throughout pregnancy and lactation 
leads the 6 months-old offspring to higher adiposity, hypertension, 
hyperglycemia and hyperinsulinemia [63]. In addition, more recently 
it was reported that at 17 days of gestation, the fetuses from female 
mice fed with high fat diet (60 kcal % fat) for 4 weeks before mating and 
throughout pregnancy presented higher plasma glucose and insulin 
[64].

Gestational diabetes predisposes offspring to develop diabetes 
later in life [65] and this could have a transgeneration transmission 
independent of genetic causes [66,67]. The association of diabetes 
in offspring of diabetic mothers was twice than with diabetic 
fathers [68,69]. It is difficult to separate the genetic factors from 
the environmental factors, since the diabetic mothers have the 
genes that can be transmitted to the offspring. However, an elegant 
epidemiological study in Pima Indians community showed a 3.7-
fold higher prevalence of diabetes in the progeny of diabetic mothers 
after they develop diabetes than their siblings before their mothers 
developed diabetes [70]. 

In experimental models, gestational diabetes may induce pancreatic 
islet dysfunctions on the offspring and increase risk of diabetes in adult 
[71]. In rats, mild maternal diabetes is induced by administration of 
streptozotocin at the beginning of gestation and continuous glucose 
infusion at the last week of pregnancy. The fetus from these mothers 
develops pancreatic beta-cells hyperplasia and hyperinsulinemia, which 
explains why those fetus are macrossomic, but at adulthood despite 
beta-cells mass is normalized, in vivo and in vitro glucose-stimulated 
insulin secretion was deficient followed by glucose intolerance [72,73]. 
However, hyperglycemic mothers had microsomic newborns, which 
also presented beta-cells hyperplasia, but with marked degranulation, 
suggesting an early exhaustion of their secretory capacity, confirmed 
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by hypoinsulinemia [74]. After birth there is a normalization of beta-
cells mass, but when the animals grow older the beta-cells suffer 
hyperplasia, with a higher insulin response to glucose-stimulation and 
insulin resistance [75]. The female offspring transmit to their progeny 
(second generation) the same phenotype characteristics of the offspring 
of mild diabetic mothers, such as glucose intolerance and insulin 
secretion defect at adulthood, and the second generation transmit to 
a third generation. However, the male are incapable to transmit those 
phenotype to their progeny [65,73].

Overnutrition by early overfeed 

Overnutrition in rats is a well-characterized model for neonatal 
and childhood obesity. Overnutrition may be induced by reducing 
the litter size, which increases body fat content, triglycerides, insulin, 
leptin and glucose serum levels at weaning [76,77]. Early overfed rats’ 
exhibit structural and functional hypothalamic changes, which impairs 
their response to both insulin [78] and leptin [79]. These changes may 
contribute to a higher risk of obesity-related diseases in adulthood. 
We recently, showed an altered liver oxidative stress and insulin 
resistance in this model [80]. Several studies have attributed this profile 
to neonatal hyperleptinemia, hyperinsulinemia and hyperglycaemia 
at weaning, which may cause a malprogramming throughout life. We 
failed to find any change in glycemia, insulinemia or leptinemia in the 
adult animal programmed by early neonatal overfeeding [81].

High carbohydrate milk formula until the time of weaning 
resulted in chronic hyperinsulinemia and adult-onset obesity (HC 
phenotype) in these rats supported by hypersecretory capacity of HC 
islets and hypothalamic alterations predisposing to hyperphagia [82]. 
Insulin secretion by pancreatic islets is under the control of peripheral 
(circulating blood glucose concentrations) and central Autonomic 
Nervous System (ANS) mechanisms. The Parasympathetic Nervous 
System (PNS) and the Sympathetic Nervous System (SNS) are the two 
opposing limbs of the ANS that extensively innervate the pancreas and 
regulate insulin secretion. The stimulatory effect of the PNS is exerted 
via acetylcholine, whereas the inhibitory effect of the SNS is exerted via 
norepinephrine. In vivo and in vitro studies on the insulin secretory 
capacity of islets from HC rats indicated an augmented response 
to cholinergic stimulation and a reduced sensitivity to adrenergic 
inhibition, suggesting that an altered ANS regulation contributes to the 
hypersecretory capacity of the HC islet cells [82].

Nicotine or tobacco smoke exposure

In early life, exposure to environmental chemicals seems to be one 
of the causes of world epidemic of obesity, acting as an obesogenic 
factor, and contributing to high levels of obesity and disorders closely 
associated with her, such as diabetes.

Recently, it has been shown that the critical windows are also 
sensitive to low doses of chemicals compounds. These agents, during 
the period of tissues organogenesis, are able to alter metabolic 
homeostasis, increasing the risk to develop obesity and diabetes [83]. 

The hypothesis is that lipophilic substances would be more 
diluted in obese individuals due to their greater content of fat mass 
compared to lean individuals. Adipose tissue gain over time furthers 
the dilution effect to lower serum levels independently of the 
chemical’s elimination. The temporal dilution of chemical compounds 
by mass gain is important in children because their rapid growth. 
The metabolism of chemicals in obese is delayed and its half-lives is 
extended [84]. Thus, chemical concentration in blood may be lower 
in obese people due to dilution but it cumulative exposure may be 

higher because the extended half-life. Furthermore, as it is accumulated 
in the adipose tissue, it may exert toxicity due to their high tissue 
concentrations. Chemical’s pharmacokinetics and pharmacodynamics 
seems to be altered in the obese, modifying for example the capacity 
of the peroxisome proliferator-activated receptor (PPAR)-γ binding, 
which alters the process of adipocyte differentiation, and consequently 
adipose tissue metabolism.

Worldwide, around 40% of children are exposed to cigarette smoke 
at home, where 43% of them have at least one parent smoking [85] 
showing higher BMI and obesity already in childhood [86,87]. 

Studies have shown the ability of maternal smoking to promote 
epigenetic changes in perinatal life and thus act as an important agent 
of programming including the development of glucose homeostasis 
dysfunction [88]. Perinatal maternal smoking increases the risk of 
obesity and diabetes in adult life [86-93].

Cigarette smoke exposure in early life influences significantly 
the infant development. The relationship between childhood smoke 
exposure and metabolic changes include the risk of developing 
atherosclerosis and diabetes in childhood. Epidemiological studies 
have demonstrated in children exposed to cigarette smoke a decrease in 
HDL-C, hyperleptinemia, increase in C-reactive protein and IL-6, and 
decreased adiponectin [94,95]. Similarly, smoke exposure is associated 
with the presence of autoantibodies to pancreatic islet cells, which can 
be the first step in the development of type 1 diabetes [96].

Experimental findings showed an association between fetal 
nicotine exposure and obesity, hypertension and glucose homeostasis 
change. In utero exposure to tobacco smoke from the partner may truly 
have an impact on the fetus, and is associated with obesity in women 
at adulthood [97].

Adult offspring from mothers exposed to nicotine during 
pregnancy and lactation is programmed not only to obesity but also 
to insulin resistance, glucose intolerance, cold intolerance, reduced 
spontaneous physical activity and high risk of cardiovascular disease 
[93,97,98]. 

Nicotine exposure from conception until lactation results in 
permanent β-cell depletion and subsequent impaired glucose tolerance 
[97]. According to Holloway et al. [99], fetal and neonatal exposure to 
nicotine results in disorders in the offspring that are common to those 
observed in T2D, and that adverse glucose metabolism observed in rats 
exposed to nicotine during fetal and neonatal life, can influence the 
metabolic risk in subsequent generations.

As nicotine is transferred through breast milk [100], becomes 
important to know its effects on the infant’s development when exposure 
occurs during lactation. To assess whether exposure to nicotine would 
impact in metabolism of offspring, if it happened only during lactation, 
our group decided to expose lactating rats to nicotine and to study 
the metabolism of their offspring when they were adult. We found no 
changes in fasting blood glucose or adiponectin in adult rats exposed 
to nicotine during lactation. However, we detected hyperinsulinemia 
and a higher insulin resistance index in these animals. Moreover, when 
we calculated the ratio of adiponectin to white adipose tissue mass, we 
observed lower adiponectin production per gram of adipose tissue, 
suggesting that a relative adiponectin insufficiency may be related to 
the development of insulin resistance in these animals [101], but it 
seems that the development of classical diabetes requires that nicotine 
exposure occurs in both gestation and lactation periods.

It is important to reinforce that not only the active smokers are 
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exposed to developing smoking-related diseases. Environmental 
tobacco exposure (or second-hand exposure) is also associated with 
death for heart disease, lung cancer and other disorders. Cigarette 
smoke when inhaled by non-smokers can act on endocrine-metabolic 
system, and parameters related to metabolic syndrome have been 
associated with exposure to environmental tobacco exposure, such as 
hypertriglyceridemia, central obesity, decreased HDL-C and increased 
fasting serum insulin [102].

Rats and mice exposed to environmental tobacco smoke during 
lactation presented normoglycemia, hypoinsulinemia and lower 
HOMA-β suggesting deficiency in pancreatic insulin secretion, 
which may be an explanation for the hypoinsulinemia [103-105]. 
This lower pancreatic insulin secretion is consequent of a reduction 
in   mass of pancreatic β cells that was previously observed in rats 
exposed to nicotine during pregnancy and lactation [97] or even an 
inhibitory effect of nicotine on pancreatic secretion of insulin [106]. 
Adult offspring exposed to cigarette smoke during lactation showed 
hyperglycemia and normoinsulinemia, suggesting the development of 
glucose intolerance associated with higher adiposity in these animals 
when adults, reinforcing the idea of a higher risk of metabolic syndrome   
development in individuals exposed to smoke cigarette [102,105]. 

Mechanistic Explanation
Role of prolactin and leptin

Therefore, both in excess as in deficiency of nutrients happens 
specific physiological responses that when occurring in critical periods 
of life will be able to modify epigenetic mechanisms and to act as 
metabolic imprinting factors. In metabolic programming models, the 
accumulation of adipose tissue appears to function as a determinant 
factor to development of glucose homeostasis disorders, especially if 
this accumulation occurs in the abdominal region. The mechanistic 
basis may involve an imbalance in the production of adipocytokines 
that modulate insulin sensitivity. In obesity, the adipose tissue produces 
more adipokines that cause insulin resistance, and less adipocytokine 
that improves insulin sensitivity. This imbalance in cytokine production 
has been proposed as a marker for diabetes mellitus, making the 
quantification of adipocytokine profile useful in clinical practice 
[107,108]. Thus, it is interesting to evaluate how adipocytokines, such 
as leptin, during the imprinting period of gestation or lactation can 
affect the hypothalamic and ANS neural development affecting the 
control of insulin secretion and action. 

Our group showed that pups´ leptin secretion during lactation can 
be affect by maternal malnutrition, showing lower levels at the beginning 
and mid-lactation and being higher at the end of lactation [109]. Then, 
we tested how leptin administration during this period of life could 
affect the future body composition and food intake and, we showed for 
the first time that leptin can program for higher body weight and food 
intake, when directly injected in the pups [110]. Later, independently 
Pinto et al. [111] and Bouret et al. [112] showed in elegant experiments 
that leptin can alter the hypothalamic neural plasticity if injected in 
ob/ob mice, decreasing the number and functionality of NPY neurons 
and increasing POMC neurons. However, this effect was only possible 
in the neonatal period [112]. Leptin may be important for the normal 
proliferation of pancreatic β-cells in the neonatal period, because 
increases the viability of isolated rat pancreatic islets by suppressing 
apoptosis and increasing islet cell proliferation [113]. This could be the 
mechanistic basis, why leptin injected in this critical period of life could 
permanently alter food behavior, glucose homeostasis and insulin 
secretion. We showed that leptin injected on the pups during the first ten 

days of life caused a leptin surge at 30 days of life concomitantly with an 
insulin surge, and hypoadiponectinemia [114,115]. Then, those animals 
develop at adulthood hyperleptinemia and hyperinsulinemia, without 
changes in glycemia, but with hypertriglyceridemia. Trevenzoli et al. 
[116] showed in this model of neonatal hyperleptinemia that besides 
the hyperinsulinemia, the adult animals develop hypoadiponectinemia 
and liver microesteatosis. Vickers et al. [117] also found in male rats 
an effect of neonatal leptin treatment in increasing insulinemia in the 
adult animal. It seems that those effects are gender dependent, since 
in female neonatal leptin treatment seems to be protective to the 
effects of maternal under nutrition [118]. More recently, Itoh et al. 
[119] showed glucose intolerance in 4 months old mice treated with 
leptin from postnatal day 5.5 to 10.5. Curiously, if the secondary surge 
of leptin that occurs after weaning is blocked by leptin antibody, the 
programming effects of leptin on body weight, glucose homeostasis 
and hypertriglyceridemia is abolished [120]. However, the treatment of 
normal animals either with leptin antibody [120] or leptin antagonist 
[121] reproduces some of the alterations induced by leptin treatment 
during lactation. Thus, it seems that normal leptin levels at the neonatal 
period are necessary to a normal body weight and glucose homeostasis 
during development. 

Malnutrition during lactation also is associated with low maternal 
prolactinemia [122]. Since prolactin is important for the maintenance 
of pancreatic beta-cell mass [123], we pharmacologically blocked the 
maternal prolactin at the last 3 days of lactation with bromocriptine 
and observed hyperglycemia and hypoadiponectinemia in the 180 
days old offspring, despite normoinsulinemia [124]. The same kind of 
alteration on glucose homeostasis was observed when the suckling was 
interrupted by mechanical device, using a bandage in the mothers at 
the last 3 days of lactation [125]. 

Epigenetic alterations - DNA methylation, histone acetylation 
and interference RNA

In almost all countries, the epidemic of obesity has been rising 
inexorably since 1980 decade. In 1997, WHO accepted that this was 
a major public health problem [126]. Nowadays, interactions between 
genes and environment provide a promising explanation to the idea of 
future development of disease risk, as adult obesity and diabetes. In this 
sense, epigenetics, that is the study of functional modifications to the 
genome without altering the underlying DNA sequence, has emerged 
as a relevant field combining experimental, epidemiological, clinical, 
and public health research [127,128].

Some populations, particularly in Latin America and Asia, are 
prone to developing central obesity, T2D and hypertension. Currently 
these features are being close related to epigenetic programming of gene 
expression in terms of metabolic/endocrine regulation that can induce 
a complex combination of adult health-related disorders [126]. In fact 
several studies strongly support the idea that epigenetic processes of gene 
expression patterns such as DNA methylation, histone modifications 
and small interference RNAs (siRNA or microRNAs), which are 
involved in chromatin remodeling, are affected by the environment 
and can display key roles in the developmental programming of adult 
disease [126,128,129]. DNA methylation is more stable and this change 
can be transferred to next generation, while histone modifications and 
microRNA are more self-limited alterations in gene transcriptionand it 
was not reported yet in transgenerational studies [130].

As schematized in Figure 2, different imprinting factors during a 
critical window of development, as gestation or lactation periods, can 
act through different epigenetic mechanisms. It appears that these 

http://en.wikipedia.org/wiki/DNA_sequence
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factors can activate the processes of DNA methylation and histones 
acetylation or deacetylation, or increase the levels of some siRNA, 
which may inhibit some genes related to normal insulin secretion and 
signaling, thereby affecting the developmental plasticity of the pancreas 
or insulin-dependent tissues, such as skeletal muscle, adipocyte and 
liver [5].

Epidemiological data of adults exposed to intrauterine energy 
restriction during the Dutch Hunger in World War II were the first 
to show DNA hypomethylation at the imprinted IGF2 region in 
mononuclear cells [131]. Those undernourished babies developed into 
overweight adults who had a higher cardiovascular risk, confirming the 
hypothesis that the early life nutritional status can induce epigenetic 
changes that persist throughout life and provide a mechanistic base for 
the DOHaD theory. 

Sinclair et al. [132] provide the first experimental evidence that 
reductions in specific dietary lead to epigenetic alterations to DNA 
methylation in offspring, and change adult health-related phenotypes. 
In this study, it was showed that a restricted supply of vitamin B12, 
folate and methionine around conception to mature sheep changed 
the methylation status of 4% of CpG islands in the liver offspring 
and resulted in higher adiposity, lower lean mass, insulin resistance 
and higher blood pressure at adulthood. In addition, Indian evidence 
indicates that insulin resistance at birth is linked to LBW and increased 
body fat with selective vitamin B12 deficiency and abnormalities of one 
carbon pool metabolism potentially responsible and affecting 75% of 
Indians and many populations in the developing world [126].

Other issues related to epigenetic changes have been presented 
in recent reviews [133-135] as well as, particularly, concerning the 
recent advances in the epigenetic mechanisms in the development and 
function of the endocrine pancreas and type 2 diabetes programming 
[136-138].

Reprogramming or Preventing Programmed Diabetes 
After a series of studies addressing the mechanisms involved in 

the metabolic programming phenomenon, currently the attention 
turns to strategies based in the knowledge about this mechanism and 
aimed controlling or preventing metabolic changes that underlie the 
programming, especially disorders in glucose metabolism and diabetes. 

Both in humans as in animals, the caloric restriction, but not 
causing malnutrition, are capable of improving in a consistent form 
the insulin resistance [139]. In patients with overweight and insulin 
resistance, both calorie restriction and physical exercise reverse these 
disorders [140]. However, important changes in lifestyle seem to be a 
difficult practice in humans, especially when these new habits must be 
followed long-term. Therefore, new therapeutics ways, such as drugs 
and nutrients with bioactive properties, have been studied for obesity 
control and its metabolic disorders, especially T2D.

There is a wide range of bioactive components with aim to 
reprogramming or prevent the programmed insulin resistance or 
diabetes. Anti-oxidant compounds, rich in polyphenols such as 
resveratrol and yerba-mate, have shown beneficial effects on obesity 
and glycemic control, becoming a possible treatment option for T2D.
Several studies have shown that yerba mate is capable of correcting serum 
glucose, triglycerides and LDL-C [141-143], improves significantly the 
glucose intolerance [144], even when combined with high-fat diets 
[145]. Another bioactive component that seems to have beneficial 
effects on metabolic alterations of obesity is resveratrol, a polyphenol 
extract mainly from red grapes. In experimental models, chronic 
treatment with resveratrol improves glucose tolerance [146], prevents 
obesity, and reduces oxidative stress and the risk of hypertension, 
dyslipidemia and liver steatosis in adult rats with programmed obesity 
[147]. The possible mechanism by which resveratrol improves glucose 
dysfunctions, seems be through increasing of GLUT4 translocation 
and enhancing of Akt phosphorylation, stimulating the glucose uptake 
by skeletal muscle [148]. These findings suggest an important role 
of these bioactive components in the management of obesity and its 
related disorders.

Literature shows the influence of dairy products in the energetic 
metabolism regulation. In patients, calcium-rich diet potentiates the 
beneficial effect of hypocaloric diet in decrease adiposity and improves 
the lipid profile, hypertension and insulin sensitivity [149]. Recently, 
our group showed that calcium supplementation is a good strategy 
to obesity and glucose intolerance treatment in early weaned rats and 
offspring from nicotine-exposed mothers [150,151].

Another possible strategy to prevent the development of glucose 
intolerance is to try to revert the hormonal alterations associated with 
malnutrition, such as hyperleptinemia or hypoprolactinemia or early 
weaning. In the first case, the use of leptin antibodies or antagonists 
may be promising [120,121].

Conclusions
Notwithstanding, neonatal insults might be an important 

ethiopathogenic factor for the development of metabolic disorders 
in adult life, including obesity and diabetes, contributing to the 
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considerable increase in chronic diseases incidence in society. Thus, it 
is important to know the epigenetics mechanisms that are responsible 
for the imprinting process and subsequent programming effects to 
design effective strategies to prevent or treat the alarming increase in 
diabetes prevalence.
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