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Introduction
Glucose transporter 4 (GLUT4) is mainly expressed in insulin-

sensitive cells such as adipose tissue and skeletal muscle cells and 
cardiomyocytes [1]. The main function of this protein is to facilitate 
glucose uptake into these cells and maintain control of blood glucose 
levels. GLUT4 protein in the basal state is stored in intracellular 
vesicles and their translocation to the plasma membrane occurs mainly 
by insulin action [2] or through insulin-independent pathway during 
muscle contraction. Insulin resistance may result from impaired insulin 
signal transduction leading to decreased GLUT4 translocation [3,4] 
and/or diminished capacity for GLUT4 synthesis [5]. In addition, other 
factors may also contribute to insulin resistance including reduced 
blood flow and muscle mass, as well as changes in the proportion of 
muscle fiber types and in intramuscular oxidative pathways [6].

Acute exercise leads to increased glucose transport even in the 
presence of very low levels of circulating insulin [7]. During muscle 
contraction two mechanisms contribute to increasing GLUT4 trans-
location to the cell surface: activation of the 5’-adenosine monophos-
phate-activated protein kinase (AMPK) [8] and calcium/calmodulin-
dependent protein kinase (CaMK) II [9]. When the acute effects of 
exercise on glucose transport have disappeared, there are changes in 
insulin sensitivity [10] that appear to be dependent on muscle glycogen 
levels [11]. In particular, TBC1D1, TBC1D4/AS160 and p38 MAPK 
that remain phosphorylated for hours after exercise [12,13], probably 
activated by residual AMPK of muscle contraction, may contribute to 
increased insulin sensitivity after exercise. However, these effects may 
be reversed within 18–24 hours [14,15]. 

Aerobic [16] and/or resistance exercise training [17] are known to 
improve insulin sensitivity and have other beneficial effects on blood 
pressure, heart rate, heart rate variability, and chemoreceptor and arte-
rial baroreceptor reflex sensitivity [18,19]. Given these benefits exercise 
training has been successfully used in the treatment of diabetic patients 
[20]. This adaptation is a result of marked increase in glucose trans-

port, which is mostly attributed to greater mobilization of GLUT4-con-
taining vesicles to the cell surface through insulin-dependent [21] and 
insulin-independent pathways [11]. Besides this effect on GLUT4 traf-
ficking, exercise training also increases transcription factors involved 
in GLUT4 gene expression and, consequently, increased intracellular 
GLUT4 stores [22]. Exercise training has also anti-inflammatory ef-
fects, which can modify insulin-mediated glucose uptake [23]. How-
ever, these benefits are gradually lost after cessation of exercise train-
ing. The time course of this phenomenon is still controversial and these 
changes are affected by several factors. The purpose of this study was to 
review aspects related to GLUT4 modulation and translocation to the 
cell surface in response to acute exercise, exercise training, and detrain-
ing focusing on studies using experimental models.

GLUT4 and Insulin Resistance
Glucose transport in mammalian tissues occurs primarily by 

facilitated diffusion, a process that uses a carrier protein for transport 
of a substrate across a membrane into cells. These facilitative glucose 
transporters (GLUTs) are a family of proteins that were denominated 
in chronological order of characterization [24] and are expressed in 
tissue and cells with different regulatory and kinetic properties that 
reflect their roles in cellular metabolism. 

GLUT4 is the most abundant glucose transporter in the body [1]. In 
baseline status, i.e. unstimulated cells, GLUT4 is stored intracellularly 
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Abstract
There is a direct correlation between an increase in insulin sensitivity and increased cell surface GLUT4 content. 

Acute exercise promotes glucose-transport stimulation that is independent of AMPK and CaMKII insulin-signaling. In 
turn, post-exercise glucose uptake occurs through changes in components of the insulin signaling cascade involving 
alterations in downstream mediators such as TBC1D1, TBC1D4/AS160 and p38 MAPK. However, the effects of acute 
exercise can be reversed within 18–24 hours and appear to be dependent on muscle glycogen levels. Exercise training 
results in adaptations that facilitate insulin-mediated glucose uptake and are regulated by different mechanisms. It leads 
to changes in gene expression and greater blood flow and signaling and changes in GLUT4 protein exocytosis and 
endocytosis. But when exercise training is discontinued GLUT4 tend to return to baseline levels. We have demonstrated 
in our laboratory that one-week detraining is sufficient to reduce GLUT4 in the heart and adipocytes while this same 
effect was seen in the gastrocnemius muscle within 2 weeks of training. The present study aimed to review how acute 
exercise, exercise training, and detraining affect mainly GLUT4 translocation to the insulin-sensitive cell surface.
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in specialized compartments called GLUT4 storage vesicles (GSV), 
which participate in the GLUT4 cycles to and from the plasma 
membrane, through slow exocytosis from GSV, fast endocytosis from 
the cell surface [25-28]. The synthesis of GLUT4 occurs through the 
expression of the gene SLC2A4 (Solute carrier 2a4 gene that codifies 
GLUT4 protein) [29] and can determine the amount of protein stored 
in the GSV. 

The main action of insulin is to increase glucose uptake in insulin-
sensitive tissues, balancing blood and intra-cellular glucose levels, 
through increased GLUT4 content at the cell surface. The insulin-
mediated glucose uptake is carried out by binding this hormone with 
its membrane receptors and transmitting its signal to the interior of 
cells. The insulin-mediated GLUT4 translocation to plasma membrane 
includes the phosphatidylinositol-3-kinase (PI3K) complex. The c-Cbl-
associating protein (CAP/c-Cbl) pathway and its regulation of TC10 
downstream also seems involved in GLUT4 translocation to plasma 
membrane [30]. Decreased insulin action on insulin-sensitive tissues 
may occur by several mechanisms: low concentration and/or kinase 
activity of proteins related to insulin signaling, leading to insufficient 
recruitment of GLUT4 to the plasma membrane, despite normal 
GLUT4 expression [4]; low capacity of GLUT4 synthesis, even if the 
rate of translocation of vesicles containing this protein is preserved 
[5]; and, changes in the rate of GLUT4 exocytosis and endocytosis 
[31], determined by failure of insulin-derived signals. Thus, insulin 
resistance is characterized by a reduction of the biological effect of this 
hormone [32]. Studies have shown a marked relation between insulin 
resistance and cardiovascular risk factors, among them obesity and 
sedentary lifestyle [33,34].  

The consumption of a high fat diet, even for a short period of time, 
leads to insulin resistance by reducing the insulin signaling pathway 
[35]. Thus, experimental models of obesity have been used to elucidate 
the pathophysiological mechanisms that contribute to the genesis of 
insulin resistance. High fat diet induced-obesity model has shown 
that rats subjected to a high fat diet for 3 months developed weight 
gain, especially epididymal fat, hyperglycemia, hyperinsulinemia and 

insulin resistance [36]. The decrease of insulin action was related to 
protein tyrosine phosphatase 1B (PTP1B). Its increased expression 
and activation inhibits tyrosine phosphorylation of insulin receptors 
and their substrates. This is reinforced by experiments with PTP1B 
knockout mice, which showed high tyrosine phosphorylation of 
insulin receptors and their substrates, and improved insulin sensitivity 
as compared to wild mice [37].

Decreased insulin-mediated glucose uptake related to obesity is 
frequently accompanied by an inflammatory state, characteristic of this 
condition [38]. The increase in adipocyte size is associated with the re-
lease of free fatty acids from the adipose tissue and increased produc-
tion of reactive oxygen species [39], which may promote the produc-
tion and release of proinflammatory cytokines such as interleukin-6 
(IL-6), serum amyloid A protein (SAA) and monocyte chemoattractant 
protein-1 (MCP-1) [40]. Cytokines released into the bloodstream act as 
mediators in the migration of monocytes into the adipose tissue [41]. 
After migration, these cells differentiate into macrophages, which re-
lease cytokines, especially tumor necrosis factor-alpha (TNF-α) [42]. 
When the signaling pathway of TNF-α is activated, intermediate sub-
strates, like serine kinase c-Jun NH2-terminal (JNK) influence the 
phosphorylation of IRS1, decreasing the insulin signal transduction 
[43]. Increased TNF-α expression leads to decreased phosphorylation 
of insulin receptors and their substrates, contributing to the genesis of 
insulin resistance related to obesity [44]. In addition to impaired in-
sulin signal transduction, this cytokine also inhibits the transcription 
factors of the SLC2A4 gene [42], reducing the expression and, conse-
quently, the intracellular protein stores. 

Moreover, there is data suggesting that autonomic changes 
modulate hormonal and immune function, by inducing release of 
bioactive molecules which are probably involved in the development of 
cardio metabolic profile changes [45,46]. In fact, Hellstrom examined 
evidence that development of a diverse group of diseases, such as diabetes, 
hypertension, and heart disease, is favored by increased sympathetic 
neural outflow resulting in endothelial dysfunction, dyslipidemia, 
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Figure 1: Putative metabolic pathways leading to changes in GLUT4 expression in the skeletal muscle following acute exercise and exercise training. Most GLUT4 is 
stored in intracellular vesicles (GSV = GLUT4 storage vesicles) in the muscle at rest and their translocation to the plasma membrane occurs mainly by insulin action; 
after glucose transport, GLUT4 is endocytosed from the cell surface. Muscle contraction leads to an increase in glucose uptake by the working muscle evidenced 
by gain of GLUT4 at cell surface, which does not involve any signals proximal to the insulin receptor substrate (IRS), phosphatidyl inositol 3-kinase (PI3K) or Akt. 
Instead, this gain occurs by increased AMPK activity that stems from increased ATP-turnover. CaMK protein is also involved in GLUT4 trafficking, although it is 
unclear whether CaMK is AMPK-dependent or not. Together, these mechanisms increase cellular glucose uptake even in the presence of very low circulating levels 
of insulin. When the acute effects of exercise on glucose transport have disappeared there are changes in insulin sensitivity that appear to be dependent on TBC1D1, 
TBC1D4/AS160 and p38 MAPK, which remain phosphorylated for hours after exercise, probably activated by residual AMPK of muscle contraction. As for chronic 
effects of exercise, evidence suggests there are adaptations in the pre-translational and post-translational levels, in particular MEF2 and GEF, which was shown to 
increase intracellular GLUT4 and improve insulin sensitivity.
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inflammation and insulin resistance [47]. In female fructose fed rats we 
observed increased arterial pressure and a positive correlation between 
insulin resistance and cardiac vagal effect attenuation [48]. Recently, 
we tested the time course of the effect of fructose given in the drinking 
water in mice, showing: 1) insulin resistance, increased plasma levels 
of cholesterol, triglycerides and leptin after 60 days of fructose; 2) 
increase in systolic and mean arterial pressure associated with cardiac 
and vascular sympathetic increased modulation and spontaneous 
baroreflex attenuation from day 15 of fructose. The key finding was 
that dysfunction of cardiovascular autonomic control occurred prior 
to any metabolic changes [49]. 

In fact, besides the impairment of extra and intracellular glucose 
homeostasis, insulin resistance is commonly associated with arterial 
hypertension and is per se a predictor of cardiovascular events [50]. 
Katayama et al. (1997) showed impaired glucose tolerance in sponta-
neously hypertensive rats (SHR). Interestingly, GLUT4 in the plasma 
membrane of the gastrocnemius was elevated in SHR, as compared to 
control rats (Wistar). However, with 20 weeks of age, SHR normal-
ized glucose tolerance and GLUT4 expression, as compared with Wi-
star rats. It is possible that the impaired glucose tolerance of SHR have 
other causes not related to GLUT4, or at least, that GLUT4 is not the 
only factor contributing to metabolic abnormalities seen in this animal 
model [51]. This may involve the transport of glucose in the plasma 
membrane and not the increased levels of GLUT4 at the cell surface. 
This phenomenon may be explained in part by glucose not binding to 
GLUT4 on the cell surface, slowing its entry into these cells [52].

Effects of Acute Exercise and Training on GLUT4
Exercise can induce acute metabolic benefits that are different from 

those induced by training (Figure 1). An acute bout of exercise, through 
muscle contraction, requires several metabolic changes to supply 
adenosine triphosphate (ATP), including the use of muscle glycogen. 
The energy demands of an acute exercise require increased glucose 
uptake in muscle cells, mainly to muscular glycogen resynthesizing. 
Thus, acute exercise leads to changes in glucose uptake that occur 
through insulin-independent pathways [53,54] to ensure an adequate 
glucose supply to muscle cells. Moreover, acute exercise induces 
adjustments in the GLUT4 cycling as increased GLUT4 exocytosis and/
or lower GLUT4 endocytosis [55,56]. 

It was observed following the acute effects of exercise a persistent 
increase in glucose transport for hours that appears to be dependent on 
the working muscle, [57]. This effect is associated to increased GLUT4 
translocation, probably stimulated by downstream TBC1D1 and 
TBC1D4/AS160 phosphorylation, which is activated by the remaining 
AMPK activity of muscle contraction [12,13]. Increased glucose 
uptake after muscle contraction can also be explained by an acute 
increase in p38 MAPK activation, which remained increased even 3 
h after muscle contraction in the soleus and epitrochlearis muscles 
of rats [58]. Together, TBC1D1, TBC1D4/AS160 and p38 MAPK 
remain phosphorylated for hours after exercise and may contribute to 
increased insulin sensitivity after exercise.

In contrast, adaptations in the pre-translational and post-
translational levels are observed as chronic effects of exercise. Hence, 
over time, it leads to enhanced insulin action, either increased 
expression and activity of insulin-signaling protein kinases and other 
insulin-independent pathways such as increased GLUT4 transcription 
factors, resulting in an increase in intracellular GLUT4 stores. 

Acute Effects of Exercise 

Some studies suggest there are different intracellular pools of 
GLUT4, one stimulated by insulin and one stimulated by exercise 
[59,60]. Furthermore, studies in insulin receptor knockout mice 
showed exercise-mediated increase in glucose uptake and glycogen 
synthase activity in vivo as compared to animals in the control group 
[61]. These facts supports the idea that the acute exercise can activate 
molecular pathways of GSV mobilization that are not, at least in part, 
insulin-dependent. In insulin-independent pathways, two proteins 
have a major role in the mobilization of GLUT4: AMPK and CaMKII. 

AMPK is activated by AMP-binding resulting from an increase 
in ATP-turnover and evidence from experiments using an AMP-
mimetic compound TBC1D1, 5-aminoidazole-4-carboxamide-1-β-
D-ribofuranoside (AICAR), shows that AMPK may be sufficient to 
increase glucose transport [62,63], and this effect is related to muscle 
fiber type [64,65]. Kurth et al. (1999) have showed increased glucose 
uptake observed with AMPK activation by AICAR in perfused rat 
hindlimb muscles is due to an increase in the translocation of GLUT4 
to surface membranes [8]. 

One of the mechanisms for GLUT4 trafficking may be the 
interaction of AMPK with AS160, a protein of the PI3K pathway 
[66]. The administration of AICAR was found to be associated with 
increased AS160 phosphorylation together with increased AMPK 
activity. In contrast, after the administration of Wortmannin, a PI3K 
inhibitor, AS160 activity was completely inhibited [67]. The same was 
evidenced in other studies [68]. Thus, it is admissible to think that acute 
exercise-induced increased AMPK activity can be involved with AS160 
phosphorylation, and in this case, it is independent of the insulin 
signaling.

Besides the acute effects of exercise on AMPK-induced GLUT4 
trafficking, a positive correlation was observed between acute exercise-
induced increase in CaMKII levels and glucose transport in muscle 
cells [69]. Evidence obtained using subcontraction concentrations 
of caffeine, which release Ca2+ from the sarcoplasmic reticulum and 
activate CaMKII, has shown that inhibition of this protein prevents an 
increase in Ca2+ -induced glucose transport [70,71]. Although studies 
[72,73] have shown that caffeine-stimulated glucose transport is highly 
AMPK-dependent, there is evidence demonstrating that contraction-
induced skeletal muscle glucose uptake involving Ca2+ /calmodulin-
dependent protein kinase is independent of AMPK [74]. Witczak et al. 
later demonstrated using a CaMKII inhibitory peptide transfected into 
tibialis anterior muscles by in vivo electroporation that this peptide did 
not either change GLUT4 expression or impair contraction-induced 
increases in the phosphorylation of AMPK or TBC1D1 and TBC1D4 
on AS160 phosphorylation [75]. This evidence supports that CaMKII 
plays a critical role in the regulation of contraction-induced glucose 
uptake.

Other proteins such as aPKC (atypical PKC) have been investigated 
as modulators of GLUT4 translocation in response to acute exercise 
[13]. Chen et al. (2002) found that glucose uptake in L6 muscle cells 
(cultured muscle fibers) resulted from protein kinase activation 
including the isoforms PKC-ζ and PKC-λ among others. A possible 
explanation for this association would be an interaction of PKC 
with the AMPK signaling pathway that in turn stimulates GLUT4 
translocation [76]. 

Nitric oxide (NO) has also been investigated as a potential factor 
to induce increased glucose uptake into muscle cells as an adjustment 
to acute exercise. Roberts et al. (1997) used nitro-L-arginine methyl 
ester (L-NAME), an inhibitor of NO, in the gastrocnemius muscle of 
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Sprague-Dawley rats undergo acute exercise and acute exercise plus 
L-NAME. After the one bout of exercise (treadmill exercise for 45 min 
at high intensity), a group received L-NAME in the drinking water 
(1g/mL). The group that only exercised without L-NAME showed 
increased glucose uptake and GLUT4 in the plasma membrane of the 
gastrocnemius muscle as compared to the control group. The group 
that exercised plus L-NAME did not show any changes in either glucose 
uptake or the amount of GLUT4 at the cell surface compared to controls 
[77]. One possible explanation for the effect of NO on insulin-mediated 
glucose uptake would be an interaction with the AMPK pathway [78], 
in particular α2-AMPK site that seems to have a more relevant role in 
the regulation of glucose transport than α1-AMPK [79,80].

Another aspect may be related to S-nitrosation of the proteins 
involved in the insulin signaling cascade, which reduces insulin action 
[81-82]. This hypothesis is supported by experiments in Wistar rats 
submitted to high-fat diet-induced obesity, showing high levels of 
iNOS and S-nitrosation of IR β subunit, IRS1 and Akt, changes that 
were reversed by acute exercise. The improvements were ascribed to 
increased AMPK activity that negatively modulates iNOS levels and 
subsequent S-nitrosation of the proteins involved in insulin signaling 
[83].

Thus, it seems clear that several insulin-independent pathways 
are activated in response to acute exercise. The major pathways are 
those mediated by AMPK protein activation and are dependent on the 
muscle fiber type.

Chronic Effects of Exercise
Exercise-induced chronic effects on GLUT4 occur primarily 

through pre-translational mechanisms, which favor the increase of 
intracellular stores of GLUT4 protein. Besides this beneficial adaptation, 
exercise training also determines changes in molecular pathways that 
induce GLUT4 translocation. The changes of exercise training can also 
be observed in the total GLUT4 protein levels, i.e. GLUT4 expression 
at cell surface enriched of microsomal fraction.

In this context, Neufer et al. (1992) studied Wistar rats that were 
submitted to exercise training on a treadmill for 1 day, 1 week or 6 
weeks (1.9 km/h, 2 hours a day, 6 days a week). Biopsy samples of soleus 
and vastus lateralis muscles (red and white fibers) were examined and 
compared with those of animals that did not exercise. There was no 
difference in the amount of GLUT4 in the muscles after 1 day or 1 week 
of exercise, suggesting that exercise load was insufficient. Exercise 
training for 6 weeks resulted in increased levels of GLUT4 in the plasma 
membrane of soleus (1.4 times) and in the oxidative muscle, but not in 
the glycolytic fibers of the vastus lateralis muscle (1.7 times). Probably 
cell requirements related to cellular oxidative capacity modulates 
GLUT4 translocation, as mentioned above. Another explanation 
would be that dynamic aerobic training was not enough to exercise or 
even activate glycolytic fibers of the vastus lateralis muscle [84].

To study different types of exercise training, 6-week-old Sprague-
Dawley rats were submitted to resistance training (3 sets of lifting of 
75% one-repetition maximum, 10 repetitions, 3 days a week for 12 
weeks) or aerobic training (1.9 km/h, 15% incline, 45 min a day, 3 
days a week for 12 weeks) and compared with a sedentary group. After 
training periods, rats received an insulin infusion and samples of the 
soleus, plantar and oxidative and glycolytic fibers of the gastrocnemius 
and quadriceps muscles were collected. There was a similar increase 
in glucose uptake in the groups submitted to resistance and aerobic 
training and both had higher glucose uptake than the sedentary group. 

There was a higher rate of glucose transport in rats subjected to the 
resistance training, probably due to an increase in the amount of 
GLUT4 at the cell surface [17].

Our group found a similar result in SHR and WKY rats. There was 
no difference in GLUT4 content in the plasma membrane of the heart, 
gastrocnemius muscle and epididymal fat of SHR submitted to exercise 
training (treadmill, 1h/day, 5 days/week for 10 weeks) as compared to 
WKY rats [85]. Song et al. (1998) reported no difference in GLUT4 
expression in samples of gastrocnemius muscle in response to swim 
training for 4 weeks between stroke-prone spontaneously hypertensive 
(SHRSP) rats, which are characteristically resistant to insulin, and 
WKY rats [86]. 

Luciano et al. (2002) described improved glucose tolerance and 
increased total GLUT4 expression in the gastrocnemius muscle 
of Wistar rats submitted to a 6 week regimen of swimming [21]. 
These changes were attributed to an increase in insulin signaling 
due to greater phosphorylation of IRS1 and IRS2 substrates. PI3K 
kinase activity associated with IRS1 and IRS2 as well as serine 
phosphorylation of Akt protein also increased in trained animals, as 
compared to sedentary ones. Chibalin et al. (2000) reported that Wistar 
rats submitted to swim training had increased GLUT4 expression in 
the epitrochlearis muscles. These adaptations resulted in part from 
increased tyrosine phosphorylation of insulin receptors and its IRS1 
and IRS2 substrates, as well as its association with PI3K protein [87]. 
Akt activity also increased after exercise training. On the other hand, 
only the expression levels of insulin receptors were high. Interestingly, 
the expression of IRS1 substrate after 5 days of swim training was 
reduced, despite an increased IRS1 phosphorylation; as IRS1 and IRS2 
responded differently to exercise training; these two molecules may 
have different roles and regulations in insulin signaling.

Data from our group showed that chronic treatment with L-NAME 
induced not only hemodynamic impairment but also insulin resistance, 
which was not reversed after exercise training at the baseline [88]. These 
results suggest an important role of NO not only in the development of 
insulin resistance at baseline, but also in adaptive responses to exercise 
training. 

Another hypothesis for increased GLUT4 at the cell surface in 
response to exercise training may be effects of galanin. Galanin is 
a neuroendocrine peptide and an important hormone in insulin 
sensitivity modulation [89]. He et al. (2011) used an antagonist of 
galanin (M35) and a regimen of 4-week swim training (60 min per 
day) to determine whether increased galanin would elevate GLUT4 
concentration in the plasma membrane of hind-limb skeletal-muscle of 
streptozotocin-induced diabetic rats. It was shown that plasma galanin 
levels after swim training were higher as compared with the sedentary 
control group. The antagonization of galanin reduced glucose 
disappearance rate of euglycemic hyperinsulinemic clamp tests when 
compared with diabetic controls, but swimming enhanced insulin 
sensitivity in all trained groups. Moreover, M35 treatment reduced 
GLUT4 concentration and mRNA levels compared with the diabetic 
control group. In contrast, all trained groups showed an increase of 
the GLUT4 mRNA expression and GLUT4 protein level of hind-limb 
skeletal-muscle [90]. Considering these results, endogenous galanin 
may enhance glucose disappearance rate by increased GLUT4 content 
in the skeletal muscle’s plasma membrane.

Finally, the increase in GLUT4 at the cell surface in response to 
exercise training may also suggest an effect on GLUT4 mRNA. SLC2A4 
gene transcription is activated by two main factors: myocyte enhancer 
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factor 2 (MEF2) [91] and GLUT4 enhancer factor (GEF) [92]. The 
rest of MEF2 is related to class II histone deacetylase 5 gene isoform 
(HDAC5), a molecule that represses SLC2A4 gene transcription. On 
the other hand, AMPK protein activation through muscle contraction 
requires HDAC5 phosphorylation resulting in MEF2 release [93]. 
Hence, another interesting aspect of increased AMPK activity in 
response to exercise, although not directly related to GLUT4 trafficking 
to the plasma membrane, is its interaction with transcriptional 
activation of SLC2A4 gene via MEF2D activity [22], which could 
increase intracellular GLUT4 stores. However, it is unclear whether a 
single bout of exercise is strong enough to functionally affect GLUT4 
intracellular stores or it is a chronic positive effect of exercise training.

Collectively, data suggest that dynamic aerobic training and/or 
resistance lead to increased GLUT4 expression levels in the insulin-
sensitive cells. This fact increases the uptake of insulin-mediated 
glucose, providing an appropriate glycemic balance between tissue and 
plasma in the resting state.

Effects of Exercise Detraining on GLUT4
Although exercise training is beneficial, increasing insulin 

sensitivity, this adaptation is transient. When this practice is stopped 
or the stimulus of exercise training is not sufficient to lead to further 
physiological adaptations, the trend is for the transport of glucose to 
return back to baseline values [94,95]. It has been demonstrated that 
the metabolic improvements decline with different degrees during 
detraining time course [96]. However, most of the studies were made 
with athletes or healthy subjects and there are only few works focusing 
on the association of detraining and disease.

Furthermore, in our laboratory, using SHR, we found that 
after 1 and 2 weeks of exercise detraining, animals remain with the 
improvement in insulin sensitivity (whole-body insulin sensitivity 
measured by the insulin tolerance test – ITT) and lower blood pressure 
levels determined by exercise training on the treadmill for 10 weeks. 
However, the reversal of the increased expression of GLUT4 occurred 
after one week of detraining in the heart and adipose tissue, and after 
two weeks in skeletal muscle (gastrocnemius) [95]. Other authors 
showed that one week is sufficient to reverse the benefits on GLUT4 in 
skeletal muscle [84]. However, the difference might be the type of fiber 
used. This hypothesis suggests that different molecular mechanisms 
governing the process of exercise detraining is mediated by a tissue-
specific modulation of expression of GLUT4. Neufer et al. (1992) 
analyzed samples of the soleus and vastus lateralis (red fibers) which 
are essentially oxidative [97], while our research was performed with 
samples of the gastrocnemius with no separation of white and red 
fibers. Other explanation would be that the effect of exercise detraining 
is dependent on the extension of the exercise training. Our training 
regimen was based on 5 days per week for 10 weeks (50 sessions). 
Neufer et al. (1992) used 6 days a week for 6 weeks (36 sessions). 

To study the effects of exercise detraining on insulin receptors the 
epitrochlearis muscle of Fischer rats was analyzed 29 and 53 hours 
after cessation of 3-weeks of voluntary wheel running. GLUT4 protein 
levels in the plasma membrane of epitrochlearis muscle returned to 
sedentary levels (reduction of 29%) 53 hours after the cessation of the 
physical activity. This fact could be partially explained by decrease in 
tyrosine phosphorylation and protein level of IR (β-subunit) as well 
as Akt phosphorylation activity. All these variables also returned to 
sedentary levels after the same period of detraining (53 hours) [98].

Reynolds et al. (2000) observed the effects of swimming (5 days or 

5 weeks) or treadmill (5 weeks), followed by 1 or 2 days of detraining 
period [99]. The amount of GLUT4 in the plasma membrane remained 
high during 24 hours after training in all groups trained, but returned 
to baseline levels 48 hours after the last bout of exercise, regardless 
of the period or exercise regimen. One possible explanation is an 
adaptation of the GLUT4 half-life, which can be regulated by pre- and 
post-translational mechanisms. The increased half-life also results 
from a decrease in the rate of degradation of the protein; in this case, 
the rate of reversal of the adaptation would occur more rapidly than its 
development [94].

Mostarda et al. (2009) evaluated the effect of 3-week detraining 
after 10 weeks of training in streptozotocin-induced diabetic rats. De-
spite evidence showing that GLUT4 expression returns to pre-training 
levels within 48 hours to 1 week [84,95,99], they found that, after 3 
weeks of detraining, glucose levels remained similar to those in the 
trained group [100]. These data show that glucose clearance cannot be 
explained only by GLUT4 expression levels as it was demonstrated. 

Although the biological effects of exercise detraining on glucose 
metabolism are evident, the molecular mechanisms of this down-reg-
ulation have not been totally understood, especially on insulin-inde-
pendent pathways. Studies are needed to determine the involvement 
and time-course of these mechanisms to lead to effective prevention 
management and treatment of insulin resistance and its consequences.

Conclusions
Based on the assumptions presented, we conclude that: 1) acute 

exercise increases GLUT4 expression by parallel insulin signaling 
pathways; 2) most mechanisms implicated involve activation of AMPK 
and/or CaMKII; 3) AMPK-mediated glucose uptake is higher in fast-
twitch muscle fibers; 4) increased glucose uptake following acute 
exercise may also involve changes in GLUT4 exocytosis and endocytosis 
rates; 5) improved insulin sensitivity following acute exercise results 
from adaptations linked to TBC1D1, TBC1D4/AS160 and p38 MAPK, 
which remain active for hours after muscle contraction cessation; and 
finally 6) adaptations in the pre-translational and post-translational 
levels are regarded as chronic effects of exercise. On the other hand, 
cessation of exercise training leads to a decrease in the amount of 
GLUT4 in the plasma membrane in animal models. We conclude 
that: 1) training-induced beneficial effects on GLUT4 expression can 
be reversed within 48 h to 1 week following training cessation; 2) 
the effects of detraining on GLUT4 expression may involve pre- and 
post-translational mechanisms; and 3) glucose clearance cannot be 
explained only by GLUT4 levels, at least not in insulin-resistant rats.

This review shows the importance of acute and chronic exercise 
in changes in GLUT4 expression by insulin-independent pathways, 
which remain intact even in individuals with insulin resistance.
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