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Abstract
The numerical solution of the Chemical Master Equation (CME) governing gene regulatory networks and cell 

signaling processes remains a challenging task due to its complexity, exponentially growing with the number of 
species involved. When considering separated representations of the probability distribution function within the Proper 
Generalized Decomposition-PGD-frame-work the complexity of the CME grows only linearly with the number of state 
space dimensions. In order to speed up calculations moment-based descriptions are usually preferred, however these 
descriptions involve the necessity of using closure relations whose impact on the calculated solution is most of time 
unpredictable. In this work we propose an empirical closure, fitted from the solution of the chemical master equation, 
the last solved within the PGD framework.
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to the high-dimensional character of the CME as was successfully 
proved in our former works discussed later. However, and despite the 
fact of being able to solve the CME, its solution requires a significant 
amount of computation, and thus, the simulation of a variety of 
scenarios remains a challenging issue because its computational 
complexity. For alleviating such a computational complexity an 
appealing route consists of calculating the moments of the probability 
distribution function instead of the pdf itself. Moments constitute a 
valuable description of great interest in many practical applications and 
then moment-based descriptions represent an appealing alternative to 
pdf-based descriptions. However, as discussed later, when deriving the 
equations that govern the time evolution of the pdf-moments, usually 
the one related to a moment of a certain order depends on higher-order 
moments and so-on. In order to close the model at a certain order, we 
must approximate higher order moments as a function of the ones 
lower or equal to the one considered. Such an approached constitutes 
the closure-based description.

As discussed later different closures has been proposed however, no 
closure relation is general enough to represent any possible scenario with 
the required accuracy. In this paper we propose using the expensive but 
very accurate CME solution efficiently obtained by invoking the PGD 
technology for fitting empirical polynomial closures. These closures are 
then used for obtaining moment-based solutions in an efficient way, 
because the integration of the evolution equations governing the time 
evolution of these moments can be performed almost in real-time, for 
scenarios that slightly differ from the ones that served to construct the 
empirical closure relation.

In any case it is important to note that the validity and accuracy 
of the computed closure-based solutions is never assured but in many 
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Introduction
Simulating the behavior of gene regulatory networks is a formidable 

task for several reasons. At this level of description, only a few molecules 
(maybe dozens or hundreds) of each species involved in the regulation 
process is present, and this fact limits the possibility of considering 
the process as deterministic, as is done very often in most chemical 
applications. Here, the concept of con-centration of the species does 
not make sense [1,2]. On the contrary, under some weak hypotheses 
the system can be considered as Markovian, and can be consequently 
modeled by the so-called Chemical Master Equation (CME) [3], which 
is in fact no more than a set of ordinary differential equations stating the 
conservation of the probability distribution function - pdf -P in time:

0 0
0 0 0 0

P(z, t|z ,t ) [a (z ) (z , t | z , t ) a (z) P(z, t | z , t )],j j j j
j

P
t

ν ν∂
= − − −

∂ ∑
Where p(z,t | z0, t0) represents the probability of being at a state 

in which there are a number of molecules of each species stored 
in the vector z at time t when we started from a state z0 at time t0. aj 
represents the propensity (i.e., the probability) of reaction j to occur, 
while vj represents the change in the number of molecules of each 
species if reaction j takes place. This change is given, of course, by the 
stoichiometry of the reaction at hand.

What is challenging, however, in this set of equations is that they 
are de-fined in a state space which possesses as many dimensions as the 
number of different species involved in the regulatory network. Under 
this framework, if we consider N different species, present at a number 
n of copies, the number of different possible states of the system is nN. 
This number can take the astronomical value of 106000 if we consider 
some types of proteins, for instance [3]. This phenomenon is known as 
the curse of dimensionality in many branches of science.

To overcome this diffculty, most of the authors employ Monte 
Carlo-like algorithms (the so-called stochastic simulation algorithm, 
SSA [3-5].

 However, Monte Carlo techniques need for as many as possible 
individual realizations of the problem, leading to excessive time 
consuming simulations, together with great variance in the results.

Separated representations involved in the Proper Generalized 
Decomposition described below allow circumventing the issues related 
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cases is a valuable tool for pre-analysis. As soon as the main tendencies 
are obtained using the fast closure-based simulations, by performing a 
lot of simulations, all them very fast, finer analysis can be performed by 
solving the CME in a few selected scenarios of special interest extracted 
from the previous fast closure-based simulations.

Proper generalized decomposition for alleviating the curse of 
dimensionality

Dealing with the problem of the curse of dimensionality in a 
very different context, the authors presented in a previous work a 
technique that is now known under the name of Proper Generalized 
Decomposition (PGD) based on the use of separated representations 
[6,7]. Essentially, to avoid the exponentially growing complexity of 
the problem with the number of state space dimensions, the method 
approximates the variable of interest, say u, as a finite sum of separable 
functions:

i
1 2 D 1 1 2 2

1
u(x ,x ,.....,x ,t) (x ). (x )....... (x ).T (t)

n
i i i

D D
i

F F F
=

≈∑
The reason for this particular choice motivated the method itself 

that is conceived as a greedy algorithm that computes one sum at 
a time and one product at a time, within a fixed-point, alternating 
directions algorithm. This leads to a sequence of one-dimensional (low-
dimensional, in general) problems, one for each function Fi

j that can be 
solved using your favorite technique (finite elements, finite volumes, 
finite differences, colocation, ...).

If M nodes are used to discretize each coordinate, the total 
number of PGD unknowns is N×M×D instead of the MD degrees of 
freedom involved in standard mesh-based discretization’s. Moreover, 
all numerical experiments carried out to date with the PGD show 
that the number of terms N required to obtain an accurate solution 
is not a function of the problem dimension D, but it rather depends 
on the regularity and separability of the exact solution as well as on 
the solution constructor itself. The PGD thus avoids the exponential 
complexity with respect to the problem dimension.

A PGD approach to gene regulatory networks simulation

The PGD approach to the problem of effciently simulating gene 
regulatory networks begins by assuming that the probability of being 
at a particular state z at time t can be approximated as a finite sum of 
separable functions, i.e.,

N
1 1 2 2

1
P (z,t) = (z ). (z )....... (z ). (t),

n
j j j j

D D t
i

F F F F
=
∑

Where, as mentioned before, the variables zi represent the number 
of molecules of species i present at a given time instant. This particular 
choice of the form of the basis functions allows for an important 
reduction in the number of degrees of freedom of the problem, N × 
nnod × (D + 1) instead of (nnod)

D, where D is the number of dimensions 
of the state space and nnod the number of degrees of freedom of each 
one-dimensional grid established for each spatial dimension. For this 
to be useful, one has to assume that the probability is negligible outside 
some interval, and therefore substitute the infinite domain by a sub-
domain [0,….,m-1]D, m being the chosen limit number of molecules 
for any species in the simulation. A similar assumption is behind other 
methods in the literature, such as the Finite State Projection algorithm, 
for instance [3].

Another important point to be highlighted is the presence of a 
function depending solely on time, Ft

j (t). This means that the algorithm 
is not incremental. Instead, it solves for the whole time history of the 
chemical species at each iteration of the method. If one then assumes 

that n terms of the sum given by equation (3) are already known,
1 1 1 1

1 1 2 2 DPn+1(z,t) = Pn(z,t) + F (z ).F (z )........F (z ).F (t),n n n n
D t

+ + + +

and look for the n + 1-th term, by substituting Equation (4) into the 
CME, Equation (1) gives a non-linear problem in 1 1 1

1F ,....., F ,Fn n n
D t

+ + + that is 
solved by means of a fixed-point, alternating directions algorithm [8,9].

The separated representation just considered does not involve any 
assumption. Any solution defined in a high-dimensional space can be 
written, if it is regular enough, in a separated form if the number of 
terms in the finite sum decomposition is high enough. A polynomial of 
any order is no more than a sum of functional products, each depending 
on a different coordinate. Thus, solutions can be approximated with the 
desired accuracy by using a separated representation and an adequate 
constructor as the one described above.

Moments-based descriptions

Even if the use of separated representations allows circumventing the 
curse of dimensionality the computational cost remains considerable. 
This fact motivated in many other disciplines the replacement of the 
pdf by some of its moments [10-13], since many times the last suffice 
for having a view rich enough on the dynamics of the systems. The use 
of moment-based description was of major interest in different areas of 
statistical mechanics and it is being the more and more considered as an 
alternative to the discretization of the CME.

A moment represents the expected value of a random variable, 
z, raised to a certain power. An “expectation” is a specifically defined 
function in statistics, E [ (z)] = (z) (z) (z)f f P d∫ when in continuous 
spaces or Σf(z)P(z) in discrete spaces. In general, we can talk about the 
ith moment as:

i i
i

0
(t) = E[z ] = (z, t) z

z
Pµ

∞

=
∑

A probability distribution is uniquely defined by its full set of 
moments. Having access to these moments could eliminate the need 
to solve for the full distribution, depending on what information 
would be considered important. A special function, called the Moment 
Generating Function, is specifically in-tended for this purpose:

z

0
M( ,t) = e P(z, t)

z

θθ
∞

=
∑

By taking the Taylor expansion of 
1 2 3

z ( Z) ( Z) ( Z)e  = 1 + ......,
1! 2! 3!

θ θ θ θ
+ + +  we 

can see the moments emerging from this function, the i-th moment 
associated with the i-th power of θ:

2
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µ θ µ θ µ θθ µ
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The following equations will be used extensively in the following 

derivation, so it will be useful to define them now:

z
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From the Chemical Master Equation to moments based 
descriptions

Since we will be uniquely considering the structure of the Chemical 
Master Equation, we would like to derive a general version of the 
Moment Generating Function which can be used for any system. The 
CME for l reactions with stoichiometric change vl is:
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0 0
1 1 1 1

P(z, t|z ,t ) (z ) (z v , t) a (z) P(z, t)
l

a v p
t

∂
= − − −
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As we will see later on, the kind of rate laws associated with the 

system dramatically impact the complexity of the overall problem. 
We begin with the simplest case of kinetic mass action laws, 
following the derivation from Gillespie [10]. However, we would 
eventually like to take rational rate laws, such as Hill functions, as 
is seen in Milner et al. [14]. An example of a mass action rate law is 

21 1
1 1 1 , ,

( 1)(z) ,
2 2 2 l i l ii

z Za Z Z c aλ λ λ−
= = − =∑ where the law can be rewritten 

as a sum of coefficients cl,i and variables al,i. This expanded, polynomial 
form will be exploited in our derivation.

Since we would like to talk about moments of the CME rather than 
probabilities, our first priority is to write this equation in terms of M, 
rather than in terms of P. We multiply both sides by eθz and sum over all 
possible values of z:

z z z
1 1 1 1

0 0

(z, t)e e (z ) (z v , t) e a (z) P(z, t)
z z l

P a v p
t

θ θ θ
∞ ∞

= =

∂
= − − −

∂∑ ∑∑
that taking into account the previous definitions results
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Now, we can take the second definition of Mi

iθ
∂
∂

 and expand 1(v )eθ  
into its Taylor series. Notice that the summation now begins at j=i. 
When j < i, the index will be out of bounds and not correspond to any 
physical state
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Remember that the initial goal was to isolate the coefficients of θn in 
order to obtain the nth moments:

1
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Our next step will be isolate just the coefficients of θ in order to 
achieve a form in which we are creating ODE’s of µ rather than M (θ,t). 
Since

M( ,t) 1
!

nn
nt t n
µθ θ∂∂

=
∂ ∂∑ ,

We will have to multiply both sides by n! in order to isolate µ. Thus, 
it finally results

, (n k)
1

(t) !
!(n )!

n
kn

l i l i
l i k

nc v
t k k

µ µ + −
=

∂
=

∂ −∑∑ ∑

Closures

It is easy to note from the previous expression [10] that the equation 
that governs the time evolution of the moments up to a certain order 

implies, in general, higher order moments, and then, before solving all 
them, higher order moments must be written as a combination of those 
involved in the considered time evolution equations. These relations 
have in most of cases an approximate character and are known as 
closure relations [12,15]. Before describing the technique that we are 
following for defining such closures for a given system, we introduce 
some notation.

When considering multicomponent systems involving D 
components, the state becomes a vector ZT = (Z1,Z2,……,ZD) as 
previously discussed. Now the first moment also becomes a vector µ1 
of size D, defined by

1(t) (z, t)zPµ =∑
The second order moment µ2 results a D×D matrix

2 (t) (z, t)z zPµ = ⊗∑
µ3 a third order tensor

3 (t) (z, t)z z zPµ = ⊗ ⊗∑
and so on. These expressions involve much symmetry e.g., µ2 (i,j) 

= µ2(j,i)  

In what follows and without loss of generality, we consider reactions 
involving linear propensities. Thus, when considering the equations 
governing the time evolution of the first two moments µ1(t) and µ2(t) 
the third order moment µ3(t)  remains in these equations, and it need to 
be expressed from both lower moments. 

The simplest closure writes:

3 1 2 1 3 1 1 4 1 2 1 5 2 6 2 1( , , ) ( , , ) ( ) ( , )S S S Sµ α α µ α µ µ α µ µ µ α µ α µ µ= Ι⊗Ι⊗Ι + Ι Ι + Ι + ⊗ ⊗ + Ι +

Where

1 1 1 1( , , ) ,S µ µ µ µΙ Ι = ⊗Ι⊗Ι + Ι⊗ ⊗Ι + Ι⊗Ι⊗

1 1 1 1 1 1 1 1( , , ) ,S µ µ µ µ µ µ µ µΙ = ⊗ ⊗Ι + ⊗Ι⊗ + Ι⊗ ⊗

2 2 2( , )S µ µ µΙ = ⊗Ι + Ι⊗

and

2 1 2 1 1 2( , )S µ µ µ µ µ µ= ⊗ + ⊗

Thus, the third order closure relation [16] involves 6 coefficients 
to be determined. For this purpose, and for a given system, we solve 
the CME by using the PGD in order to circumvent the curse of 
dimensionality and then evaluate the third order moment according to 
Equation (11) and then we choose the alpha parameters in Hegland et 
al. [16] to provide the best fitting (in a least squares sense). 

As soon as the alpha parameters are empirically fitted, the CME 
is substituted by the two ordinary differential equations governing the 
time evolution of µ1(t) and µ2(t), when considering the solution of the 
same systems for any other initial condition or slightly different kinetic 
rates.

Numerical Results
Lotka model

First, we consider the so-called Lotka model. This model consists of:

1A+X 2Xλ→

2X+Y 2Yλ→
3Y Bλ→
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Where the number of molecules of species A and B are enforced to 
be constant. We consider the two simulation cases:

Case 1: At the initial time t = 0, the state of the systems consists of 
0
TZ = ( 0#X , 0#Y ) = (120,50), the reaction rates being λ1 = 1, λ 2 = 0:012 

and λ3 = 1.

First, we solve the CME with the Case 1 conditions. The probability 
distribution function at 6 different times is depicted in Figure 1.

Now from the pdf TP (z,t), z (#X,# )Y=  and t = [0,10], we compute 
the three first moments µ1(t), µ2(t), and µ3(t), respectively from 
Equations (9-11) that will be considered as reference moment solutions. 
The parameters alpha involved in the empirical closure relation [16] 
are then determined. In the present case, and taking into account the 
symmetries, µ1, is of size two, µ2, has three independent components 
and µ3, four. Figure 2 shows the different independent components of 
µ1, and µ2. Figure 3 compares the reference third moment with the one 

Figure 1: Probability distribution function P (z,t) at different times: (a) t=0.2, (b) t=3, (c) t=7, (d) t=8, (e) t =9 and (f) t=10.
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Figure 2: Time evolution of the components of µ1 (left) and µ2 (right).

Figure 4: Time evolution of the components of µ1 (left) and µ2 (right) obtained from the moment-based description.

Figure 3: Time evolution of the third order moment µ3(t): reference components (continuous line) versus closure-based approximation (broken line).
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fitted with the empirical closure relation, from which we can conclude 
that both are in perfect agreement.

Now, by integrating in time the equations governing the time 
evolution of the components of µ1, and µ2, using the just identified 
empirical closure relation, we obtained the curves depicted in Figure 4 
that are very close to those obtained from the probability distribution 
function that were depicted in Figure 2.

Now, with the closure relation obtained from the analysis of Case 
1 we are addressing Case 2 without modifying the closure relation. 
For that purpose the equations governing the time evolution of the 
different components of µ1, and µ2 are integrated in time by considering 
the closure relation fitted in Case 1. In order to check the accuracy of 
those solutions we solve again the CME and compute the reference 
moments from the resulting probability distribution function. Figure 5 
compares the moment-based and the pdf-based moments. Even if non 
negligeable deviations in the second order moment are noticed at the 
final time, results are qualitatively quite good.

Exclusive switch 5D model

We consider a gene regulatory network called exclusive switch. It 
describes the dynamics of two genes with an overlapping promoter 
region, and the corresponding proteins X1 and X2. Both X1 and X2 are 
produced if no transcription factor is bound to the promoter region. 

However if a molecule of type X1 (X2) is bound to the promotor then 
it inhibits the expression of the other protein i.e., molecules of type 
X2 (X1) cannot be produced. Only one molecule can be bound to the 
promotor region at a time which gives three possibilities for the state of 
the promoter region (free, X1 bound, X2 bound). The model is infinite in 
two dimensions (X1 and X2) and the reactions are given by:

1
5 5 1X X Xλ→ +

2
5 5 2X X Xλ→ +

3
1X 0λ→

4
2X 0λ→

5
1 5 3X X Xλ+ →

6
2 5 4X X Xλ+ →

7
3 5 1X X Xλ→ +

8
4 5 2X X Xλ→ +

9
3 3 1X X Xλ→ +

10
4 4 2X X Xλ→ +

where  (λ1,λ2,…..λ10) = (2,5,0.005,0.005,0.005,0.002,0.02,0.02,2,5). 
The initial conditions are such that only one DNA molecule is present 
in the system while the molecular counts for the rest of the species are 

Figure 5: Components of µ1(left) and µ2(right), computed from the pdf-based description (top) and the moment-based description (bottom).
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zero. 

First, we solve the CME. The probability distribution function at 6 
different times is depicted in Figure 6.

Now from the pdf P(z,t) = (#X1,….#X2) and t = [0,60], we compute 
the three first moments µ1(t), µ2(t), and µ3(t),  respectively from 
Equations (9-11) that will be considered as reference moment solutions. 
The parameters alpha involved in the empirical closure relation [16] are 

Figure 6: Probability distribution function P (z; t) at different times: (a) t = 3, (b) t = 7, (c) t = 12, (d) t = 19, (e) t = 30 and (f) t = 60.
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Figure 7: Time evolution of the components of µ1 (left) and µ2 (right).

Figure 8: Time evolution of the third order moment µ3(t).

Figure 9: probability distribution function at time t = 10.
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then determined. Figure 7 shows the different independent components 
of µ1 and µ2. Figure 8 depicts the fitted third moment that makes use of 
the empirical closure relation.

With the closure relation just identified we are addressing a new 
scenario consisting of a different initial condition T 0 0

1 5z (t 0) (#X ,......., #X )= =

= (50,100,0,0,1) that produces at time t=10 the pdf depicted in Figure 
9. Now, the equations governing the time evolution of the different 
components of µ1 and µ2 are integrated in time by considering the 
closure relation just identified fitted. In order to check the accuracy 
of those solutions we solve again the CME and compute the reference 
moments from the resulting probability distribution function. Figure 
10 compares the moment-based and the pdf-based moments, proving 
that the moment approach based on the use of an empirical closure 
produces a quite reasonable agreement.

The toggle

Mutually repressing gene pair, or gene toggle, can be found 
in biological systems as discussed in Hegland et al. [16]. As in their 
example, here we focus on protein dynamics, and more particularly in 
the toggle-switch network. The reactions consist of: 

1
2 1 2X X Xλ→ +

2
1X 0λ→

3
1 1 2X X Xλ→ +

4
2X 0λ→

and the following polynomial properties are considered:

1 1 2 1 2a (X ,X ) = (A-X )λ

2 1 2 2 1a (X ,X ) = X )λ

3 1 2 3 1a (X ,X ) = (A-X )λ

4 1 2 4 1a (X ,X ) = (X )λ
Now, we consider the initial condition 0 0

1 2(#X ,#X ) =(90,50) as well 
as the parameters λ1=1, λ2=5, λ3=1 and λ4=10, and solve the associated 
chemical master equation for calculating the joint probability 
distribution function P (z,t). Now from the pdf P(z,t), zT = (#X1, 
#X2)  and t = [0,1], we compute the three first moments µ1(t), µ2(t), 
and µ3(t) respectively from Equations (9-11) that will be considered 
as reference moment solutions. The parameters alpha involved in 
the empirical closure relation [16] are then determined. Figures 11-
13 compare respectively the different independent components of 
µ1, µ2, and µ3 calculated from chemical master equation solution and 

Figure 10: Components of µ1 (left) and µ2 (right), computed from the pdf based description (top) and the moment-based description (bottom).
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Figure 11: Time evolution of the components of µ1 calculated from the CME solution (left) and from the closure-based description (right).

Figure 12: Time evolution of the components of µ2 calculated from the CME solution (left) and from the closure-based description (right).

Figure 13: Time evolution of the components of µ3 calculated from the CME solution (left) and from the closure-based description (right).

from the closure-based description. A very good agreement can be 
noticed.

With the closure relation just identified we are addressing 
a new scenario consisting of a different initial condition 

T 0 0
1 2z (t 0) (#X ,#X )= = =(1,1). Now, the equations governing the time 

evolution of the different components of µ1 and µ2 are integrated in 
time by considering the closure relation just identified fitted. The 
third moment is calculated from the fitted closure from the first 
two moments. In order to check the accuracy of those solutions we 
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solve again the CME and compute the reference moments from the 
resulting probability distribution function. Figures 14-16 compare 
respectively the different independent components of of µ1, µ2, and 
µ3 calculated from chemical master equation solution and from the 
closure-based description. Again a very good agreement can be 

noticed.

Conclusions
In this work we revisited the modeling of regulatory networks 

Figure 14: Time evolution of the components of µ1 calculated from the CME solution (left) and from the closure-based description (right).

Figure 15: Time evolution of the components of µ2 calculated from the CME solution (left) and from the closure-based description (right).

Figure 16: Time evolution of the components of µ3 calculated from the CME solution (left) and from the closure-based description (right).



Citation: Ammar A, Magnin M, Roux O, Cueto E, Chinesta F (2016) Chemical Master Equation Empirical Moment Closure. Biol Syst Open Access 5: 
155. doi:10.4172/2329-6577.1000155

Page 12 of 12

Volume 5 • Issue 1 • 1000155Biol Syst Open Access
ISSN: 2329-6577 BSO, an open access journal

described within the chemical master equation framework. 
Deterministic solutions of the CME were performed by using the 
separated representation involved in the PGD, allowing circumventing 
the so-called curse of dimensionality. In order to improve the 
computational efficiency a moment-based description is derived, 
however such description involves higher order moments that must 
be described from the ones of lower order. In that sense we proposed 
a simplest closure relation, of empirical nature, that can be fitted 
numerically from the probability distribution function, the last coming 
from the PGD solution of the CME. As soon as the closure relation is 
fitted, it can be used for solving similar problems to the one that served 
to identify the closure relation.
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