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Introduction
It is now well established that humans with type 1 (T1D) or type 2 

(T2D) diabetes have an increased risk of fracture [1-6]. While decreased 
bone density and a state of low bone turnover have been described in 
those with T1D, T2D is not associated with osteopenia or osteoporosis. 
However, recent studies have reported that subperiosteal porosity is 
increased in T2D patients who fracture [7,8]. 

The underlying mechanisms involved in skeletal deficits observed 
in both T1D and T2D are poorly understood. While it is likely a multi-
factorial process that contributes to skeletal compromise in diabetes, 
as is the case with most diabetes-related complications, insulin and its 
homolog, insulin-like growth factor 1 (IGF-1), have been implicated 
in the pathogenesis of skeletal deficits attributable to diabetes (i.e., 
diabetic osteopathy) [8]. For instance, in humans with diabetes, there 
is a positive correlation between bone mineral density (BMD) by dual-
energy x-ray absorptiometry (DXA) and insulin dose [9,10] or urinary 
C-peptide excretion, a measure of endogenous insulin production [9],
suggesting that endogenous and exogenous insulin may affect skeletal
homeostasis in diabetes. IGF-1 concentrations are lower in diabetic
patients with osteopenia, compared to those without osteopenia, and
decreased serum markers of bone formation in diabetes are associated
with lower IGF-1 concentrations [11-15]. Patients with T2D who have
higher IGF-1 concentrations also have higher BMD and decreased
vertebral fractures [12,16]. Recently, we have shown in individuals with
T1D that measures of endogenous insulin, exogenous insulin dose, and
serum IGF-1 concentrations all positively correlate with osteocalcin, a
marker of bone formation [17].

In this review, we will explore the current knowledge, obtained 
in rodent models, of how insulin and IGF-1, through their cognate 
receptors, regulate normal skeletal physiology, and how the actions 
of these peptide hormones may be critical to understanding the 
pathogenesis and potential treatment of diabetic osteopathy. 

Insulin and IGF-1 physiology

Insulin and IGF-1 are small peptide hormones (~7.5 kD) which 

share a high degree of homology with proinsulin. Each possesses 
the ability to increase glucose disposal, insulin being significantly 
more potent than IGF-1 [18]. Unlike insulin, which is produced by 
pancreatic β-cells, IGF-1 is produced predominantly by the liver, 
with other tissues producing smaller amounts, and circulates at high 
concentrations in serum [18,19]. Insulin and IGF-1, beyond their 
metabolic effects, can be growth-promoting peptides which influence 
cellular proliferation and differentiation [18]. Unlike insulin, the 
interaction of IGF-1 with cell-surface receptors is tightly regulated 
by at least six distinct high affinity carrier proteins, the IGF-binding 
proteins (IGFBPs), and possibly by several low-affinity IGFBP-like 
molecules [18,20]. The interaction of IGF-1 with IGFBPs can prevent 
untoward IGF-1 effects, such as uncontrolled cellular proliferation or 
hypoglycemia. Conversely, disruption of the IGF:IGFBP complex is 
a prerequisite for IGFs to exert their mitogenic and metabolic effects 
through the IGF-1 receptor (IGF1R) [21]. 

Downstream mediators of both insulin and IGF-1 signaling 
pathways are important in promoting osteogenesis

Insulin and IGF-1 signaling pathways utilize many of the same 
cellular proteins to achieve various cellular outcomes (Figure 1). Each 
ligand, through its cognate receptor, can mediate events via insulin 
receptor substrate (IRS)-1 and IRS-2 phosphorylation and subsequent 
activation of phosphatidylinositol (PI) 3-kinase [22] and by activation 
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Abstract
Recent studies in diabetic humans and rodent models of diabetes have identified osteopathy as a serious 

complication of type 1 (T1D) and type 2 (T2D) diabetes. Accumulating evidence suggests that disruption of insulin and 
insulin-like growth factor 1 (IGF-1) homeostasis in the diabetic condition may be responsible for the observed skeletal 
deficits. Indeed, replacement of insulin or IGF-1 in rodent models of T1D results in significant improvement in bone 
healing despite ongoing moderate to severe hyperglycemia. Insulin and IGF-1 act through distinct receptors. Mice in 
which the receptor for insulin or IGF-1 is selectively deleted from osteoblast lineages show skeletal deficits. Despite 
acting through distinct receptors, insulin and IGF-1 exert their cellular activities via conserved intracellular signaling 
proteins. Genetic manipulation of these signaling proteins, such as insulin receptor substrate (IRS)-1 and -2, Protein 
Kinase B (Akt), and MAPK/ERK kinase (MEK), has uncovered a significant role for these signal transduction pathways 
in skeletal homeostasis. In addition to effects on skeletal physiology via canonical signaling pathways, insulin and IGF-
1 may crosstalk with wingless-int. (Wnt) and bone morphogenic protein 2 (BMP-2) signaling pathways in cells of the 
osteoblast lineage and thereby promote skeletal development. In this review, a discussion is presented regarding the 
role of insulin and IGF-1 in skeletal physiology and disruptions of this axis that occur in the diabetic condition which 
could underlie many of the skeletal pathologies observed.

Jo
ur

na
l o

f D
iabetes & Metabolism

ISSN: 2155-6156
Journal of Diabetes and Metabolism



Citation: Fowlkes JL, Bunn RC, Thrailkill KM (2011) Contributions of the Insulin/Insulin-Like Growth Factor-1 Axis to Diabetic Osteopathy. J Diabetes 
Metab S1:003. doi:10.4172/2155-6156.S1-003

Page 2 of 7

 J Diabetes Metab 					           Diabetic Osteoporosis 		                     ISSN:2155-6156 JDM, an open access journal

of the mitogen-activated protein (MAP)/ERK kinases [23]. A direct 
link between insulin and/or IGF-1 signaling and bone formation in 
vivo is supported by transgenic models which manipulate various 
proteins in these downstream signaling pathways (Figure 1). The 
growth factor receptor-bound protein 2 (Grb-2)–associated binder 1 
(Gab1) is a scaffolding protein that is involved in both ERK activation 
as well as in regulating the PI3K-Akt signaling pathway. Osteoblast-
specific elimination of Gab1 results in decreased trabecular bone, 
diminished bone formation, reduced strength, and reduced MAP/
ERK and Akt activation in response to insulin or IGF-1 [24]. Mice 
null for IRS-1 and IRS-2 develop unique bone phenotypes; in vivo, 
IRS-2 appears to maintain dominance of bone formation over bone 
resorption, while IRS-1 regulates bone turnover [25,26]. Bone healing 
is also impaired in IRS-1 deficient mice and can be corrected with re-
expression of IRS-1 within the fracture site [27]. Because IRS molecules 
mediate insulin and IGF receptor signaling, cross-talk downstream 
of IRS molecules may take place via insulin and IGF signaling in 
osteoblasts. Akt and forkhead transcription factors (FoxO) proteins are 
downstream mediators of IRS signaling within the PI3-kinase pathway. 
Mice null for Akt1 or both Akt1 and Akt2 have significant skeletal 
deficits which include delayed ossification, and even dwarfing [28,29]. 
In contrast, elimination of phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN), an antagonist of PI3-kinase activity, is 
associated with increased bone mineral density [30]. Activated Akt can 
phosphorylate several forkhead transcription factors (FoxO1, 3 and 4) 
and inactivate their transcriptional activity by excluding them from the 
nucleus to the cytoplasm. This mechanism is a major pathway in many 
cell types and tissues through which insulin and IGF-1 regulate gene 
transcription of many genes involved in cell growth, differentiation 
and metabolism. FoxO1, 3, and 4 are expressed in osteoblasts [31]; 
however, their regulation of skeletal homeostasis remains unclear. 
Elimination of FoxO1 in osteoblasts has the affect of decreasing 
bone mass and multi-tissue knockdown of FoxO1, 3 and 4 proteins 
decreases bone formation [32,33]. In contrast, newer data shows that 
deletion of FoxO1, 3, and 4 specifically in osteoblast progenitors results 
in an increase in vertebral and femoral BMD, as well as a striking 
increase in femoral cortical thickness [34,35]. In keeping with these in 
vivo findings, in vitro FoxO1 has been shown to directly interfere with 
the activities of runt-related transcription factor 2 (RUNX2), which 
is considered a “master regulator” of osteoblast development and 
whose expression is essential for normal bone formation [36,37]. In 
addition to the PI3K/Akt/FoxO pathway, activation of the MAP/ERK 
kinase pathway may also mediate insulin and IGF-1 events in bone. 
For instance, osteoblast specific expression of a constitutively active 
form of the MAP kinase, MEK1, is associated with accelerated skeletal 
development, enhanced skeletal size, and mineralization; whereas 
mice expressing a dominant negative form of MEK1 display delayed 
skeletal development, and these outcomes are believed to be mediated 
by effects on RUNX2 phosphorylation and transcriptional activity [38]. 
Taken together, these studies demonstrate that disruption of signal 
transduction pathways shared by insulin and IGF-1 receptors result in 
abnormalities of normal skeletogenesis. 

IGF-1 affects on the skeleton

Research over several decades has supported a primary role for IGF-
1 in anabolic bone formation [39]. However, it has only been in recent 
years that an essential role of IGFs in normal bone development has 
been confirmed through the elimination of IGF-1 and the IGF1 receptor 
in mice via homologous recombination [40,41]. In these animals, 
profound growth retardation as well as growth plate abnormalities 
and decreased bone calcification were observed. Later studies have 

further refined how elimination of IGF-1 affects bone physiology 
not only through the dwarfing of bones, but also by significantly 
decreasing bone formation rate and cortical thickness, resulting in 
more compact bone [42]. Studies specifically designed to examine 
how relative degrees of peripheral (i.e, hepatic production) IGF-1 
deficiency affect bone formation have revealed only small decreases in 
cortical periosteal bone growth [43]. Further reductions in circulating 
IGF-1 concentrations (to 10-15% of controls) achieved by crossing the 
previously described animals with animals made null for the acid-labile 
subunit (ALS) of the IGFBP-3/IGF-1 complex (ALS, IGFBP-3 and 
IGF-1 form the major 150 kD complex responsible for carrying IGFs 
in the vascular compartment in mammals), results in a 10% decrease in 
bone mineral density and a 35% decrease in periosteal circumference 
and cortical thickness [43]. Thus, together these studies demonstrate 
that circulating (i.e., endocrine) IGF-1 can have a significant effect on 
several parameters of bone density and formation, as well as the overall 
size of the bone. Exactly how these IGF-1-mediated effects may involve 
anabolic effects on osteoblast activity has been recently elucidated by 
Zhang et al [44], who, through tissue-specific gene targeting, ablated the 

Figure 1: Pro-osteoblastogenic signal transduction by insulin and IGF1 
receptors. Receptors at the plasma membrane bind ligands within 
extracellular domains, triggering receptor autophosphorylation on tyrosine 
residues within the cytoplasmic domain. Phosphorylated receptors recruit 
scaffolding proteins [src homology 2 domain-containing transforming protein 
C (Shc), IRS], which are subsequently phosphorylated by the receptor kinase 
domain. Recruitment of growth factor receptor bound protein 2 (GRB2) to 
the receptor-Shc complex initiates phosphorylation and activation of the 
MEK/ERK pathway. MEK/ERK signaling culminates with phosphorylation 
of osteoblastogenic transcription factors in the nucleus. IRS proteins recruit 
phosphatidylinositol 3-kinase to the receptor complex, resulting in kinase 
activation, which generates phosphatidylinositol (3,4,5) triphosphate (PIP3). 
PIP3 recruits AKT to the plasma membrane, resulting in AKT activation. 
Activated AKT phosphorylates numerous proteins, among them FoxO1, 
resulting in retention of FoxO1 in the cytosol, where it is unable to perform its 
function as a transcription factor.
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IGF1 receptor in mature osteoblasts using the osteocalcin promoter-
Cre construct. These studies showed that mice deficient in IGF1R in 
mature osteoblasts were of normal size, yet demonstrated a marked 
decrease in cancellous bone volume, connectivity, and trabecular 
number, as well as a striking decrease in the rate of mineralization of 
osteoid matrix. Recently, the IGF1R has been eliminated in osteoblast 
progenitors using the osterix promoter-Cre construct. In contrast to 
mice lacking the IGF1R only in mature osteoblasts, those lacking the 
IGF1R throughout osteoblast development are growth retarded [45]. 
Furthermore, these mice display decreased BMD and metaphyseal 
deficits [45]. Thus, a significant amount of the bone-forming and 
mineralization actions of IGF-1 appear to be mediated via the 
osteoblast. Indeed, transgenic over-expression of IGF-1 in vivo under 
the control of the osteocalcin promoter, results in a phenotype in which 
bone mineral density, as measured by DXA and quantitative computed 
tomography, is significantly increased in transgenic mice compared 
with controls. Furthermore, histomorphometric measurements 
reveal a marked increase in femoral cancellous bone volume in mice 
overexpressing IGF-1 compared with controls [46]. Therefore, any 
alteration in the IGF system may have profound effects on anabolic 
bone formation.

Insulin affects on the skeleton

While many studies have clearly demonstrated that IGF-1 functions 
as an anabolic agent in bone, only a few studies have examined the 
specific role that insulin and its cognate receptor (IR) may play in 
regulating osteoblast physiology. Studies in vitro have shown that 
physiological doses of insulin promote osteoblast proliferation [47,48], 
collagen synthesis [49-51], alkaline phosphatase production [52,53], and 
glucose uptake [54,55]; nevertheless, these studies do not clarify what 
receptors or pathways insulin may use to promote osteogenesis. The 
insulin receptor is expressed in normal bone and in regenerating bone in 
vivo [56,57]. IR expression is detected throughout differentiation, from 
pre-osteoblast to mature osteoblast, in MC3T3-E1 cells (Figure 2A). 
IR expression is detected in early bone progenitor cells (bone marrow 
stromal cells and C3H10T1/2 cells) as well as in ex vivo bone cell cultures 
(mouse calvarial cells) (Figure 2B). Furthermore, insulin and IGF-1 can 
activate the PI3K and MEK/ERK pathways in osteoprogenitor cells and 
in osteoblastic cells (Figure 2C and 2D, respectively), suggesting that 
insulin signaling is operative in osteoblastic cells at various stages of 
differentiation. While elimination of the IR in all skeletal elements has 
been reported to result in no skeletal abnormalities or in diminished 
trabecular architecture [57,58], two recent reports queried specifically 
the importance of insulin meditated events in osteogenesis. Both 
studies knocked down IR expression specifically in osteoblasts using 
Cre-mediated recombination [57,59]. It was observed that knock-
down of IR in osteoblasts resulted in altered bone formation [59] and 
in abnormal trabecular architecture [57]. While both models support a 
role for insulin in osteoblast development, Ferron et al reported only a 
partial (60%) knock-down of the IR using the Col1a1-Cre mouse, while 
Fuzele et al eliminated the IR only in mature osteoblasts using the 
osteocalcin-Cre construct [57,59]. Thus, additional informative models 
are needed to fully appreciate the role that insulin signaling via the IR 
may play throughout osteoblastogenesis and skeletal development. 

Effects of insulin and IGF-1 on diabetic osteopathy

In rodent models of T1D, skeletal architecture, bone quality and 
bone integrity are compromised [see reference [60] for review of 
studies]. These alterations are associated with poor bone formation 
and regeneration [56]. Furthermore, at a molecular level, T1D 

impacts bone formation by down-regulating RUNX2 [61,62], and 
genes known to be targets of RUNX2 activity (e.g., osteocalcin, matrix 
metalloproteinases 9 and 13, integrin-binding sialoprotein, collagen, 
phosphate regulating endopeptidase homolog, X-linked (PHEX), 
dentin matrix acidic phosphoprotein 1 (DMP-1), alkaline phosphatase, 
osteopontin, vitamin D receptor, and ameloblastin) [62]. These 

Figure 2: Insulin and IGF1 signal transduction is functional in osteoblast 
precursors in vitro. IR mRNA levels measured by quantitative RT-PCR in 
MC3T3-E1 cells after 1, 2, 3, or 4 weeks of differentiation with ascorbate and 
β-glycerol phosphate (A) and in primary calvariae, C3H10T1/2, MC3T3-E1, 
and bone marrow stromal cell cultures (B). Western blot detection of Akt and 
ERK1/2 phosphorylation in C3H10T1/2 (C) or MC3T3-E1 (D) cell lysates 
prepared after treating cells with 10 ng/ml of insulin or IGF-1 for the indicated 
times. 

Figure 3: Potential cross-talk between insulin/IGF-1, BMP2, and Wnt 
signaling pathways. BMP2 receptor signaling and the MEK/ERK branch of 
the insulin/IGF-1 signaling pathway converge on ERK1/2 kinase, which can 
modulate the activity of the master osteoblastogenic transcription factor, 
Runx2. Wnt and the PI3-K/Akt branch of the insulin/IGF-1 signaling pathway 
converge on GSK-3b, inhibiting GSK-3b kinase activity and reducing its 
constitutive phosphorylation of β-catenin. Unphosphorylated β-catenin is not 
readily degraded and can accumulate in the nucleus, where it acts as a pro-
osteoblastogenic transcription factor by regulating transcription of Runx2 and 
other genes.
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data suggest that osteoblastogenesis is impaired from early stages of 
osteoblast commitment and may therefore explain the profound lack 
of new bone formation, compromised skeletal microarchitecture, and 
diminished bone strength observed in diabetic models. 

In rodent models of diabetes, insulin therapy is consistently capable 
of improving many of the histomorphometric and biomechanical 
properties of bone, as well as the biochemical abnormalities observed 
in diabetic rodents [56,63-65]. Moreover, RUNX2 and RUNX2-
regulated osteogenic genes are in large part normalized in insulin-
treated diabetic animals, suggesting that insulin may directly or 
indirectly regulate bone formation through a pro-osteogenic pathway 
involving RUNX2 expression and RUNX2 downstream targets 
[62]. Critical to the argument that insulin may have direct effects on 
osteoblastogenesis during diabetes, local insulin delivery can normalize 
mineralization, callus bone content, and biomechanical properties in 
the healing fracture callus of the diabetic rat, despite persistent systemic 
hyperglycemia and systemic hypoinsulinemia [66]. 

While much research supports a primary role for IGF-1 in anabolic 
bone formation in rodents as just described [39,67,68], its role in the 
pathogenesis or reversal of diabetic osteopathy has been examined 
in only a limited way. In the Biobreeding (BB) rat model of diabetes, 
infusion with IGF-I dramatically increased tibial epiphyseal width and 
overall bone growth despite persistent hyperglycemia, suggesting that 
stimulatory effects on bone may be independent of metabolic affects of 
IGF-I [69]. Recently, we have explored the impact of IGF-I treatment 
in a mouse model of T1D on bone regeneration and bone strength. 
Regenerate bone was assessed by distraction osteogenesis [56]. IGF-I 
treatment significantly improved regenerate bone formation in this 
model. Furthermore, significant reductions in trabecular thickness, 
yield strength and peak force, were also improved with IGF-I treatment 
in diabetes [70]. These findings demonstrate that despite persistent 
hyperglycemia and insulinopenia, IGF-I therapy can promote new 
bone formation and improve biomechanical properties of bone in T1D.

Potential signaling pathways critical to insulin and IGF-1 
induced bone formation in diabetic osteopathy

In the diabetic bone, other pro-osteogenic pathways may be 
disrupted, such as the Wnt-signaling pathway [71]. The current 
understanding of these anabolic pathways in skeletal development 
and homeostasis suggests that insulin and IGF-1 signaling could 
crosstalk with two major pro-osteogenic pathways that ultimately 
regulate RUNX2 activity: the canonical Wnt signaling pathway and 
the BMP-2 signaling pathway. The importance of the canonical Wnt 
signaling pathway in determination of bone mass has been extensively 
documented and confirmed in both animal models and in human genetic 
conditions in which loss-of-function or gain-of-function mutations 
in specific components of this pathway either disrupt or accentuate 
bone formation and/or osteoblastogenesis [72]. Key elements of this 
pathway are diagrammed in (Figure 3). Briefly, Wnts (secreted lipid 
modified proteins) are known to bind to a receptor complex consisting 
of lipoprotein receptor-related proteins 5 or 6 (LRP5/LRP6) with 
frizzled [72]. In the absence of Wnt ligand, a “destruction complex” 
consisting of glycogen synthase kinase 3 (GSK-3), Axin, and tumor 
suppressor adenomatous polyposis coli protein (APC) mediates 
the phosphorylation of β-catenin, resulting in its proteolysis. In the 
presence of Wnt ligand, phosphorylation and inactivation of GSK-3 
occurs, inhibiting the constitutive phosphorylation and subsequent 
enzymatic degradation of β-catenin. β-catenin then accumulates in 
the cytoplasm, translocates into the nucleus, where it associates with 
the human T-cell factor 1 (TCF-1), mouse lymphoid enhancer factor 
(LEF-1) family of transcription factors and initiates the expression 
of Wnt target genes, including RUNX2. GSK-3 is a multifunctional 
kinase involved in numerous cellular functions, including regulation 
of insulin-dependent glycogen synthesis. Specifically, insulin, via 
the PI3K/AKT pathway, inhibits GSK-3 activity in skeletal muscle 
[73], promoting glycogen synthesis. While there remains debate 
over cross-signaling via the insulin/IGF-1 pathway and the Wnt 
signaling pathway through GSK-3 [74], studies have now shown that 
IGF-1 signaling can enhance Wnt protein production and activate 

Perturbations in Insulin/IGF-1 signaling resulting in diminished skeletogenesis 

Gene(s) modifed1 Genetic approach2
Phenotype

Ref.
Dwarf Trabecular Bone Cortical Bone BMD Bone Strength

Gab1 C (OC-Cre) NR3 ↓ ↓ NR ↓ 24
IRS1 G Yes ↓ ↓ ↓ NR 26
IRS2 G No ↓ ↓ ↓ NR 25
Akt1 G Yes ↓ ↓ ↓ NR 29
Akt1 & Akt2 G Yes NR NR NR NR 28
FoxO1 C (Col1a1-Cre) No ↓ ↓ ↓ NR 32
FoxO1, 3 & 4 MT (Mx-Cre) No ↓ ↓ ↓ NR 33
IGF1R C (OC-Cre) No ↓ ↔ ↓ NR 44
IGF1R C (Osx-Cre) Yes ↓ NR NR NR 45
IR C (Col1a1-Cre) NR NR NR ↓ NR 59
IR C (OC-Cre) NR ↓ NR NR NR 57
MEK1 TG (dominant/negative) Yes NR NR ↓ NR 38
Perturbations in Insulin/IGF-1 signaling resulting in enhanced skeletogenesis

MEK1 TG 
(active )

No
(large) NR NR ↑ NR 38

PTEN C (OC-Cre) NR ↑ ↑ ↑ NR 30
FoxO1, 3 & 4 C (Osx-Cre) NR NR ↑ ↑ NR 34

1Pathways presented in Figure 1
2Genetic Approach: C= conditional knockout; G=global knockout; MT = multiple tissue knockout; TG = transgenic over-expression
3NR = Not reported

Table 1: Various mouse models in which components of insulin and/or IGF-I signaling have been independently assessed in skeletogenesis.
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β-catenin [75]. Furthermore, inhibitors of Wnts can partially inhibit 
IGF-1 actions [75]. Bone morphogenetic protein (BMP)-2 induced 
osteogenesis is another major pathway contributing to bone formation 
(Figure 3). The interaction of BMPs with BMP receptors leads to the 
phosphorylation of Smads and ultimately to distal-less homeobox 5 
(Dlx5) transcription. Dlx5 then independently regulates the osteogenic 
transcription factors, RUNX2. In mesenchymal stem cells, MAPK 
serves as a point of convergence for mediating up-regulation of osterix, 
a RUNX2 target gene and major promoter of osteogenesis, via BMP-2 
and IGF-1 signaling [76]. Thus, these examples serve to demonstrate 
the great potential for insulin and IGF-1 signaling to synergize with 
other signaling pathways involved in promoting osteogenesis. 

Summary and Significance
Insulin and IGF-1 may exert independent effects on skeletal 

homeostasis, yet they are highly homologous peptides and can cross-
signal through insulin receptors and IGF-1 receptors, and they share 
downstream mediators. (Table 1) summarizes various mouse models 
in which components of insulin and/or IGF-I signaling have been 
independently assessed in skeletogenesis. Furthermore, both insulin 
and IGF-I may crosstalk with other pro-osteogenic pathways (e.g., 
Wnt and BMP-2). The relative contributions of insulin dysregulation 
(i.e., hypoinsulinemia in T1D vs. hyperinsulinemia in T2D) and/or 
IGF-1 deficiency (T1D) to skeletal integrity in diabetes remains largely 
unexplored. Thus, investigations into the specific effects of insulin and 
IGF-1 on osteoblastogenesis and bone formation as well as the relative 
contribution of insulin and IGF-1 to diabetic osteopathy are critical 
to understanding how manipulation of these hormones may improve 
skeletal health in persons with diabetes.
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