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Introduction
Diabetic nephropathy is caused by hyperglycemia and is the leading 

cause of end-stage renal failure in developed countries [1]. Albuminuria 
is a sensitive but non-specific marker of diabetic nephropathy [2-
6]. A better understanding of the effects of hyperglycemia on urine 
composition could lead to an improved test for this disease.

Metabolite profiling or metabolomics of biofluids such as serum 
and urine is increasingly used to identify biomarkers for a wide 
variety of diseases [7,8]. The urine metabolome comprises hundreds 
of small molecules filtered from the blood or produced by the kidney 
[7]. Many of these can be accurately measured using nuclear magnetic 
resonance spectroscopy (NMR) or chromatographic separation (gas 
chromatography, GC or liquid chromatography, LC) in combination 
with mass spectrometry (MS) (for review see [9]). In humans and 
animals, diabetes is associated with distinct NMR [10-13] and MS 
[14] urine profiles, although consensus between studies is lacking.
Inconsistencies probably reflect differences in methodologies and
analytical platforms, inter-species differences [10] and, for human
studies, differences in donor populations. A major challenge for
urinary metabolite analysis is raw data normalisation [15-18], which
is not always performed and may seriously affect the final outcome.
Another issue is type 1 error: false positives are likely prevalent in
reported literature as no published studies of urine metabolomics have
been validated by performing repeat experiments.

In this report, we describe the NMR, GC-MS and LC-MS targeted 
profiles of urine from people with type 2 diabetes, collected before 
and immediately following an intravenous glucose challenge in two 
repeated, independent experiments (2010 and 2011). We highlight the 
importance of normalisation and statistical analysis of multi-platform 
data to identify a profile for hyperglycemia, and discuss reproducibility 

between independent experiments. These methods are an important 
first step towards identifying a urine metabolomic profile of early-stage 
diabetic nephropathy.

Materials and Methods
Sample collection

Mid-stream urine was collected from overweight (body-mass 
index 25-30) people with type 2 diabetes of less than 5 years duration 
immediately before and 20-30  min after intravenous administration 
of a bolus of 50 ml 50% w/v glucose. All subjects had normal serum 
creatinine concentration, and 4 out of 46 had an elevated urinary 
albumin/creatinine ratio, indicative of microalbuminuria. Baseline 
venous glucose ranged from 4.2-14.4 mmol/l and peaked between 17.3 
and 24.5 mmol/l within 6 minutes of glucose infusion. Samples were 
stored on ice for up to 1 hour and then frozen at -70°C until analysed. 
This study was approved by the Monash University Human Research 
Ethics Committee detailed patient information is available in table S0.

Two sample sets were analysed, containing paired urine samples 
collected in either 2010 or 2011. Frozen urine was thawed at room 
temperature for 30 min and aliquoted for GC-MS, LC-MS and NMR 
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Abstract
Hyperglycemia causes diabetic nephropathy, a condition for which there are no specific diagnostic markers that 

predict progression to renal failure. Here we describe a multiplatform metabolomic analysis of urine from individuals 
with type 2 diabetes, collected before and immediately following experimental hyperglycemia. We used targeted 
nuclear magnetic resonance spectroscopy (NMR), liquid chromatography - mass spectrometry (LC-MS) and gas 
chromatography - MS (GC-MS) to identify markers of hyperglycemia. Following optimization of data normalisation and 
statistical analysis, we identified a reproducible NMR and LC-MS based urine signature of hyperglycemia. Significant 
increases of alanine, alloisoleucine, isoleucine, leucine, N-isovaleroylglycine, valine, choline, lactate and taurine and 
decreases of arginine, gamma-aminobutyric acid, hippurate, suberate and N-acetylglutamate were observed. GC-MS 
analysis identified a number of metabolites differentially present in post-glucose versus baseline urine, but these could 
not be identified using current metabolite libraries. This analysis is an important first step towards identifying biomarkers 
of early-stage diabetic nephropathy.
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sample preparations. Pooled biological quality control samples were 
obtained by taking an equal volume of all samples.

Metabolite extraction and data acquisition

Detailed descriptions of metabolite extraction procedures and 
conditions of data acquisition on NMR, GC-MS and LC-MS of both 
the 2010 and 2011 sample set are presented in Appendix 1. 

Data processing and statistical analysis

For all platforms, pooled biological controls were inspected, 
validating technical consistency. Total ion chromatograms and 
corresponding mass spectra obtained by GC-MS were evaluated using 
the Chemstation program (Agilent Technologies, Santa Clara, USA) 
and deconvoluted using AMDIS (NIST, www.chemdata.nist.gov). 
Identification of metabolites was based on comparison with in-house 
libraries containing retention time and mass spectra (Metabolomics 
Australia). All matching mass spectra were additionally verified by 
determination of the retention time by analysis of authentic standard 
substances. Unknown compounds, nevertheless still recognized by 
their specific retention times and mass spectra (Mass Spectral Tags, 
MSTs [22]) but not useful for strict targeted analysis, were retained in 
one dataset (2011) in order to estimate their importance. Targeted data 
matrices were built using AnalyzerPro (SpectralWorks Ltd, Runcorn, 
UK) and all missing values were manually verified and replaced when 
not detected by the algorithm. Identifications were further verified by 
reanalysing the data using the same library but a different algorithm 
(PyMS, www.code.google.com/p/pyms) [23]. Final GC-MS data 
matrices contained 49 (2010) or 34 (2011) known compounds in 
addition to 43 unknowns (2011).

NMR data was processed using Chenomx NMR Suite (Chenomx 
Inc., Edmonton, Alberta, Canada). All spectra were normalised to the 
standardised area of the DSS signal. For 2010 spectra, the 0.00-10.00 
spectral region of all samples was binned using 0.04  ppm bin width 
and omitting the water-urea region (4.50-6.00  ppm), after which 
unsupervised statistical analysis (principle components analysis, 
hierarchical clustering analysis) was applied to select interesting 
spectral regions (SIMCA-P, Umetrics, Umeå, Sweden and R, R 
Development Core Team). A list of 53 compounds of interest was 
compiled based on this information. This list was also used to generate 
the 2011 targeted data matrix. Metabolites were identified and 
quantified using the Chenomx 5.1 NMR Suite Profiler module and the 
800 MHz/600 MHz compound libraries for samples in the pH range of 
6-8, using a metabolite quantification algorithm such as that described 
by Dreier and Wider [24].

LC-MS chromatograms and mass spectra were evaluated using the 
Mass Hunter Quantitative Analysis Program (Agilent Technologies, 
Santa Clara, USA). Quantification of amines was achieved using 
an external calibration curve method with an internal standard, 
2-aminobutyric acid (25 µM), for instrument/analyst error correction. 
Response ratios were calculated by dividing the area of each analyte by 
the area of the internal standard, then concentrations were determined 
using the calibration curve. Data for 26 biological amines was present 
in the 2010 data matrix, 35 could be quantified in the 2011 experiment.

Whereas we only targeted amines via LC-MS, NMR and GC-MS 
data also contained other polar metabolites such as organic acids 
and sugars (apart from glucose, GC-MS only). All data matrices were 
subsequently analysed using an in-house R based statistical package 
[25] as well as The Unscrambler X (Camo Software, Oslo, Norway). 
Raw data matrices are often right-skewed covering a wide range of 

measured concentrations and usually turn out to be unsuited for most 
standard statistical analyses [26]. Hence, data pre-processing and 
pre-treatment tools are important for converting the data matrices 
to more appropriate formats [27,28]. In order to make each sample 
comparable to each other, sample-wise normalization was performed 
using either the sample median or the corresponding creatinine values 
depending on the appropriateness of the normalization method for 
the corresponding data matrix. Where possible, missing values were 
checked manually and confirmed from the raw data files as genuinely 
missing from the samples. Metabolites which were found missing for 
more than 75% of the samples in both pre and post groups and which 
were found in substantially low amounts in the rest of the samples in 
both groups were excluded from further analysis. Missing values which 
were found to be below the instrumental detection limits were replaced 
by half of the minimum value of the entire data matrix (e.g. [28]). 
Remaining missing values were treated as missing for those statistical 
methods which are able to accommodate missing values (such as 
t-tests), but were replaced by means of nearest neighbours [29,30] 
for other statistical methods which require a complete data matrix, 
such as principle component analysis. For each dataset, the suitability 
of an appropriate transformation (e.g., log transformation, square-
root transformation, and other Box-Cox transformations [27,31]) 
was explored to achieve normality, remove heteroscedasticity, and to 
change the scale of the data for statistical analyses. For all data matrices 
log transformation was found to be the most appropriate. Potential 
outliers were identified and checked based on the Z-score method [32] 
in a metabolite-wise manner for each group, as well as from PCA plots. 
Paired outliers – present in pre-glucose and post-glucose treatment 
urine samples collected from the same patient – were kept in the 
dataset, whereas a very few unpaired outliers which were likely caused 
due to analytical or operational errors were replaced with a missing 
value. For each metabolite, a paired sample t test was used to test the 
null hypothesis that the mean difference between post-glucose and 
baseline samples equals zero. For every metabolite and each platform 
(GC-MS, LC-MS, NMR) and experiment (2010 or 2011), a number 
of significant metabolites were then identified. To be consistent with 
biological literature, we employed a significance level of 0.05 for the t 
tests, and used the conservative Bonferroni p-value method to adjust 
for multiple comparisons [33]. Normality was assessed by means of 
Shapiro-Wilk and Anderson-Darling normality tests, and by manual 
inspection of metabolite boxplots. In addition to t tests, metabolites 
failing normality were re-evaluated using a non-parametric approach 
(Wilcoxon signed-rank test). We did not observe any inconsistencies 
between parametric and non-parametric results. Average fold changes 
were calculated as the difference (post minus pre) of the group averages 
of log2 transformed data (e.g. [34]). 

Results & Discussion
Two groups of urine samples, collected in 2010 or 2011 from people 

with type  2 diabetes, were subjected to cross-platform metabolomic 
analysis. This report focuses on the choice of normalisation method, 
and the value of cross-platform analysis and replicate experiments to 
identify reproducible urine biomarkers of acute hyperglycemia.

Glycosuria does not confound metabolite identification

High glucose concentrations can cause non-enzymatic modification 
of amine-containing compounds [3], and glycosuria could possibly lead 
to changes in other metabolites during sample processing and analysis 
(e.g., react with other compounds during solvent extraction, injection, 
chromatography, ionisation, fragmentation or detection). This could 
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result in false biomarker assignment. To investigate the possibility of 
artificial biomarkers, we mimicked the biochemical effect of glycosuria 
by adding 150  mM pure glucose to baseline samples. These were 
incubated for 1 hour and then extracted in an identical manner to that 
of the other samples. All of the spectral signals generated by spiking 
urine with glucose were also identified in a glucose blank (150  mM 
glucose in water). This indicates that no spurious metabolites were 
generated by high urinary glucose levels. We believe that this is an 
important control, as metabolite extraction procedures vary and the 
possibility of false positives originating in high glucose levels cannot 
otherwise be ruled out.

Median data normalisation is optimal

Urine, in contrast to most other biofluids, is not well buffered [35] 
and the concentration of urinary metabolites varies in response to 
variations in serum osmolarity. Despite this, it is still common practice 
to normalise against urinary creatinine, a readily detectable metabolite 
[15-18]. However, creatinine levels may be variable in diabetic patients 
and can be affected by hyperglycemia [11,12,36,37]. Other methods 
such as normalising to total spectral area or urine osmolarity have 
been described [17], but we could not use these because both spectral 
area and osmolarity changed substantially following glucose infusion. 
Alternatively, a part of the spectral area could be chosen as reliable 
for normalisation, but this choice would be subjective and prone to 
operator and spectral processing errors. 

We hypothesised that median normalisation, which generally 
correlates with overall sample abundance [28], would be the best 
method to use. To confirm this, we compared median and creatinine 
normalisation methods for data generated by NMR (Table 1, Figure 1 
and Figure S1).

For NMR data, both median and creatinine normalisation led to the 
selection of several biomarkers, although some were restricted to one 
normalisation method only (Table 1 and Figure 1A). While there are 
biological arguments for not using creatinine for normalisation, here, 
each method reproducibly identified biomarkers to a similar extent 
(Table 1 and Figure 1A). In addition, creatinine levels correlated well 
with overall sample metabolite levels (Figure S2A), supporting its use as 
a normalising factor in these datasets. This unexpected result probably 
reflects the fact that all patients in our study had normal renal function 
and therefore similar rates of creatinine clearance into the urine. It has 
to be noted however, that when the 2011 NMR dataset was normalised 
to the median, creatinine levels were significantly reduced after 
glucose infusion (Table 1). This finding has been observed previously 
[12,13,36,37]. Creatinine normalisation of NMR data also rendered it 
less suited for PCA analysis (Figures 1B and S1). We did not perform 
a similar comparison of normalisation method for LC-MS and GC-
MS data because, unlike NMR data, creatinine concentrations did not 
correlate well with overall sample abundance (Figure S2). Therefore, 
median normalisation is superior to creatinine normalisation for all 
data analysed in this study. There is one caveat, however. While median 
normalisation is generally robust, it is easily compromised when there 
is a large difference in the number of detected metabolites between 
groups. This was the case in the 2011 GC-MS dataset, where a number 
of mostly unknown compounds (see “Data processing and statistical 
analysis”) were not detected in baseline samples, but clearly present 
following hyperglycemia. Such ‘off-on’ compounds, which rendered 
the sample median too variable to use as a ‘constant’ normalising 
factor, were readily detected in a volcano plot because they caused 
marked skewing (Figure S3). Therefore, for GC-MS data, we removed 
off-on compounds before calculating sample median. 

Biomarkers of acute hyperglycemia in type 2 diabetes

Because the groups of metabolites detected by NMR, LC-MS 
and GC-MS do not fully overlap [38], a cross-platform approach to 
biomarker discovery ensures the most thorough interrogation of a 
metabolome. In addition, the identification of the same biomarker on 
different platforms improves specificity.

Of all identified metabolites across the three platforms, ~16% were 
detected on more than one platform (18 out of 106 for 2010 data; 16 out 
of 101 for 2011 data). 

Bona fide biomarkers are ideally applicable to a variety of patients. 
However, the metabolome is very sensitive to factors such as genetic 
background, age or gender [10,12,39]. These variations make single 
analyses susceptible to type 1 error and highlight the need to validate 
initial findings in a second experiment. To explore this, we compared 
data from two separate patient cohorts (2010 and 2011 datasets, Tables 
S1-3).

Biomarkers common to both datasets included alanine, 
alloisoleucine, isoleucine, leucine, N-isovaleroylglycine and 
valine (increased following hyperglycemia) and arginine, gamma-
aminobutyric acid (GABA), hippurate and suberate (reduced following 
hyperglycemia; Figure 2 and Table S1).

The strict Bonferroni correction method [40] used to identify 
biomarkers ensured a minimum of false positive results, at the expense 
of rejecting a few biomarkers with one robust and one borderline p-value 
in each of the 2010 or 2011 experiments. We retained these initially 
rejected compounds (choline, lactate, taurine and N-acetylglutamate) 
as potential additional biomarkers, keeping in mind that their fold 
changes were moderate (Figure 2 and Table S1).

We also identified metabolites that were detected in only one 
of the two urine collections (2010 or 2011, Table S2). Because these 
compounds were also not replicated across platforms, their utility as 
biomarkers will need to be validated in future analyses. 

When we analysed all data using principal components analysis, we 
observed no overt grouping of samples according to glucose treatment 
(Figure S4), although the major tendency for grouping was always in 
agreement with our tested hypothesis. These findings most likely reflect 
genetic and environmental differences between individuals. 

GC-MS detected the most prominent changes in response to 
hyperglycemia (Figure S4), with several metabolites not detected in 
baseline samples and readily detected after glucose infusion. However, 
nearly all of these were unknown compounds, some of which had mass 
characteristics of sugars (Table S3). When these compounds were 
removed from the analysis, GC-MS data did not identify reproducible 
biomarkers (Table S1). It will therefore be important to determine the 
molecular nature of these ‘off-on’ compounds in future studies. 

Biological interpretation

Levels of branched chain amino acids (BCAA’s: isoleucine, 
leucine and valine) and isoleucine-derived amines (alloisoleucine and 
N-isovaleroylglycine) were elevated following hyperglycemia. These 
findings are consistent with previous studies that described increased 
plasma BCAA levels in diabetes and pre-diabetes [41-44]. Similar 
changes were observed following long-term (7  days), but not short-
term (6 h), glucose treatment of endothelial cells [45]. The increases in 
BCAA’s we observed may therefore reflect direct effects of glucose that 
increase BCAA levels either in the kidneys or at extra-renal sites, with 
subsequent filtration of blood-borne BCAA’s into urine.
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median normalisation creatinine normalisation

2011 2010 2011 2010

metabolite nr. Bonferroni p log2FC error Bonferroni p log2FC error Bonferroni p log2FC error Bonferroni p log2FC error

2-hydroxyisobutyrate 28 5.08398E-05 0.60 0.02 0.001640099 0.62 0.11

2-methylglutarate 20 8.90977E-06 0.48 0.01

2-oxoisocaproate 24 0.026346487 0.65 0.03

3-methylglutarate 0.000217485 -0.35 0.05

Alanine 1 2.30443E-07 1.12 0.03 0.000189398 0.95 0.14 3.79254E-07 1.44 0.03 7.95791E-05 1.10 0.15

Alloisoleucine 4 2.87668E-05 0.66 0.02 0.048853951 0.23 0.06 1.01314E-05 0.97 0.03 0.029174508 0.38 0.09

Betaine 16 0.004415538 -0.24 0.01

Choline 10 0.041979148 0.37 0.02 0.000807888 0.68 0.03

Cis-aconitate 25 0.013382872 1.23 0.06

Creatinine 13 0.001866606 -0.31 0.01

Dimethylamine 11 0.004785616 -0.29 0.01

Ethanolamine* 12 0.000436376 -0.32 0.01 0.002733761 0.67 0.12 0.002348867 0.82 0.15

Glutamine 23 0.001535616 0.59 0.02

Glycylproline 26 0.023401534 0.59 0.03

Hippurate 8 8.7678E-06 -0.63 0.02 7.96473E-05 -0.69 0.09 0.030689263 -0.32 0.02 0.001228771 -0.57 0.10

Isoleucine 6 3.42392E-05 0.80 0.02 0.008592067 0.34 0.07 8.13268E-07 1.11 0.03 0.008068433 0.49 0.10

Lactate 9 0.010369908 0.54 0.03 3.76008E-05 0.85 0.03 0.012303742 0.72 0.15

Leucine 3 2.21915E-07 1.15 0.03 1.68387E-07 1.46 0.03

Malonate 0.02242326 0.46 0.11

Methionine 22 0.029274138 0.62 0.03

Methylamine 18 0.002108651 -0.31 0.01

Methylguanidine 19 6.26868E-05 -0.35 0.01

N.N-dimethylglycine 21 0.044691484 0.27 0.02

N-acetylglutamate 17 0.000797992 -0.29 0.01

N-isovaleroglycine 7 0.040530385 0.41 0.02 0.031514826 0.26 0.06 0.000924383 0.72 0.03 0.034029713 0.41 0.10

O-acetylcarnitine 0.020783386 0.29 0.06 0.012390392 0.42 0.09

Suberate 14 0.04311869 -0.68 0.04 0.00464694 -0.36 0.07

Succinate 27 0.012021138 0.49 0.11 0.007825682 0.57 0.03 0.003094892 0.64 0.12

Trimethylamine-N-oxide 15 0.00853877 -0.22 0.01

Tyrosine 5 0.001960367 0.59 0.02

Valine 2 3.81256E-08 1.19 0.02 1.00024E-06 0.79 0.08 2.91723E-08 1.50 0.03 5.19345E-06 0.94 0.11

Table 1: Metabolites detected by NMR that changed following glucose infusion, normalised to either the sample median or corresponding creatinine concentration. Only 
metabolites with a p-value below 0.05 after Bonferroni correction (Bonferroni p) were accepted and no restriction was applied with regard to fold change (log2FC = log2 
fold change, with baseline measurements as reference). Empty spaces represent detected, but non-(significantly) changing metabolites. *=inconsistent result for this 
metabolite.

Alanine levels were also elevated following glucose infusion, 
whereas taurine was decreased. Alanine, which can be produced by 
the transamination of glucose-derived pyruvate, is also elevated in 
glucose-treated endothelial cells [45] and hyperglycemic rat urine [12]. 
Alanine is therefore most probably an immediate downstream marker 
of hyperglycemia. Plasma taurine levels are increased in diabetes [46] 
and urinary taurine levels correlate with liver stress, bladder cancer 
and hypertension [47-51]. Because taurine supplementation prevents 
nephropathy in diabetic rats [52], reduced urinary taurine following 
hyperglycaemia might be relevant to the pathogenesis of diabetic 
nephropathy.

In contrast to previous reports [12,45], hyperglycemia reduced 
the levels of lactate, arginine and GABA in urine. These apparent 
discrepancies may reflect differences between tissues and biofluids, 
species differences or different timescales (acute versus long-term 
hyperglycemia). Finally, there were several metabolites, including 
hippurate, choline, suberate, N-isovaleroylglycine, N-acetylglutamate, 
5-hydroxytryptophan, O-acetylcarnitine, glucosamine and 
N-acetylglucosamine, tyramine, aconitate, galactonate, ketoglutarate, 
pyruvate, trehalose, fructose, sorbose, gluconate-1,4-lactone and 
scyllo-inositol, that were detected by only one of the platforms in 
only one of the 2010 or 2011 experiments. Further validation studies 
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Figure 1: A. Log2 fold changes of consistently differential metabolites as detected by NMR after median normalisation (black: 2010, dark grey: 2011 results) or creatinine 
normalisation (light grey: 2010, white: 2011 results) working at the 95% confidence level after Bonferroni correction of the p-values. B. PCA scores and loadings plot for 
median normalisation indicating significantly changing metabolites (2011 data, black = pre, grey = post intravenous glucose). Number identifiers refer to corresponding 
metabolites listed in Table 1.

will be required to determine the significance of these molecules to 
hyperglycemia and diabetes.

Conclusions
We have evaluated the possibilities and limits of targeted cross-

platform metabolomics analysis for urine biomarker discovery in 

human type 2 diabetes. Using targeted NMR and LC-MS data, we have 
identified a reproducible urine metabolomic signature of experimental 
hyperglycemia. Additional unknown compounds were found to be 
highly differential by GC-MS analysis. This study provides important 
baseline information on the metabolic changes that occur during acute 
hyperglycemia, which may in turn underlie the progression to diabetic 
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Figure 2: Selected biomarkers for acute hyperglycemia in type 2 diabetic urine (NMR and LC-MS). Potential additional markers N-acetylglutamate, choline, lactate and 
taurine are borderline-selected based on Bonferroni corrected p-value (see Table S1; black = 2010 NMR, light grey = 2010 LC-MS , dark grey = 2011 NMR, white = 
2011 LC-MS). 

nephropathy. Ongoing studies using archived urine will determine 
which of these markers, if any, outperform urinary albumin excretion 
for diagnosis of early-stage diabetic nephropathy.
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