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Abstract

Lately Revealed by Genome-wide association studies (GWAS) the association of TCF7L2 and Type 2 Diabetes
(T2D) which implicates underlying mechanism of this Wingless (WNT) pathway effector gene in pancreatic ß-cell
development. Also, further research linking TCF7L2 to T2D and impaired ß-cell mass accomplished by insulin
secretory malfunction, shed light on the regulatory function of this particular canonical WNT pathway member. Thus,
highlighting the fact that indeed Dishevelled (DEL) regulates as a scaffold protein in canonical and non-canonical
WNT regulatory pathway components. Fairly is understood in the process of canonical and non-canonical WNT
signaling, except that DEL acts through transmembrane domains of co-/receptors as Frizzled (FZ) and Low-density
lipoprotein receptor-related protein 5 (LRP5). Well described in the context of regulatory mechanism is the canonical
WNT signaling pathway, resulting in stabilization/activation of functional ß-catenin in line with accumulation in a
multi-protein complex at the specifically located membrane surface. Contrary the absence of WNT signaling
components determines the destabilization/degradation of ß-catenin. Thus, either supporting junctional complexes
of neighboring cells for the formation of the epithelial cell sheet or by degradation initiate cell differentiation/
segregation within the epithelial sheet. Also, the non-canonical WNT signaling pathway suggests to be part of the
intracellular trafficking vesicular network and thereby regulate cytoskeletal control and polarization, respective
migration of a specific subset of cells. Mainly, these processes are undertaken by non-canonical pathway divisions
as the Planar Cell Polarity (PCP) and calcium (Ca2+) pathway. We will focus in this review on common highlights of
WNT pathway components in pancreatic organogenesis in the secondary transition as the different lineages of the
pancreas segregate. Also, further dissecting the various WNT ligands and core components at this specific stage in
the mesenchyme and epithelium will enable putative mechanism regarding tissue remodeling and tubulogenesis in
line with lineage differentiation of the pancreatic gland.
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Introduction
The WNT signaling pathway core components play an essential role

in the formation of the pancreas. In the Mus musculus as mFRP1 and
mFRP2 with homologs in human termed as hFRP1b and hFRP2 are
capable of binding to WNT and reveal expression in the pancreatic
epithelium, as well in respect to hFRP2 a diverse subset of organs like
heart, muscle, and adipose tissue reflects protein expression. These
results are implicating a potential role of the WNT pathway in the
classical disease pattern of obesity and thereby of metabolic diseases as
diabetes [1]. Lately published by Leimeister, sFRP2 is expressed in the

embryonic organogenesis with up to 2 days in line with subsequent
expression in the mesenchyme and a diverse subset of epithelial-
derived organs. Also, sFRP1 and four expression correlates to sFRP2
but remains mutually exclusive suggesting a distinct role of the WNT
pathway core components in the pancreatic organogenesis as the
different lineages segregate [2]. However, sFRP4 as WNT antagonist
implicates that it may not control glucose homeostasis and β-cell mass
in mice [3]. Furthermore, model organism as Xenopus laevis XsFRP5
knockdown affects both, the canonical and non-canonical WNT
pathway. Pancreatic hypoplasia in line with an enlargement of the
stomach is observed for the XsFRP5 knockdown as well as the
knockdown of Wnt2b. Contrary results are obtained in sFRP deficient
mice as on the one hand metabolic phenotypes revealed a diverse
phenotype in Glucose-stimulated Insulin secretion (GSIS) as these
experimental approaches preliminary suggest a role of sFRP5 as a
negative regulator of glucose metabolism [4]. An essential role in the
specification of the ventral pancreas and the exocrine tissue of the
pancreas will be determined more precise in on-going experiments [5].
Interestingly, Heller et al. recapitulated WNT expression within the
adult pancreas in regard of the exocrine and endocrine tissue and
could detect all 10 FZ receptors in the pancreatic epithelium. Whereas
FZ1-7 specified by in situ hybridization localizes in the adult Islets of
Langerhans, contrary FZ 1, 4-5 are detected in the exocrine gland
compartment [1]. In the WNT pathway components, FRP is the
antagonist to the diverse subfamily of WNT proteins as Wnt5a, which
in loss of function studies by morpholinos revealed defects in
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endocrine progenitors emerging the ductal cord-like structure in the
secondary transition as the different lineages segregate. These results,
suggesting a dosage-dependent effect in endocrine lineage
commitment [6]. In addition, WNT 5a ligand FRP5 inhibition leads to
improved glucose metabolism and pancreatic insulin-cell migration
proven by loss-of-function studies in mice [7].

Essential for the maturation of the adult Islet of Langerhans suggests
being WNT 2b, 3, 4, 5a, 7b, 10a and 14 as these mRNA are classified in
purified Islets of Langerhans [1]. Lately published by Willmann et al.,
the pancreatic epithelium in the secondary transition contains WNT
family members as WNT 1, 3a, 5a, 6, 10a, 10b [8]. These
transcriptional expression data implicates that a specific subset of these
WNT mRNAs is to be expressed lineage specific, either endocrine or
exocrine. Also, Wnt7b appears to be essential for the outgrowth of both
lineages, as loss-and gain of function studies, in particular, described
either adverse effects of the entire outcome of the pancreas and failed
tubulogenesis. Interestingly, the pancreatic mesenchyme remains
competent to respond to Wnt7b ligands, leading to the result that cell
differentiation might not occur in the surrounding tissue of the
pancreatic region as early as the lineages segregate [9]. In addition,
polymorphism in Wnt5b is already shown to be associated with the
risk of T2D. Whereas Wnt9a impairs exocrine proliferation through a
regulatory function on the WNT effector gene Tcf7l2 [9]. It is to note
that canonical WNT -effector gene ß-catenin deficient mice results in a
loss of the exocrine pancreatic compartment, contrary this may have
no effect on the endocrine lineage [10,11]. Interestingly, the non-
canonical Ca2+ pathway is directly connected to the canonical pathway
via ß-catenin; both pathways are implicated in endocrine lineage
formation [10]. On a cellular level, vesicular trafficking and thereby
remodeling including lineage segregation suggests being specifically
direct the endocrine lineage transition of the inherited ductal cells.
This might hint that during remodeling, the specific localization of the
protein complex on the apical surface membrane shifts to an
intracellular receptive basal localization [12-14].

Taken this hypothesis of endocrine lineage segregation, the non-
canonical WNT pathway in regards of PCP and Ca2+ will play a
putative role along with the mechanism of epithelial-to-mesenchymal
transition (EMT). Thus, cell-cell interactions as apico-basal polarity are
important in the pancreatic organogenesis and in the secondary
transition as the different lineages segregate. The core PCP proteins
CELSR2 and 3 are expressed in the ductal cord in the secondary
transition; loss-of-function studies revealed a decrease in the impact of
differentiated endocrine cells in the precursor Islets of Langerhans
[15].This is pointing to the general role of the PCP pathway in the
process of lineage segregation. The factor β-catenin, together with α-
catenin promotes cell-cell contacts in the pancreatic gland but appears
to be downregulated in the endocrine precursor cells [8]. The
mechanism of EMT is clearly described in this context as cells loose
the established polarity complex in regard of apical-basal polarity and
enter a mesenchymal state, likely described with the establishment of
filipodia [16]. Thereby, in the nucleus, β-catenin activates transcription
of WNT/β-catenin target genes as c-myc which in turn regulates a
subset of WNT ligands [17]. Mainly, the organization of the actin
cytoskeleton is depending on localization and protein-interactions of
actin filament nucleating proteins and implicates transcriptionally
regulated by the subset of the different protein-interactors. The N-
WNT-activating small molecule potentiator (N-WASP), Actin-related
Protein 2/3 (ARP2/3) complex are specifically oriented at junctional
complexes, nevertheless, are redirected to cell leading edges in the
remodeling of the polarity complexes to a mesenchymal state. In the

protein family of WASP, WASP-1- enhances canonical WNT/β-catenin
and thereby implicates to sequester a transition into the mesenchymal
state [18]. Thus, N-WASP mediates an interaction between the
ARPp2/3 complex and G-protein Cell Division Cycle 42 (CDC42) [19].
Kesavan et al. published the landmark study on CDC42/N-WASP,
which lead to the result that endocrine lineage segregation is highly
enhanced under the perspective of loss of the apical-basal polarity
complex, contrary constantly active CDC42 inhibits cell delamination
and differentiation [20,21]. These preliminary results pointing to a fine
tuned spatio-temporal mechanism in the regulation of cellular
trafficking and polarity establishment within lineage commitment of
the inherited ductal cells to endocrine progenitors. Further insights
into the player of this specific process and exocytotic function of
proteins and transport within the Ca2+ pathway will finally lead to the
in vitro derived β-cell and highlight current findings (Figure 1).

Figure 1: Pancreatic gland including the different WNT core
pathway members a described above in the text, The FZ1, 4, 5 are
outlined in the literature in the exocrine pancreas whereas FZ1.2, 3,
4, 5, 6, 7 and CELSR1, 2 in the adult Islets of Langerhans. FRP1 and
2 reflect by the literature exocrine expression, and FRP5 is
described in the context of the Islets of Langerhans. WNT ligands
expressed in the adult Islets of Langerhans are WNT 2b, 3a, 5a, 6,
10a, 10b which reflects endocrine mRNA expression in the
pancreatic organogenesis during secondary transition.
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