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Introduction
Diabetes and osteoporosis are both frequent endocrine disorders. 

However, they seem to be interconnected in several ways as 
demonstrated by recent studies, who have shown an increased risk 
of fractures [1], a decreased bone mineral density (BMD) in patients 
with type 1 diabetes (T1D) [2], an increased BMD in patients with type 
2 diabetes (T2D) [2], evidence of an impaired bone biomechanical 
competence [3], and evidence of disrupted bone turnover with a low 
bone turnover [4,5].

Material and Methods
The following presents a narrative review of the effects of diabetes 

on the skeleton.

Review
Bone turnover: Bone is constantly being formed through the 

action of osteoblasts and degraded through the action of osteoclasts [6]. 
Usually formation and resorption (degradation) are tightly coupled. 
Bone turnover may be assessed through biopsies of bone [7], but may 
also be assessed more practically through sampling of blood and urine 
[8]. Patients with diabetes in general have a reduced bone turnover 
expressed by decreased levels of biochemical markers of bone turnover 
[4,5].

Formative biochemical markers of bone turnover: Formative 
markers of bone turnover include osteocalcin, which is a peptide 
embedded in bone matrix during formation, and alkaline phosphatase, 
which is an enzyme secreted by the osteoblasts as part of the formation 
of mineral matrix. PINP is the N-terminal peptide of procollagen type 
1, which is embedded in bone matrix and thus is a formative marker.

Many studies have shown decreases in osteocalcin level of 7% to 
22% [4,9-12]. However, osteocalcin may also be a marker of beta-cell 

function and not just a marker of bone turnover [13]. For alkaline 
phosphatase, no study has reported a significant decrease in diabetics 
compared to controls. One study reported a 7% nonsignificant 
decrease in both total alkaline phosphatase and bone-specific alkaline 
phosphatise [9], while two other studies [11,12] reported small 
nonsignificant decreases in total alkaline phosphatase of 2% and 4%, 
respectively. One study actually reported increased levels of alkaline 
phosphatase in young adult T1D patients indicative of impaired 
osteoblast differentiation and maturation, which down-regulated later 
stages of matrix mineralization [14].

It is remarkable that total alkaline phosphatase was not different 
since 25-hydroxyvitamin D tended to be significantly lower in patients 
with diabetes than in controls [12]. In general low vitamin D may 
lead to osteomalacia with an increased level of alkaline phosphatase 
reflecting increased deposition of unmineralised bone. Vitamin D may 
thus counter high alkaline phosphatase levels [15]. However, it may be 
that the diabetes countered the effect of the lower vitamin D to increase 
alkaline phosphatase by lowering bone turnover and thus alkaline 
phosphatase per se.

Biochemical markers of bone resorption: Bone resorption may 
among others be assessed through measurements of N-terminal 

Corresponding author: Dr. Peter Vestergaard MD PhD MedSc, The Osteoporosis 
Clinic, Department of Endocrinology and Internal Medicine (MEA), Aarhus 
University Hospital THG, Tage Hansens Gade 2, DK-8000 Aarhus C, Denmark, 
Tel: + 45 89 49 76 52; Fax: + 45 89 49 76 84; E-mail: p-vest@post4.tele.dk
Received July 27, 2011; Accepted August 29, 2011; Published September 16, 
2011

Citation: Vestergaard P (2011) Diabetes and Bone. J Diabetes Metab S:1. 
doi:10.4172/2155-6156.S1-001

Copyright: © 2011 Vestergaard P. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Diabetes and Bone
Peter Vestergaard

Department of Endocrinology and Internal Medicine, Aarhus University Hospital THG, Aarhus, Denmark

Abstract
Diabetes – both type 1 (T1D) and type 2 (T2D) has profound effects on the skeleton. Bone turnover is reduced, 

i.e. bone biopsies show a reduced bone formation with reduced mineralisation, and a reduced number of bone cells.
Biochemical markers of bone turnover show a reduction in both formation and resoprtion. Bone mineral density (BMD)
is reduced in T1D, whereas an increased BMD is seen in T2D. Despite this, an increased risk of hip fractures is seen
in both T1D and T2D, the increase in risk of fractures being more pronounced in T1D than in T2D. This discrepancy
between BMD and fracture risk along with evidence from animal studies of a reduced bone biomechanical competence
in diabetes suggest that the bone tissue is weakened in patients with diabetes. This weakening may be related to
glycation of collagen and formation of advanced glycation end-products (AGE), which together with their receptor
(RAGE) lead to a decreased activity of the bone cells and thus a reduced turnover and a reduced de-novo formation
of bone. The reduced competence despite normal BMD makes the diagnosis of osteoporosis difficult as standard
bone scans (DXA) may not truly reflect bone strength. Regarding anti-diabetic treatment, most such drugs improve
glucose control and thus reduce the detrimental effects of diabetes on the skeleton. However, the thiazolidinediones
(rosiglitazone and pioglitazone) are associated with a decreased BMD and an increased fracture risk through an
effect on the stem cells in the bone marrow leading to formation of adipocytes rather than osteoblasts. Anti-resoprtive
treatment for osteoporosis seem equally effective in diabetes patients as in non-diabetics despite the reduced bone
turnover in diabetes.

In conclusion diabetes has many effects on bone and bone-turnover, and more research is needed.
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recent study on alveolar bone in streptozotocin-induced diabetes in 
Wistar rats showed that bone quality was significantly deteriorated 
as evaluated by micro CT [26]. A study on osteoclast function using 
a mice model of streptozotocin-induced diabetes showed impaired 
osteoclast function [28]. This study concluded that the delayed bone 
formation in the diabetic mice may have resulted from an impairment 
of cartilage resorption. The study reported that 80% of the osteoclasts 
in the callus of the experimental fractures were derived from bone 
marrow and that the sizes of the osteoclasts as well as the resorption 
pits formed were significantly smaller in the diabetic mice than in non-
diabetic mice [28]. Transcript analyses using RNA isolated by laser 
capture microdissection showed that the expression of DC-STAMP, a 
putative pivotal gene for osteoclast fusion, was decreased in osteoclasts 
from diabetic mice [28]. Since the sustainability of osteoclast function 
depends on the controlled renewal of multinuclear osteoclasts, 
impaired osteoclast function in diabetes may contribute to decreased 
cartilage resorption and delayed endochondral ossification [28].

Osteocalcin, diabetes, and bone

Animal experimental studies have revealed a link between the bone 
turnover marker osteocalcin and type 2 diabetes [13]. Mice lacking 
osteocalcin have decreased insulin levels and increased blood glucose 
levels [13]. This may however not directly be translated into clinical 
practice, as patients with diabetes have a number of other metabolic 
disturbances as previously mentioned, and these bone metabolic 
distrubances may per se affect osteocalcin levels. The lower insulin 
levels in the knock-out mice mimic a state which is intermediate to 
T1D (absolute insulinopenia) and T2D (insuficient insulin secretion 
for the requirements) [13]. It may thus both mimic early stages of T1D 
where insulin secretion is declining and late stages of T2D where the 
initial increase in insulin secretion is followed by a decrease resulting 
from declining beta-cell function. Although osteocalcin may affect 
insulin secretion [29] it is not entirely clear if the opposite is the case. 
In streptozotocin induced diabetes in rats, serum osteocalcin decreases, 
and histomorphometry shows decreased bone remodeling [24].

In patients with diabetes a cross sectional study has shown 
decreased levels of osteocalcin in patients with T1D and increased levels 
in patients with T2D irrespective of whether these were treated with 
oral hypoglycemic agents or insulin compared to control subjects [30]. 
However, this could not be confirmed in another study, who reported 
normal levels of osteocalcin in patients with T1D and decreased levels 
in T2D compared with normal controls [31]. A further study in male 
patients with T2D also showed reduced osteocalcin levels, whereas no 
differences between patients and controls were evident for sex steroid 
status and CTX levels [4]. The findings of the latter two studies [4,31] 
are more in line with what should be expected from histomorphometric 
findings of a decreased bone formation [21]. Upon correction of poorly 
regulated blood glucose levels, serum osteocalcin has been shown to 
increase [32].

In patients with T1D serum osteocalcin levels have been shown 
to be lower in patients with complications (retinopathy and/or 
proteurinuria) than in patients with diabetes without complications 
[31,33]. In newborns to mothers with diabetes, umbilical cord 
osteocalcin levels have been shown to be decreased [34].

Due to the usually close coupling between bone formation and 
resorption, other markers of bone formation such as P1NP and 
resoprtion such as CTX are also decreased [16].

cross links of collagen (NTx) and C-terminal markers of cross-links 
of collagen (CTX). These cross-links along with urine pyridinoline 
represents degraded collagen.

Urine NTx has been reported to be markedly and statistically 
significantly decreased by 66% in diabetes [11]. A smaller, but 
still significant, decrease of 14% has been observed for urine 
deoxypyridinoline [12]. Regarding CTX, a nonsignificant decrease of 
around 26% has been reported in one study [4], while another study 
reported a significant 31% decrease in CTX in patients with diabetes 
[12].

Effects of the changes in bone turnover: It thus seems that bone 
formation may be decreased ranging from small decreases of 2-7% for 
alkaline phosphatase to 7-22% for osteocalcin. The resorptive markers 
show an even larger reduction of 14-66%. The larger reduction for 
resorption as expressed by biochemical markers of bone turnover is in 
line with the results from a study in healthy college students where an 
oral glucose load of 75 g was associated with a 5-10% reduction in the 
formative marker P1NP, whereas the resorptive marker CTX decreased 
by 40-50% [16]. In theory this imbalance should lead to accumulation of 
bone and thus an increase in bone mineral density. This accumulation 
of BMD is actually seen in patients with type 2 diabetes (T2D) [2], 
whereas patients with type 1 diabetes (T1D) have a decreased BMD 
[2]. However, in contrast to non-diabetics, where an increase in BMD 
is associated with a decrease in the risk of fractures [17], a reduction is 
not seen in patients with diabetes [1,2].

Causes of the decrease in biochemical markers of bone turnover: 
The decrease in bone turnover may be related to the hyperglycemia 
since acute ingestion of glucose in healthy non-diabetic subjects 
leads to a decrease in CTX of around 40-50% and in P1NP of 5% 
after two hours [16]. However, it may be questioned if such a rapid 
decrease really reflects changes in bone turnover, but rather may 
reflect extraskeletal alterations in e.g. degradation and excretion of the 
markers in question. Food intake including ingestion of glucose affects 
a number of gastrointestinal hormones among other the incretins such 
as glucagon-like-peptide 1 and 2 (GLP 1 and 2) and glucose-dependent 
insulinotropic peptide (GIP – also called gastric inhibitory peptide), 
which reduced bone resorption [18]. GLP 2 seems to dissociate bone 
resorption and formation [19], which is usually tightly coupled. 
Nocturnal bone resorption is e.g. suppressed by GLP 2 [18]. Treatment 
with GLP 2 has actually been shown to increase BMD [20].

Effects on bone turnover assessed by bone biopsies and animal 
experimental data: Few data are available on histomorphometry in 
humans with diabetes [5,21]. In general the number of osteoblasts 
and osteoclasts are reduced in both human [5,21] and animal studies 
[22-25]. The animal models have included spontaneously diabetic rats 
[22,23], and streptozotocin-induced diabetic rats [24,25].

In streptozotocin-induced diabetes in rats, a study of mandibular 
bone, showed that the number of osteoclasts were reduced [26] in 
accordance with the observations of reduced bone resorption from 
studies of biochemical markers [11]. In Spontaneously diabetic BB/
OK (F60/61) rats, mineralization lag time may be prolonged from 
around 1 day to around 15 days and mineralizing surfaces may 
decrease from 32% to 9% in poorly controlled diabetic rats [22]. 
Upon administration of insulin, these changes are reversed [22]. This 
decrease in  mineralization and thus bone formation is far greater 
than what should be expected from the bone formative biochemical 
markers [4,9-12]. The quality of the newly formed bone may also 
be questionable [27]. In addition to the changes described above, a 



Citation: Vestergaard P (2011) Diabetes and Bone. J Diabetes Metab S:1. doi:10.4172/2155-6156.S1-001

Page 3 of 7

Special Issue 1 • 2011
J Diabetes Metab
ISSN:2155-6156 JDM, an open access journal

Advanced glycation end products (AGE) and their receptor 
(RAGE)

Besides the direct effects on bone turnover and bone density, bone 
biomechanical competence may also be altered in diabetes through 
glycation of other proteins besides haemoglobin (examplified by 
HbA1C). The glycation may alter the strength of the bone matrix thus 
leading to an increased brittleness of bone that is not directly reflected 
in BMD.

The prime glycation end product is pentosidine [35], but a number 
of other advanced glycation end products (AGE) and their receptor 
(RAGE) may be involved in the development of arteriosclerosis 
and diabetic microangiopathy [36]. The AGE-RAGE interaction 
activates nuclear factor kB (NF-kB), which interacts with cytokines, 
growth factors and adhesion molecules, all of which may contribute 
to osteoporosis. Glycation may reduce cross-linking in collagen and 
thus reduce mineralisation and bone biomechanical competence 
[35]. It also interacts with osteoblast functioning thus reducing bone 
formation [37]. This may also affect processes vital to bone turnover 
such as glucosylation of skeletal collagen leading to decreased strength 
of the collagen [38] and thus of the bone and abnormal resorption 
and formation of bone [35,37,39-42]. AGE may decrease osteoclast 
activity [43], and decreased osteoclast activity would lead to less bone 
resorption. Thus, the net effect is not fully understood. Osteoblastic 
cells from rats, who were cultured on AGE-modified type 1 collagen, 
showed a reduced secretion of alkaline phosphatase (ALP) and 
osteocalcin. Also formation of bone nodules was reduced [44,45]. 

Furthermore, AGE may affect osteoblastic function by stimulating 
osteoblast apoptosis via the MAP kinase and cytosolic apoptotic 
pathways as demonstrated in a study using cell culture and mice [46]. 
This was further supported and expanded by a study using cell cultures 
that reported that AGE significantly decreased osteoblast proliferation, 
alkaline phosphatase activity and type 1 collagen production, 
while increasing osteoblastic apoptosis and reactive oxygen species 
production [47]. These effects were completely reverted by low doses of 
bisphosphonates [47] lending support to a positive effect of these drugs 
despite a low bone turnover I diabetes. These studies are thus in line 
with the observations of a decrease in formative bone markers. Bone 
collagen from rats with streptozotocin-induced diabetes had a higher 
accumulation of AGE, which was associated with a reduced BMD [44]. 
This may thus explain the reduced BMD in T1D but not the increased 
BMD in T2D.

Patients with T1D are insulinopenic and patients with T2D may 
have increased levels of insulin. In general serum insulin levels are 
positively correlated with BMD [48], and this may explain why BMD 
in general is higher in T1D than in T2D [2]. The increased insulin levels 
in T2D may also be associated with increased levels of insuline-like-
growth factor (IGF), which may also be bone anabolic [5].

Negative calcium balance

Early studies pointed at an increased calcium excretion in the urine 
from calciuric effects of the high blood sugar [49]. This leads to a loss of 
calcium from the skeleton with a decrease in the bone mineral density 
(BMD) [49] and an increased risk of fractures [2]. A direct correlation 
has been shown between the blood sugar levels and the excretion of 
calcium in the urine [49,50], and the loss of calcium from the forearm 
may amount to as much as 10% within the first 5 years after the 
diagnosis of diabetes [49].

Besides the effects of high blood glucose on calcium excretion in the 

urine, the blood pressure also has effects on urine calcium excretion. The 
higher the blood pressure, the greater the loss of calcium is in the urine 
[51]. This may represent a hitherto somewhat overlooked risk factor for 
osteoporosis as hypertension is also associated with a decreased BMD, 
and thus an increased risk of fractures [51]. In diabetes, hypertension 
may thus contribute further to the negative calcium balance [52].

Bone mineral density

BMD is reduced by approximately 0.2 Z-scores in the hip and spine 
in T1D, while it is increased by approximately 0.3-0.4 Z-scores in the 
hip and spine in T2D [2]. In theory this should translate into an increase 
in hip fractures of RR=1.4 in T1D and a decrease RR=0.8 of in T2D [2]. 
This is in stark contrast to the observed RR for hip fractures of 6.2 in 
T1D and 1.7 T2D [2] pointing at a weakening of bone biomechanical 
competence in diabetes [3]. In diabetes [2] as well as in non-diabetics 
[53] a positive relationship exists between body mass index (BMI) and 
BMD, to some extent explaining the differences between the often 
normal to underweight T1D patients and the obese T2D patients [2]. 
No differences in BMD seemed present between T1D and T2D after 
adjustment for body weight [2]. It thus seems that the effect of the 
underlying diabetic condition may be the same and probably linked 
to glucose levels.

Fracture risk

In T1D an increased risk of hip fractures was seen [2]. However, for 
other fracture types the number of studies was too scarce for a meta-
analysis [2] although most studies revealed a trend towards an increase 
[2]. In T2D an increased risk of hip, foot, and perhaps overall risk of 
fractures was seen [1,2], while no increase in spine, forearm, or ankle 
fractures was seen [1,2]. It thus seems that the hip is the fracture site 
with the most consistent increase in fracture risk in both T1D and T2D. 
However, little is known for other skeletal sites.

From one study it seems that the increase in risk of fractures in 
T2D is seen early after diagnosis followed by a decline to the same 
levels as in the background population [54]. The reasons for this are 
not known but may signal an effect of the increased calcium loss in the 
urine with high blood glucose levels as it is in line with early studies 
suggesting a marked negative calcium balance that is corrected once 
better metabolic control is obtained, which also reflected in an increase 
in forearm bone mineral content [49,50]. However, an effect on bone 
biomechanical competence cannot be excluded with better control of 
blood glucose levels.

The increase in risk of fractures did not to any mjor degree seem 
linked to complications to the diabetes, i.e. was not the result of falls from 
impaired eye-sight [54], decreased propioception from neuropathy 
[54], or falls related to accidents stemming from hypoglycemia [55]. It 
may thus be the effects of the underlying alterations in bone competence 
that were responsible for the increase in risk of fractures.

The overweight and obesity seen in patients with T2D may 
thus merely protect against the loss of bone [2] and to some degree 
ameliorate the increase in risk of fractures as also seen in non-diabetics 
[53].

Effects of treatment

Effects of drugs against diabetes: In animal models, improvement 
of diabetes control has resulted in reversal of the histomorphometric 
changes induced by diabetes [22]. Observational studies have 
pointed at a reversal of e.g. the loss of calcium in the urine and an 
improvement of BMD when blood glucose levels are better controlled 
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[49]. Observational studies have also suggested that the excess risk of 
fractures may decline with time since diagnosis of diabetes, and thus 
improved metabolic control [54]. However, one observational study 
failed to show an association between HbA1C and BMD [2]. This 
should be interpreted with caution: HbA1C reflects blood glucose 
levels within the last 6-8 weeks, and bone turnover is a process that 
takes much longer than 6-8 weeks. Also BMD may not adequately 
reflect bone biomechanical competence in patients with diabetes.

In general drugs against diabetes improve metabolic control, and 
should thus be expected to be able to prevent osteoporosis. Insulin, the 
sulphonylureas, and metformin seem associated with a decrease in the 
risk of fractures or a trend towards a decrease [55] probably related to 
better metabolic control of diabetes. Metformin has also been shown to 
have positive effects on bone turnover by improving metabolic control 
[56]. Recently published results from rodent models suggest a positive 
effect of exenatide on bone, but there are no clinical studies [57].

Thiazolidinediones (TZD): TZDs act by improving insulin 

sensitivity through activation of the nuclear receptor, peroxisome 
proliferator-activated receptor γ (PPAR-γ) [58]. The TZDs affect the 
differentiation of mesenchymal stem cells [59]. Normally the common 
mesenchymal progenitor stem cell can differentiate into among 
others osteoblasts and bone marrow adipocytes [60]. TZDs increase 
adipogenesis at the expense of osteoblasts, leading to bone loss [61,62]. 
Other effects by PPARγ agonists include decreased circulating IGF-I 
concentrations [63], and a decrease in oestrogens levels, as treatment 
has been shown to affect the synthesis of sex steroids by inhibiting 
the aromatase pathway which is the main source for oestrogen in 
postmenopausal women [64].

Mice treated with troglitazone show an increased marrow 
concentration of adipocytes [59], whereas the ratio of osteoblasts to 
osteoclasts decreases causing bone loss in mice treated with rosiglitazone 
[62]. Similarly, treatment with rosiglitazone has been shown to 
decrease BMD in mice [65-67]. Concomitantly with decreased BMD, 
treatment may change bone morphology, as a decreased trabecular 
number and an increase in trabecular spacing has been reported [67]. 
In human cell models [68] the effect of rosiglitazone on adipogeneis 
has also been confirmed. Besides the effects on osteoblasts, TZDs may 
also have an effect on the osteoclasts [69] with an increased osteoclast 
differentiation due to the PPAR agonistic effect of rosiglitazone. The 
clinical effects of this are not completely understood.

Two randomised controlled trial (RCT) have shown decreased 
levels of biochemical markers of bone formation in humans treated 
with rosiglitazone, indicating a decreased activity of osteoblastic cells 
[9]. In a group of 82 postmenopausal women, 12 weeks of treatment 
with rosiglitazone 4 mg/d caused a 21% decrease in plasma levels of 
bone-specific alkaline phosphatase, compared with placebo (p<0.05) 
[9]. Similarly, in a RCT including 50 postmenopausal women without 
diabetes or osteoporosis, 14 weeks of treatment with rosiglitazone 8 
mg/d caused an approximately 10% (p< 0.05) decrease in biochemical 
markers of bone formation (osteocalcin and procollagen type I 
N-terminal propeptide), while markers of bone resorption did not 
change in response to treatment [70]. Moreover, compared with 
placebo, rosiglitazone caused a 1.7% (95% CI 0.6 to2.7, p <0.01) 
decrease in BMD at the total hip. BMD at the lumbar spine decreased 
as well but did not differ significantly between groups (1.0%, 95%CI 
-0.2 to 2.3, p=0.13) at the end of treatment [70]. The findings from the 
RCTs are in line with the results from a previous cohort study showing 
that treatment with glitazones is associated with approximately 50% 
increased annualized rate of bone loss in elderly diabetic women, 

whereas no effects were found in men [71]. However, in elderly men 
with T2DM significantly higher annualized bone loss rates have been 
found in those treated with glitazones (–1.22 ± 1.3%, n=32) compared 
with those who were not (–0.20 ± 1.25%, n=128) [72]. The fact that 
bone turnover is often increased in elderly women compared with 
elderly men may augment the consequences of reduced osteoblastic 
activity in response to treatment with TZDs, which may explain that 
the effects of TZDs on BMD is more consistently present in women 
than in men.

Most important, treatment with TZDs seems to increase fracture 
risk. According to the results from the ADOPT study, risk of fracture is 
approximately doubled in users of rosiglitazone compared with risk of 
fracture in users of either metformin or glyburide [73]. In the ADOPT 

trial, 4,360 (42% women) participants with a mean age of 57 years were 
followed for a median of 4 years. The study was a RCT designed to 
evaluate rosiglitazone, metformin, and glyburide as initial treatment 
for recently diagnosed T2DM. The primary outcome was time to 
monotherapy failure as determined by fasting glucose. Review of 
adverse event reports revealed that the proportion of women reporting 

a fracture was 9.3% for rosiglitazone, 5.1% for metformin, and 3.5% 
for glyburide, corresponding to an approximate relative risk (RR) 
of 2.3 (95% CI 1.6–3.4) for rosiglitazone versus the other treatments 
combined. However, although fractures were similarly distributed 
across treatment groups in male participants, the increase in risk of 
fracture did not reach statistical significance (RR 1.2; 95% CI, 0.8–1.8 
for rosiglitazone versus the other treatments combined). Similar to 
treatment with rosiglitazone, treatment with pioglitazone has been 
reported to increase risk of fracture [74], and the increase in risk of 
fractures was similar for rosiglitazone and pioglitazone [74]. 

In terms of fracture risk it is an important finding that TZDs as the 
only class of drugs against diabetes seems associated with an increased 
risk of fractures, whereas all other classes of drugs seeming either are 
not associated with risk of fractures or are associated with a small 
decrease in risk of fractures probably linked to the glucose-lowering 
effect and thus improvement of the otherwise negative effects on bone 
of hyperglycaemia [55].

Regarding bone density measurements in patients being started or 
currently managed with TZD, no consensus exists. Also no consensus 
exists as to the best way to manage patients with decreased BMD 
receiving TZDs. At present care should be taken not to prescribe TZDs 
to patients at high risk of fractures, i.e. patients with osteoporosis 
(T-score <-2.5 at any site) and significant risk factors for fractures. 
The potential benefit of TZDs in terms of improved diabetes control 
(and thus also indirectly potentially better bone turnover) should be 
carefully weighed against the risk of fractures, as the risk of fractures 
seems increased even in the presence of improved diabetes control [73].

In patients which have a low a priori risk of fractures (men and 
women below the age of approximately 50 years), BMD measurements 
by DXA may not be particularly indicated if no other risk factors are 
present, whereas in postmenopausal women and men above the age of 
65 years, the prevalence of osteoporosis is so high that DXA scannings 
may be indicated [75]. Depending on the level of bone density, DXA 
scans may be repeated after 2-3 years [75]. However, this may represent 
a rather large cost in comparison with the gains obtained. TZD therapy 
thus needs to be carefully considered in patients at high risk of fractures 
and osteoporosis.

Serum and urine markers of bone turnover are very variable 
and do thus not have a place in the considerations regarding risk of 
osteoporosis [76].
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Weight loss: A special feature is that weight loss is encouraged in 
obese patients with T2D. A randomised controlled trial in overweight 
patients with T2D showed that weight loss was associated with a 
decrease in BMD (0.9% decrease in total body BMD over 12 month 
with non-significant decreases in spine and femur BMD) [77], and 
that exercise training seemed to prevent the loss of BMD [77]. In 
patients treated by gastric by-pass, which is used for weight reduction 
in morbidly obese patients with T2D, a decrease is seen in BMD [78].

Conventional treatment of osteoporosis with anti-resoprtive 
drugs

Antiresorptive drugs: These include the bisphosphonates and the 
selective estrogen receptor modulators (SERMs) [79]. In theory these 
may present a special problem as bone turnover is low in diabetes. Two 
studies have shown improvements in BMD with the bisphosphonate 
alendronate over placebo [80,81]. The paper by Keegan et al. was a 
post hoc analysis of a randomized trial [81]. The paper by Dagdelen 
et al. was an observational study without a placebo group [80]. In 
this study, the authors found that diabetic patients on alendronate 
lost bone compared to non-diabetic patients on alendronate. The 
study is difficult to interpret since we do not know how much bone 
the diabetic patients would have lost on placebo [80]. However, no 
fracture data are available. It may thus be concluded that the decrease 
in bone turnover does not lead to decreases in BMD, however, it is not 
possible to deduct if the quality of the newly formed bone is adequate. 
An observational study suggested that anti-resoprtive drugs including 
the bisphosphonates were equally effective in patients with diabetes as 
in patients without [82]. However, it may be that the diabetes in these 
subjects was well-controlled. What happens in patients with poorly 
controlled diabetes is not known. Further studies are thus needed. 

A post hoc analysis of a raloxifene trial identified reduced vertebral 
fracture risk compared to placebo in participants with diabetes [83]. 
However, this study only included patients with T2D and the number 
of patients was very limited [83]. Strontium ranelate is also effective 
against osteoporosis [84], however for this compound no specific 
studies on the effects in patients with diabetes are available.

Anabolic drugs: This class of drugs include parathyroid hormone 
and analogues [85,86]. In theory these drugs may pose an advantage 
due to the decreased bone turnover in patients with diabetes, but no 
clinical studies are available. However, one study have indicated that 
teriparatide may perhaps have a limited actue adverse effect on insulin 
resistance [87]. Further studies are thus needed.

Conclusion
In conclusion bone mineral density is decreased and hip fracture 

risk increased in patients with T1D, while in patients with T2D hip 
fracture risk is increased although to a lesser degree than in T1D. 
However, in T2D patients bone mineral density is increased. This 
points at a decreased bone quality in patients with diabetes. Patients 
with diabetes should be treated against osteoporosis when indicated. It 
is important to be aware that patients with diabetes do seem to tolerate 
anti-resoprtive drugs including the bisphosphonates despite having 
biochemical signs of reduced bone turnover.
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