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Introduction
Worldwide, the number of people suffering from diabetes mellitus 

increased from 153 million to approximately 347 million between 
1980 and 2008 [1]. Estimates predict that the global prevalence of 
diabetes will reach 366-440 million by 2030 [2]. Diabetic patients 
are more susceptible to infection by certain microorganisms, such as 
Staphylococcus aureus, Klebsiella pneumoniae, and Mycobacterium 
tuberculosis (Mtb) [3], and these infections often require hospitalization. 
One recent study calculated the cause-specific risk of death in 820,900 
people according to diabetes status or fasting glucose level [4]. Those 
authors found that the hazard ratios of mortality from infectious 
diseases (excluding pneumonia) ranked second only to renal disease 
as a cause of noncancerous and nonvascular death in diabetes patients. 

Previous clinical investigations and experimental studies using 
diabetic rodent models have shown that the dysfunctional immune 
system of diabetes patients leads to increased susceptibility to 
pathogens and infections of greater severity. Those research identified 
various impairments to innate immunity in DM patients, including 
reduced production of inflammatory cytokines and loss of function 
(chemotaxis, phagocytosis, superoxide production, or killing activity) 
in neutrophils, macrophages or natural killer cells [5-7]. Defects 
in adaptive immunity have also been reported in diabetic patients, 
including: abnormal delayed-type hypersensitivity, attenuation of 
lymphocyte proliferation, and decreased serum antibody levels [8-11]. 
However, diabetes is a metabolic disease that is often accompanied by 
abnormalities, which impair the resistance to pathogenic infections, 
such as chronic inflammation and associated alterations to the lipid 
profile, neuropathy, and chronic vascular or renal diseases [12]. 
Therefore, the mechanism underlying the role played by the immune 
system in high susceptibility to pathogen infection among diabetes 
patients are still far from established.

For decades, animal models have been used to investigate the 
pathophysiology of Type 1 and Type 2 diabetes (T1D and T2D) for 
the development of therapeutic treatment strategies. More recently, 
diabetic animal models have been applied to investigate how immune 
dysfunction contributes to infection among diabetes patients. Most 

previous studies have focused on Tuberculosis (TB) and sepsis; however, 
reports of diabetes-related infections such as pneumonia, Urinary 
Tract Infections (UTI), Surgical Site Infections (SSI), or infections on 
the feet have provided intriguing data, which have indicated various 
mechanisms that could explain the defective immune responses. In 
this review, we classify diabetic animal models according to various 
infectious diseases and describe the microorganisms and diabetic 
models used in diabetes studies. We also discuss various mechanisms 
associated with immune dysfunction, in order to identify cellular and/
or molecular properties that could be promising therapeutic targets for 
future research and treatment of diabetes.

Diabetic Animal Models of Various Infectious Diseases 
Diabetic animal models of respiratory infections

Tuberculosis pneumonia: Mtb, a bacterial species in the 
Mycobacteriaceae family, is the causative agent in most cases of TB. 
Approximately 10% of Mtb-infected patients develop an active disease 
as a result of inherited and acquired risk factors, including human 
immunodeficiency virus, malnutrition, alcohol use, smoking, and indoor 
air pollution. Recently, diabetes has been deemed a risk for the growing 
number of TB worldwide, and the World Health Organization estimates 
that the current number of diabetes patients (347 million) will double 
by 2030 [13]. Therefore, the combination of TB and diabetes represents 
a worldwide health threat, and identifying potential mechanisms by 
which DM increases TB incidence is crucial to deal with this. 
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Abstract
Diabetes Mellitus (DM) is a metabolic disease that can lead to a variety of complications, such as neuropathy, 

retinopathy, nephropathy, and cardiovascular disease. Furthermore, pathogen infection accompanied by 
considerable morbidity and mortality is common among diabetic patients. Increased susceptibility to pathogen 
infection results from impaired immune responses, such as lower cytokine production and reduced function or 
migration of immune cells. However, existing clinical data remains controversial because multiple diabetes-related 
factors such as obesity, hyperglycemia, hyperinsulinemia, and other comorbidities also increase the risk of infection. 
In recent decades, several animal models have been used to investigate the role played by immune dysfunction in 
increasing susceptibility to pathogens and related diseases in diabetes. This review focuses on studies that used 
diabetic animal models to study infectious diseases and summarizes potential mechanisms underlying dysfunction 
of the immune system in diabetes patients.
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In the 1980s, Saiki et al. [14] demonstrated that streptozotocin 
(STZ)-induced diabetic ICR mice suffered an increase in mortality 
when injected intravenously with live Mtb (Schacht strain) (90% 
mortality among diabetic mice compared with 10% among normal 
mice). Their study revealed that T-cell function and phagocytic activity 
of macrophages were depressed in STZ-induced diabetic mice; however, 
B-cell function and intracellular killing of macrophages remained 
normal. Neither ketoacidosis nor ketone bodies were detected in 
diabetic mice, suggesting that the defective immune function was 
associated with hyperglycemia.

In 2004, Sugawara et al. [15] infected GK/Jcl rats, a T2D animal 
model, with Mtb (Kurono strain) via the airborne route to mimic the 
natural pathway of TB infection. They found that GK/Jcl diabetic 
rats had more colony-forming unit cells in lung and spleen tissues 
than did non-diabetic Wistar rats [15]. Furthermore, the production 
of TNF-α, IL-12, and Nitric Oxide (NO) was lower in the alveolar 
macrophages obtained from diabetic rats, compared with control 
rats [15]. Those findings suggest that low expression of inflammatory 
cytokines and NO coupled with incomplete macrophage activation 
allows granulomas to grow larger than normal. Similar results were 
observed in STZ-induced diabetic ICR mice intravenously infected 
with Mtb (H37Rv strain). The authors of that study suggested that 
reduced expression of IL-12, a critical inducer of IFN-γ, was the 
primary reason for the inhibition of iNOS expression, and thus 
also explained the increased susceptibility of diabetic mice to Mtb 
infection. In another study, insulin therapy was shown to lower 
the blood glucose level of diabetic mice and appeared to improve 
bacterial clearance, implying that hyperglycemia (but not STZ itself) 
was involved in impairing host immune responses against Mtb [16]. 
Collectively, the aforementioned studies demonstrated that defects of 
innate immune responses, such as lower production of Th1-related 
cytokines and NO as well as reduced macrophage function, limit the 
ability of diabetic hosts to defend against Mtb infection.

In 2007, Martens et al. [17] demonstrated the participation of 
adaptive immune response to Mtb infection (Erdman strain) in STZ-
induced diabetic C57BL/6 mice. They observed that chronically 
diabetic mice are more susceptible to Mtb infection than are acute 
diabetic mice. Although the levels of IFN-γ, IL-1β and TNF-α were 
higher in lung lysates of chronically diabetic mice with Mtb infection, 
the production of IFN-γ in lung leukocytes re-stimulated with Con A, 
anti-CD3, or Mtb antigens decreased ex vivo. Those results suggest that 
impairments to adaptive immune function in chronic hyperglycemia 

patients are associated with increased susceptibility to Mtb infection 
in the lung. Strengthening that hypothesis, Ins2Akita (Akita) mice were 
found to spontaneously become hypoinsulinemic and hyperglycemic 
at 3 to 4 weeks of age. The same research group recently demonstrated 
that increased TB susceptibility in chronic STZ-induced diabetic mice 
is the result of a delay in the innate immune response to Mtb-infected 
alveolar macrophages [18]. This in turn drains the lymph nodes, delays 
the delivery of antigen-bearing antigen-presenting cells to the lung, 
and delays priming of the adaptive immune response. These immune-
related activities are all necessary for the restriction of Mtb replication. 

Multiple studies have shown that susceptibility to Mtb infection 
increases in diabetes patients and that dysfunction in both innate and 
adaptive immune responses may be the cause (Table 1). Nonetheless, 
the underlying mechanism behind immune dysfunction in diabetes 
remains unclear. Recently, Podell et al. [19] demonstrated that non-
diabetic hyperglycemia exacerbates the severity of Mtb infection in 
guinea pigs. They also suggested that Advanced Glycation End Products 
(AGEs) are the link between hyperglycemia and immune dysfunction 
in diabetes patients. However, additional evidence is required to 
confirm this hypothesis.

Other bacterial pneumonia: Diabetic patients also face increased 
risk of mortality due to pneumonia (hazard ratio, 1.67) [4]. In 
the 1960s, Drachman et al. [20] demonstrated that the death rate 
attributable to type 25 pneumococci infections is higher in alloxan-
induced diabetic rats than in non-diabetic rats, due to an overgrowth of 
bacteria in pulmonary lesions. The inability of diabetic rats to control 
bacterial growth is due primarily to a reduction in the phagocytic 
capabilities of leukocytes. Data from in vitro experiments indicates 
that hyperglycemia-induced hyperosmolarity is the depressive factor 
associated with inferior phagocytic defense [20]. To mimic the natural 
path of pneumococcus infection, Hebert et al. [21] exposed alloxan-
induced diabetic mice to an aerosol containing 108 type III Streptococcus 
pneumoniae/ml, and monitored the ability of the pulmonary barrier to 
defend against infection. In that study, the survival rate of diabetic mice 
was lower than that of non-diabetic mice. However, insulin treatment 
significantly increased the survival rate of diabetic mice, suggesting that 
insulin therapy could help to control pulmonary infection in diabetes 
patients. Other earlier work also showed that phagocytic functions 
including chemotaxis, phagocytosis, and the adhesion of leukocytes to 
the endothelium, are impaired in diabetes patients [22-24]. Authors of 
one study therefore suggested that impaired macrophage function may 
account for the high susceptibility to pulmonary infection. Another 

Animal models Characterization of infections in diabetic 
mice Infection route Cellular or molecular observation in 

diabetic mice with TB Reference

STZ (200 mg/kg)-induced diabetes 
in ICR mice (T1D) with Mtb (Schacht 
strain) infection

Reduced survival time and decreased 
survival incidence after Mtb infection Intravenous injection Depression of T cell function and macrophage 

phagocytosis [14]

GK/ Jcl rat (T2D) with Mtb (Kurono 
strain) infection

Larger granulomas, higher colony- forming 
units count in lung and spleen tissues after 
infection for 3 weeks

Airborne route infection Less TNF-α, IL-12 secretion and NO production 
in alveolar macrophages stimulated with Mtb. [15]

STZ (150 mg/kg)-induced diabetes in 
ICR mice (T1D) with Mtb (H37Rv strain) 
infection

Increased bacterial loads in lung, liver and 
spleen

Intravenous
injection

Less expression level of Th1-related cytokines 
and iNOS in lung, liver and spleen [16]

STZ (150 mg/kg)-induced diabetes in 
C57BL/6 mice (T1D) with Mtb (Erdman 
strain) infection
Akita mice (T1D) with Mtb (Erdman 
strain) infection

Higher bacterial lung burden and increased 
extent of lung inflammation Airborne route infection

Increase in IFN-γ and inflammatory cytokines 
in pooled lung lysates. Reduced antigen-
specific and -nonspecific IFN-γ production in 
lung T cells.

[17, 18]

Diet-induced hyperglycemia in non-
diabetic guinea pig (non-DM) with Mtb 
(H37Rv strain) infection

Higher lung and extrapulmonary Mtb lesion 
burden in sucrose-
induced hyperglycemia guinea pig

Airborne route infection Hyperglycemia-mediated AGE accumulation 
in lung [19]

Table 1: Comparison of the characteristics and immune dysfunction in diabetic mouse models of TB pneumonia.
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recent study demonstrated that diabetes increases the risk of Chlamydia 
pneumoniae spreading from the lung to the peripheral blood in NOD 
mice [25]. In last two decades, several studies demonstrated that 
C. pneumoniae is associated with the development atherosclerosis 
[26,27], suggesting that increased dissemination of C. pneumoniae 
may accelerate the formation of atherosclerotic plaques in diabetes. 
A relationship between diabetes and pneumonia-related death has 
been established; however, current animal models are inadequate to 
identify underlying mechanisms. Thus, the development of new animal 
models is urgently required to elucidate these effects and facilitate the 
development of effective clinical treatments.

Diabetic animal models of urinary tract infections

The risk of UTIs, including those of the bladder (cystitis) and kidney 
(pyelonephritis), is increased in diabetes patients, and many infected 
diabetic patients commonly suffer from UTI-related complications [28]. 
Although immune system defects have been suggested to contribute to 
diabetic UTIs, few studies have established this link directly. Rosen et 
al. [29] used a STZ-induced diabetic mouse model to investigate the 
susceptibility of diabetic animals to uropathogenic Escherichia coli, the 
most common etiological agent of UTIs. Those researchers found that 
the burden of infections by E. coli (UT189), K. pneumoniae (TOP52), 
and Enterococcus faecalis (0852) in the bladder and kidney are more 
severe in diabetic mice than in non-diabetic mice. Moreover, compared 
with E. coli, the prevalence of K. pneumoniae was higher in the bladder. 
Those results were consistent with the epidemiological findings in 
diabetic patients. In addition, the E. coli titers in bladders of Toll-like 
receptor 4 (TLR-4) mutant mice (C3H/HeJ strain) were less than that of 
normal mice (C3H/HeN strain), indicating that TLR-4-regulated cells 
are associated with increased susceptibility to UTIs [29]. Nevertheless, 
increased susceptibility to UTI infection was still observed in diabetic 
C3H/HeJ mice, suggesting that other TLR-4-independent factors are 
also involved in diabetes-related UTI.

Diabetic animal models of foot infection

Foot infections following skin ulceration commonly require 
hospitalization and are the most common cause of lower-extremity 
amputations among diabetic patients [30]. Although diabetic foot 
infections are polymicrobial, Staphylococcus aureus (S. aureus) is 
frequently implicated [31]. To investigate the pathogenesis of foot 
infections in diabetes, one research group developed diabetic foot 
infection animal models by inoculating the hind paw of NOD mice 
(T1D) [32] and db/db mice (T2D) with S. aureus [33]. In those studies, 
diabetic mice exhibited more severe foot infection than did non-diabetic 
mice. The control of glycemia was helpful to improve S. aureus clearance 
and leukocytes bacterial activity, suggesting that hyperglycemia is a 
risk factor to increase the susceptibility to foot infections in diabetes. 
Moreover, in the early stages of bacterial infection, the expression 
of chemokines such as KC and MIP-2 was shown to decrease, and 
fewer polymorphonuclear leukocytes reached the infected hind paw 
of diabetic NOD mice. The authors hypothesized that delayed innate 
immune responses allowed invading bacteria to gain a foothold in 
the tissue of diabetic mice. However, delayed immune responses were 
not observed in diabetic db/db mice, suggesting that the mechanism 
underlying immune dysfunction in the two types of diabetes are not 
necessarily the same.

Diabetic animal models of surgical site infection

The frequency of surgical site infection is higher in diabetes 

patients than in healthy individuals [34-36]. SSI can lead to the failure 
of medical implants such as prosthetic joints, implantable cardioverter 
defibrillators, urinary catheters, orthopedic implants, breast implants, 
and glucose sensors [37]. To investigate the effect of insulin treatment 
on SSI and neutrophil function, one research group recently developed 
T2D models of S. aureus SSI in db/db mice and mice that were fed a 
high-fat-diet (HFD-fed mice) [38]. Those authors demonstrated that 
SSIs in diabetic db/db mice and hyperglycemic HFD-fed mice were 
more severe than in non-diabetic and euglycemic mice, respectively. 
However, insulin treatment decreased the severity of SSI substantially 
and also improved the ability of neutrophils to kill S. aureus. Moreover, 
ex vivo insulin treatment largely restored neutrophil function and 
ameliorated SSI, suggesting that insulin may activate neutrophil 
function directly [38]. More recently, Lovati et al. [39] used a NOD mice 
model to investigate the susceptibility of T1D animals to orthopedic 
implant-related S. aureus infection. Those authors observed more 
severe osteomyelitic change surrounding the implant in diabetic NOD 
mice than in control mice. Although the immune cells responsible for 
increased susceptibility to implant-related infection were not identified, 
this study still provided a useful animal model for related studies.

Diabetic animal models of sepsis

A variety of diabetic animal model has been developed to investigate 
the pathophysiology of sepsis, due to the fact that sepsis accounts for the 
highest risk ratio among all infectious diseases requiring that diabetic 
patients undergo hospitalization [40]. In the early 1980s, Kitahara et 
al. [41] demonstrated the association between diabetes and sepsis by 
inoculating STZ-induced diabetic mice with Pseudomonas aeruginosa 
(P. aeruginosa) [41]. No difference in in mortality was observed between 
diabetic and control mice; however, reduced resistance to bacterial 
growth was observed in the liver, spleen, kidney and peripheral blood of 
diabetic mice. The protective activities of blood serum from vaccinated 
diabetic mice were significantly lower than that from vaccinated non-
diabetic mice, suggesting a link between resistance to P. aeruginosa 
infection and antibody- or cytokine-mediated immunity. The diabetic 
mice that received serum from normal vaccinated mice also showed 
a decrease in resistance to bacterial growth, suggesting the existence 
of abnormalities in immune cells against P. aeruginosa infection. In 
addition, reduced resistance to sepsis induced by Group B streptococci 
(GBS) was consistently observed in diabetic mice. The higher mortality 
rate associated with GBS-induced sepsis in diabetic mice was likely 
due to dysregulation of the cytokine network and prolonged local 
inflammatory responses [42]. 

In a study of Akita mice using a spontaneous T1D model, the 
mortality rate associated with Cecal Ligation and Puncture (CLP) 
induced-sepsis was exacerbated [43]. Authors of those results 
demonstrate that increased mortality among diabetic mice is not 
dependent on the pre-lethal activation of cytokines but rather coincides 
with a widespread reduction in the inflammatory response [43]. In 
addition, Jacob et al. [44] used a Goto–Kakizaki (GK) rat T2D animal 
model, to investigate sepsis-induced inflammation in animals that 
underwent CLP [44]. Those authors observed higher levels of plasma 
IL-6 and IL-10 in diabetic GK rats than in non-diabetic Wistar-Kyoto 
rats at 20 hours post-CLP, suggesting a relationship between T2D and 
sepsis-induced inflammation.

In addition to the dysregulation of cytokine production, defective 
neutrophil function has also been associated with the severity of sepsis 
in both diabetic patients and diabetic animal models. Spiller et al. [45] 
demonstrated that alloxan-induced diabetic mice are highly susceptible 
to polymicrobial-induced sepsis due to reductions in rolling, adhesion, 
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and migration of neutrophils. They also observed G-protein-coupled 
receptor kinase-2 (GRK2)-mediated downregulation of CXCR-2 in 
blood neutrophils and higher expression of α1-acid glycoprotein 
(AGP) in the serum of diabetic mice, compared with control mice [45]. 
Moreover, administration of AGP eliminated the protective effects of 
insulin in diabetic mice, suggesting that a diabetes–insulin–sepsis–AGP 
axis is involved in regulating the migration of neutrophils to infection 
sites [45]. The same research team recently demonstrated that mast cells 
also participate in the increased susceptibility of diabetic mice to septic 
peritonitis. Specifically, the histamine released by mast cells appears to 
impair neutrophil migration through histamine H2 receptor signaling 
[46].

Collectively, studies involving various diabetic animal models 
support the idea that diabetic hosts are more susceptible to microbial-
induced bacteremia or sepsis (Table 2). Insulin treatment and 
appropriate glycemic control can increase the resistance to sepsis in 
diabetic individuals and animals. Additionally, impaired neutrophil 
migration resulting from mast cell degranulation may partially 
responsible for the increase in the severity of sepsis among diabetes 
patients. Other impaired neutrophil functions, such as chemotaxis and 
reduced phagocytic capacity, have also been described in diabetic hosts. 
In the future, a more comprehensive suite of immune cell functions 
should be investigated in order to extend our knowledge of how 
immune dysfunction affects microorganism-induced sepsis in diabetes 
patients.

Diabetic animal models of melioidosis

Melioidosis is an emerging tropical infectious disease with high 

incidence and mortality rate in northern Australia and south-east 
Asia. Diabetic patients with preexisting or newly diagnosed T2D 
have a high incidence of melioidosis accompanied by pneumonia 
and septic shock [47-51]. Hodgson et al. [52] used db/db mice to 
investigate the dysfunction of immune responses underlying high 
susceptibility of melioidosis in T2D [52]. They observed that 
mice with T2D are more susceptible to Burkholderia pseudomallei 
(B. pseudomallei)-induced mortality accompanied by increased 
expression of inflammatory cytokines and hypoglycemia which 
is the response often observed in bacterial sepsis. The decrease 
of phagocytic and antimicrobial activities in macrophages from 
diabetic mice may contribute to the failure of controlling bacterial 
dissemination and disease progression. Recently, the same group 
generated a polygenic diet-induced diabetes model that more 
closely resembles the clinical criteria of T2D to investigate DM 
and melioidosis comorbidity [53]. Similarly, their results indicate 
that the impaired immune pathways contribute to the increased 
susceptibility to bacterial infection in diabetic mice. In addition 
to T2D, Williams et al. [54] used STZ-induced T1D model to 
demonstrate that uncontrolled hyperglycemia impairs Bone 
Marrow-Derived Dendritic Cells (BMDCs) and macrophage to 
internalize and kill B. pseudomallei and generate cytokine profiles 
not favor Th1-type immune response [54]. Collectively, these 
studies demonstrate how diabetes status and hyperglycemia affect 
the ability of BMDCs and macrophages to clear B. pseudomallei. 
Although the mechanisms underlying immune dysfunction are still 
unclear, these studies establish suitable animal models to investigate 
diabetes and melioidosis comorbidity.

Animal models Characterization of symptoms
in diabetic mice

Infection route or sepsis 
induction

Cellular or molecular observation in
diabetic mice with sepsis Reference

STZ (140 mg/kg)-induced 
diabetes in CF1 mice (T1D) with P. 
aeruginosa (NC-5 strain) infection

No increase in acute death 
rate. Increase in the number of 
bacteria in kidney, liver, spleen 
and peripheral blood.

Intravenous injection

(i) Less effect of pass protection in immune serum from 
diabetic vaccinated mice in normal recipients, implying the 
impairment of antibody- or cytokine-mediated immunity.
(ii) Less effect of protection in immune serum from normal 
vaccinated mice into diabetic recipients, implying the 
impairment of immune cells-mediated immunity

[41]

STZ (50 mg/kg for 5 consecutive 
days)-induced diabetes in CD-1 
mice (T1D) with type VI GBS 
(NCTC 1/82 strain) infection

Lower 50% lethal dose (>1 
log10 in CFU). Increase in 
bacterial growth in blood and 
kidney.

Intravenous
injection

Increase in IL-6, IL-1α, IL-10, TNF-γ and decrease in IFN-γ 
levels in the serum of diabetic mice with sepsis. [42]

Goto Kakizaki (GK) rats (T2D) with 
CLP Not validated CLP-induced sepsis Increase in plasma lactate, IL-6 and IL-10 20 hr after CLP in 

diabetic mice with sepsis [44]

AKITA mice (T1D) with CLP Increase in the sepsis-induced 
mortality CLP-induced sepsis

(i) Greater number of circulating neutrophils at first 24hr after 
CLP in diabetic mice.
(ii) Decrease in pro-inflammatory and anti-inflammatory 
cytokines in diabetic mice compared with died mice.

[43]

Alloxan (50 mg/kg)-induced 
diabetes in BALB/C mice or in 
C57BL/6 mice (T1D)
with CLP

Increase in polymicrobial 
sepsis-induced mortality and 
the number of bacterial load in 
peritoneal cavity lavage or blood

CLP-induced sepsis

(i) Reduction in rolling, adhesion and migration of leukocytes 
to the sites of infection.
(ii) Downregulation of CXCR2 and upregulation of GRK2 in 
the neutrophils.
(iii) Impairment in intracellular adhesion molecule-1 
expression on endothelium
(vi) Increase in AGP serum protein levels.

[45]

Alloxan (50 mg/kg)-induced 
diabetes in BALB/c mice with CLP
NOD mice (T1D) with CLP

(i) Acceleration of polymicrobial 
sepsis-induced mortality and 
increase of bacterial load in 
peritoneal cavity lavage or blood
(ii) C48/80 or histamine 
receptor antagonist treatment or 
monocytes deficiency reversed 
the acceleration of sepsis-
induced mortality
and bacterial loading in 
peritoneal cavity lavage or blood

CLP-induced sepsis

(i) Reduce in neutrophil migration to the sites of infection.
(ii) Downregulation of CXCR2 and upregulation of GRK2 in 
the neutrophils
(iii) C48/80 or histamine receptor antagonist treatment or 
monocytes deficiency increased CXCR2 expression in the 
neutrophils
(iii) C48/80 treatment prevented GRK2 induction in the 
neutrophils

[46]

Table 2: Comparison of the characteristics and immune dysfunction in diabetic mouse models of sepsis.
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Conclusions
The development of animal models for specific clinical diseases 

has been and will remain critical to our understanding of the 
pathophysiology of diseases and the development of novel therapeutic 
strategies to treat them. This review included a variety of diabetic 
animal infection models used to investigate immune dysfunction and 
diabetes-related infection. To summarize, STZ- and alloxan-induced 
T1D models have been widely used to investigate the susceptibility 
to and pathophysiology of various infectious diseases. The advantage 
of these models is that the development of hyperglycemia is uniform 
and controllable in different murine backgrounds. Moreover, STZ or 
alloxan-induced T1D can be used in knockout or mutant mice to identify 
mechanisms which may be responsible for increased susceptibility to 
infection. T2D animal models have also been used to investigate how 
immune dysfunction affects diabetes-related infections. The db/db mice 
with genetic mutation in leptin signaling are frequently used in different 
studies. However, the effect of leptin signaling deficiency on hormonal 
imbalance and immune system may complex the study of immune 
complications related to T2D. Hodgson et al. [53] therefore developed 
a polygenic model of diet-induced T2D that more closely reflect dietary 
intake in developed nations to investigate melioidosis [53]. In addition 
to the influence of leptin signaling mutation, researchers using T2D 
model observed the hyperproductivity of superoxide by neutrophils 
in HFD mice but not in db/db mice [38]. Patients suffering from T2D 
have elevated levels of proinflammatory cytokines, which can increase 
superoxide production in neutrophils [55]. This suggests that HFD 
mice may be the most appropriate animal model for the investigation 
of pathogen infection in T2D patients [38]. Finally, infections of 
greater severity have been observed in diabetic db/db mice as well as 
hyperglycemic HFD-fed mice, future investigators should take into 
account the differential superoxide production by neutrophils between 
these two models.

Many studies using diabetic animal models have focused on TB 
or microbial-induced sepsis on TB or microbial-induced sepsis. Those 
findings are in line with other animals models of diabetes-related 
infection, which show that diabetes and hyperglycemia can impair 
both innate and adaptive immune responses and thereby reduce 
resistance to pathogen infection and other associated diseases. Insulin 
treatment and proper glycemic control can help to reduce the amount 
of bacteria within lesions and ameliorate the severity of diseases. 
However, future researchers investigating immune response in diabetes 
subjects should consider the duration of diabetes because cytokine 
production differs between the acute and chronic stages of the disease. 
Although hyperglycemia has been shown to increase the dysfunction 
of phagocytes such as neutrophils or macrophages, and thus reduce 
resistance to different infections, the molecular mechanisms underlying 
these impairments remain largely unknown. Studies provided possible 
models of immune dysfunction in diabetes-related infection [45,46]. In 
addition, the immune system of diabetic subjects may be impaired by 
primary defects such as: (1) hyperglycemia-induced abnormalities in 
osmotic processes, (2) the accumulation of AGEs (3) high levels of AGP 
in serum, and (4) impairment of glucose metabolism in neutrophils. 
Interestingly, the effects of these defects may be in opposition to obesity-
associated increase of adipose resident macrophages inflammation. In 
obese state, the increase accumulation of macrophage correlates with 
increased cytokines and chemokines. Leptin is a adipokine important 
in modulating the function of macrophages [56]. In obese ob/ob mice 
with Mtb infection, deficiency in leptin may attenuate the function 
of macrophage and IFN-γ-driven Th1 responses [57]. However, the 
adipose resident macrophages phenotypically resemble M2 macrophage 

and can produce anti-inflammatory cytokines, suggesting that the role 
of these cells in regulating immune responses in diabetes remain to be 
elucidated [58]. Future research should seek to further elucidate the 
effects of these abnormalities on immune system in patients suffering 
from diabetes.
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