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Key Points
- Diabetic dyslipidemia is associated with increased risk of

cardiovascular disease.

- Diabetic dyslipidemia is characterized by increased plasma
triglyceride concentration, increased concentration of small dense
LDL cholesterol, and low HDL cholesterol concentration.

- HDL normally plays a cardioprotective role by promoting reverse
cholesterol transport and modulating inflammation.

- Although HDL is anti-inflammatory in the absence of prolonged
oxidative stress, it can become dysfunctional and atherogenic in the
chronic inflammatory state that characterizes diabetes mellitus.

- Despite therapeutic lifestyle changes and optimal statin therapy,
there still remains significant residual cardiovascular risk.

- Novel therapies that improve the antioxidant and anti-inflammatory
properties of HDL may be the most effective adjunctive treatments
for reducing cardiovascular risk in diabetic individuals.

Introduction
Cardiovascular disease (CVD) remains the leading cause of 

morbidity and mortality in individuals with diabetes mellitus 
despite advances in the prevention and management of CVD. A 
number of studies have shown that the prospective risk of adverse 
cardiovascular events in diabetic individuals without previous 
myocardial infarctionis comparable to non-diabetic individuals with 
myocardial infarction, with comparatively worse clinical outcomes for 
diabetic individuals following an adverse cardiovascular event [1-4]. 
Furthermore, population studies indicate that diabetes amplifies the 
effects of other common CVD risk factors, including hypertension, 
hypercholesterolemia, and smoking [5,6]. Consequently, diabetes has 
been considered in some prevention guidelines as a coronary artery 
disease-risk equivalent [7,8].

Diabetic individuals have a 2- to 4-fold greater risk of developing 
CVD in part because of an accelerated atherosclerotic process resulting 
from the disruption of the regulatory role insulin plays in lipoprotein 
and plasma lipid metabolism [9]. Dyslipidemia is more frequent in 
diabetics than age- and sex-matched non-diabetic individuals and can 
match any of the lipid profiles seen in the general population; however, 
diabetic dyslipidemia is most often characterized by high plasma 
triglyceride concentration, low high-density lipoproteincholesterol 
(HDL-C) concentration, and increased concentration of small dense 
low-density lipoprotein cholesterol (LDL-C) [10-14]. 

Pathophysiology of diabetic dyslipidemia

The diabetic lipid profile is a result of elevated free fatty acid release 
from insulin-resistant fat cells [15-18]. The excess free fatty acids are 
then converted to triglycerides in the liver, whose increased production 
in turn stimulates VLDL cholesterol (VLDL-C) and apolipoprotein 
B synthesis; the reduced activity of lipoprotein lipase in the insulin-
deficient state may also contribute to elevated triglyceride and VLDL-C 

levels [19,20]. The consequence of these elevated lipid fractions is 
increased small dense LDL-C levels and decreased HDL-C (Figure 1). 

Specifically, there is an exchange between the HDL-transported 
cholesterol ester and the VLDL-transported triglyceride mediated by 
cholesteryl ester transfer protein (CETP). This exchange results in 
triglyceride-rich HDL particles that are subsequently hydrolyzed by 
hepatic lipase or lipoprotein lipase. The apolipoprotein A-I (apoA-I) 
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Figure 1: Pathophysiology of diabetic dyslipidemia. Insulin resistance leads 
to the characteristic triad of high small dense low-density lipoprotein (LDL) 
level, high triglyceride level, and low high-density lipoprotein (HDL) cholesterol 
level. In a normal physiologic state, insulin suppresses lipolysis from adipose 
tissue and hepatic production of very low-density lipoprotein (VLDL) and 
apolipoprotein B (apoB). However, insulin resistance and hyperinsulinemia 
in the post-prandial state results in an increased level of VLDL-transported 
triglyceride, which promotes the transfer of HDL cholesteryl ester and LDL 
cholesterylester via cholesteryl ester transfer protein (CETP). The triglyceride-
rich HDL or LDL then undergo hydrolysis by lipoprotein lipase or hepatic 
lipase, resulting in the production of smaller, denser particles. In addition, 
the smaller HDL particles are more readily catabolized, resulting in low HDL 
levels. Abbreviations: ApoA-I, apolipoprotein A-I; ApoB, apolipoprotein B; CE, 
cholesteryl ester; CETP, cholesteryl ester transfer protein;FFA free fatty acid; 
HL, hepatic lipase;LPL, lipoprotein lipase; SD LDL, small dense LDL; TG, 
triglyceride. 
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released from this enzymatic hydrolysis is then filtered through 
the renal glomeruli and broken down [20,21]. Similarly, CETP is 
responsible for the exchange of LDL-transported cholesteryl ester and 
the VLDL-transported triglyceride, with the resulting triglyceride-rich 
LDL undergoing hydrolysis by hepatic lipase or lipoprotein lipase to 
become lipid-depleted small dense LDL particles. These small dense 
LDL particles are more atherogenic and more susceptible to oxidation 
when glycated [22].

Insulin resistance also contributes to functional changes in 
the enzymes involved in HDL-C metabolism [23,24]. Cholesterol 
esterification within the lipoprotein particles via lecithin-cholesterol 
acyltransferase (LCAT) is only mildly increased relative to the increase 
in CETP activity; this discrepancy in enzymatic activity levels leads 
to lower HDL-C levels because of the greater efflux of cholesterol 
ester from HDL [20,25]. The decreased ratio of lipoprotein lipase 
to hepatic lipase is another contributing factor to lower HDL-C in 
diabetic individuals [20]. In kinetic studies, individuals with metabolic 
syndrome had significantly lower adiponectin levels than normal 
subjects, which strongly correlates with increased fractional clearance 
rate of apoA-I and, consequently, lower HDL-C [26]. Phospholipid-
transfer protein, an enzyme involved in lipoprotein metabolism, has 
increased activity in diabetes mellitus and is a positive determinant of 
intima-media thickness in type 2 diabetes mellitus, indicating it may be 
involved in accelerated atherosclerosis [27]. 

The cardiovascular role of HDL 

It is well accepted that HDL-C levels are inversely correlated with 
the risk of adverse cardiovascular events. HDL particles are highly 
heterogeneous molecules that act as a shuttle to promote reverse 
cholesterol transport from lipid-laden arteries to the liver for excretion. 
The major component of HDL responsible for this cholesterol efflux is 
apoA-I [28]. Moore et al. (2005) showed that knockout mice lacking 
apoA-I had increased atherosclerosis and impaired reverse cholesterol 
transport as well as increased systemic inflammation [29].

In addition to its role in cholesterol homeostasis, HDL particles 
contain varying levels of antioxidants and pro-oxidants that modulate 
systemic inflammation; these functions appear to have evolved 
as part of the innate immune system. Several of the antioxidant 
enzymes associated with HDL includeLCAT, paraoxonase-1 (PON1), 
platelet-activating factor acetylhydrolase (PAF-AH), and glutathione 
peroxidase [30]. These enzymes can prevent the formation of oxidized 
phospholipids or inhibit their activity after they have formed.

Cell culture studies wherein human aortic endothelial cells and 
smooth muscle have been used to simulate the arterial wall show that 
adding LDL results in subendothelial deposition [31]. This deposition 
results in the release of pro-inflammatory cytokines from arterial cells, 
such as monocyte chemoattractant protein-1 (MCP-1), and oxidation 
of LDL phospholipids [31]. The addition of normal HDL abolishes 
this process, indicating that normal HDL is capable of preventing LDL 
oxidation as well as the LDL-induced inflammatory response [31]. 
HDL has also been shown to oppose several of the processes associated 
with endothelial dysfunction by reducing cytokine-induced adhesion 
molecule expression, increasing nitric oxide production, and inhibiting 
endothelial apoptosis by HDL-associated lysosphingolipids [32-34]. In 
vitro studies show that HDL inhibits agonist-stimulated decreases in 
platelet reactivity and aggregability, fibrinogen binding, and liberation 
of thromboxane A2 [35].

Inflammatory properties of HDL in chronic disease states

However, there is emerging evidence that HDL-C levels do not 
always accurately predicted the function of HDL. Even in the original 
Framingham study that established the importance of HDL-C levels 
in predicting adverse cardiovascular events, more than 40% of events 
occurred in subjects with clinically normal HDL-C levels [36-38]. This 
discrepancy is partially attributable to the fact that the function of HDL 
is adversely affected in pro-inflammatory states. 

Van Lenten et al. (1995) were the first to document that during the 
acute-phase response in rabbits, mice, and humans, HDL loses its ability 
to inhibit LDL oxidation [39]. Comparison of HDL isolated before, 
during, and after elective surgery in the same subjects showed that the 
HDL during surgery was less effective in inhibiting LDL oxidation and 
actually increased LDL-induced MCP-1 production [39]. In addition, 
two of the HDL-associated antioxidant enzymes, PON1 and PAF-AH, 
had reduced activity. Upon resolution of the acute-phase response, 
these HDL-associated enzyme activities returned to baseline and the 
anti-inflammatory properties of HDL were restored.

Specifically, the enzymes of the HDL particle responsible for 
reducing oxidized phospholipids can also be inactivated by these 
same oxidized phospholipids and reactive oxygen species; in healthy 
individuals, there is a balance created such that there are enough 
functioning enzymes and apoA-I activity for HDL to remain anti-
inflammatory [40,41]. However, in those with chronic illnesses 
characterized by systemic oxidative stress, such as diabetes, the balance 
can shift. HDL not only becomes dysfunctional because its inactivated 
enzymes and altered apolipoproteins cannot adequately promote 
cholesterol efflux, but actually transforms to a pro-inflammatory 
molecule as it continues to accumulate oxidized lipids and proteins 
[42]. Thus, the pro-inflammatory HDL becomes a form of “chronic 
acute-phase response,” similar to that characterized by C-reactive 
protein levels. 

Function of HDL in diabetes mellitus

Under hyperglycemic conditions, HDL undergoes glycation 
and has a reduced capacity for metabolizing membrane lipid 
hydroperoxides, which can lead to increased susceptibility to CVD 
(Figure 2) [43]. Glycation of HDL by incubation under hyperglycemic 
conditions results in increased monocyte adhesion to human aortic 
endothelial cells exposed to oxidized LDL [43]. Furthermore, glycation 
of the HDL-associated enzyme PON1 inhibits its ability to decrease 
monocyte-chemotactic protein-1 (MCP-1) production by endothelial 
cells, thereby preventing monocyte adhesion to endothelial cells in one 
of the earliest processes of atherosclerosis [44]. Hedrick et al. (2000) 
found that in subjects with type 2 diabetes mellitus and documented 
coronary artery disease, PON1 activity was reduced by 40% compared 
with non-diabetic subjects [43]. Other studies show an inverse 
relationship between PON1 activity and circulating oxidized LDL 
levels in diabetic individuals, highlighting the critical role of PON1 in 
retarding LDL oxidation [45,46].

Morgantini et al. (2011) compared the anti-inflammatory function 
in HDL from diabetic subjects compared to healthy volunteers using 
cell-free assays [47]. HDL from diabetic subjects has higher intrinsic 
oxidation and was less able to inhibit the migration of monocytes 
induced by LDL. The mean HDL inflammatory index value in 
diabetics was significantly greater than 1.0 (1.42±0.29), indicating the 
HDL was actually pro-inflammatory; the HDL inflammatory index 
has been significantly correlated with intima media thickening and 
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atherosclerotic plaque size [48].Moreover, there was a statistically 
significant correlation found between HDL inflammatory index values 
and serum amyloid A (SAA). The presence of acute phase proteins, such 
as SAA and the haptoglobin-hemoglobin complex, may be implicated 
in promoting qualitative changes in HDL [49,50].

In healthy individuals, HDL is effective in reversing the inhibition 
of vasodilatation induced by oxidized LDL. Perségol et al. (2006) found 

that HDL taken from subjects with type 1 and type 2 diabetes mellitus 
was defective in counteracting the effects of oxidized LDL on vascular 
relaxation compared to normal subjects [51,52]. These results suggest 
that while the etiologies of type 1 and type 2 diabetes mellitus are 
different, the abnormalities in the function of HDL that result from 
these disease states are similar. 

HDL-C as a predictor of cardiovascular risk

The current practice in lipid management is that raising HDL-C 
will necessarily reduce the likelihood of adverse cardiovascular events 
in diabetics. This treatment goal is supported by strong epidemiologic 
data confirming the relationship between low HDL-C levels and 
increased risk for CVD [53,54]. However, measuring HDL-C levels only 
provides a quantitative measurement of HDL without conveying any 
information about the qualitative function of the particles themselves. 
Roberts et al. (2006) found that a 3-week residential program of diet and 
daily aerobic exercise in obese men with characteristics of metabolic 
syndrome resulted in improved anti-inflammatory properties of HDL 
despite an overall reduction of HDL-C levels [55]. A meta-regression 
analysis by Briel et al. (2009) showed that, after adjustment for changes 
in LDL-C, no correlation was observed between HDL-C elevation and 
risk for adverse cardiovascular events or mortality [56]. In another 
study looking at individuals with a mutant apoA-I protein (apoA-IMilano) 
that causes reduced HDL-C levels, the subjects did not appear to have 
an increased risk for adverse cardiovascular events [57]. Analysis of the 
IDEAL (Incremental Decrease in Endpoints through Aggressive Lipid 
lowering) and EPIC-Norfolk (European Prospective Investigation 
Into Cancer in Norfolk) data showed that very high HDL-C levels 
and particle size were associated with greater cardiovascular risk after 
adjusting for other cardiac risk factors [58]. These findings indicate 
that improving HDL composition and function may be as important as 
assessing HDL-C levels in determining cardiovascular risk. 

HDL as a potential therapeutic target

Treatment strategies have focused on three areas for improving 
diabetic dyslipidemia: 1) therapeutic lifestyle changes (TLC) with 
diet, exercise, and weight loss; 2) glycemic control; and 3) lipid profile 
modification. TLC alone has not been shown to effectively reduce CVD 
morbidity and mortality, but is an important adjunct to drug-based 
therapies [59]. Glycemic control helps improve the lipid profile, but 
is only partially corrective because of continued insulin resistance 
[60,61]. In particular, glycemic control is more effective in lowering 
non-HDL-C and triglycerides than increasing HDL-C [62,63].

As in all individuals with dyslipidemia, lipid profile modification in 
individuals with diabetes has primarily targeted lowering LDL-C given 
the unequivocal improvement in cardiovascular risk while on statin 
therapy [64]. Despite this improvement, there still remains considerable 
residual cardiovascular risk and continued disease progression in the 
coronary arteries even after optimal statin therapy [65-67]. There is 
greater interest among researchers in developing novel therapies that 
target HDL-C as a complement to LDL-C lowering for cardiovascular 
risk reduction. 

The addition of functional, non-oxidized HDL has been shown to 
be beneficial in diabetic individuals. Drew et al. (2009) showed that 
infusion of reconstituted HDL particles in type 2 diabetic subjects 
decreased plasma glucose levelsby increasingboth plasma insulin levels 
and AMP-activated protein kinase in skeletal muscle [68]. Infusion of 
reconstituted HDL in diabetic individualsalso enhanced cholesterol 
efflux by 325% and reduced the cholesterolcontent of platelet 

Figure 2: Function of HDL in normal versus hyperglycemic state. (A) In 
early atherogenesis, hypercholesterolemia promotes accumulation of LDL 
particles in the arterial subendothelial space. LDL accumulation provokes 
an inflammatory response that results in oxidative modification of LDL and, 
subsequently, an augmented expression of various leukocyte adhesion 
molecules expressed on the surface of the arterial endothelial cells. Healthy 
HDL functions to sequester oxidized lipid products from LDL and promote 
reverse cholesterol transport from macrophages whose scavenger receptors 
preferentially bind modified lipoproteins, thereby preventing atheroma 
formation. (B) Under hyperglycemic conditions, the ability of HDL to metabolize 
and remove oxidized lipids is compromised by glycation. The enhanced lipid 
peroxidation causes the endothelium to produce monocyte chemoattractants 
and express leukocyte adhesion molecules. Continued macrophage uptake of 
oxidized LDL phospholipids and diminished HDL-mediated cholesterol efflux 
results in atheroma formation. The oxidation of HDL-associated antioxidants 
via glucose-mediated oxidative stress eventually results in HDL particles that 
act as pro-inflammatory molecules, further exacerbating the local inflammatory 
cycle. Abbreviations: Gly-HDL, glycosylated high-density lipoprotein; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein; MCP-1, monocyte 
chemotactic protein 1; Ox-LDL, oxidized low-density lipoprotein.



Citation: Elboudwarej O, Hojjat H, Safarpoor S, Vazirian S, Ahmadi S (2011) Dysfunctional HDL and Cardiovascular Disease Risk in Individuals with 
Diabetic Dyslipidemia. J Diabetes Metab S4:001. doi:10.4172/2155-6156.S4-001

Page 4 of 9

 J Diabetes Metab            Diabetic Cardiovascular Complications              ISSN:2155-6156 JDM, an open access journal

membranes, thereby inhibiting the heightened reactivity of platelets 
normally found in a hyperglycemic state [69]. Additional studies have 
shown that functional HDL in a model of diabetes helps mitigate the 
progression of beta cell failure, improves metabolic control, reduces 
monocyte adhesion, enhances endothelial cell function, and increases 
levels of circulating endothelial progenitor cells [70-73].

A number of new investigational therapies are being tested that use 
various physiologic pathways to promote either HDL functionality or 
raise HDL-C levels, or both (Figure 3). 

Drug therapies that primarily improve the quality of HDL

The drug class that has specifically been shown to improve the 
function of HDL is the apolipoprotein mimetic peptides, which are 
short 18-amino acidpeptides that do not have sequence homology with 
apoA-I, but mimic the class A amphipathic helixes contained in apoA-I 
[74-76]. ApoA-I, which is the major protein in HDL, plays a number 
of important biological functions and has anti-atherogenic, anti-
inflammatory, and antioxidant properties [77]. Similar to endogenous 
apoA-I, it is postulated that apolipoprotein mimetic peptides appears 
bind and remove oxidized lipids to help render HDL anti-inflammatory 
while also promotingcholesterol efflux, without a significant change in 
HDL-C levels [78,79]. 

Kruger et al. (2005) studied the concentrations of the antioxidant 
enzymes heme oxygenase 1 (HO-1) and extracellular superoxide 
dismutase (EC-SOD) in streptozotocin-induced diabetic rats [80]. 
The induction of diabetes was associated with a significant decrease in 
aortic HO-1 and EC-SOD levels without a fall in Cu/Zn superoxide 
dismutase levels. However, treatment of the rats with the apoA-I 
mimetic peptide D-4F resulted in a significant increase in aortic HO-1 
concentration and activity as well as preservation of EC-SOD levels 
compared to control non-diabetic rats. Furthermore, D-4F addition 
helped reduce endothelial sloughing and preserved endothelial nitric 
oxide synthase (eNOS) mediated vascular reactivity. 

Peterson et al. (2007) looked at the effect of D-4F on rats with and 
without diabetes [81]. Insulin was administered to the streptozotocin-
induced diabetic rats to maintain blood glucose levels between 
240 and 320 mg/dL to prevent ketosis and weight loss. Four groups 
of animals were studied: control, streptozotocin-insulin treated, 
streptozotocin-insulin treated plus D-4F, and rats treated with D-4F 
but without streptozotocin. Although D-4F treatment did not alter 
glucose levels, it significantly increased HO-1 activity in the heart 
and aorta of the diabetic rats and reduced endothelial sloughing as 
evidenced by increased CD31+ staining of the endothelium compared 
to controls. In addition, diabetes caused a significant decrease in aortic 
thrombomodulin expression that was restored to the levels of the 
control rats with D-4F treatment.

More recently, Morgantini et al. (2010) studied the effects of D-4F 
in preventing atherosclerosis development in apoE−/−diabetic mice 
[82]. Compared to non-diabetic apoE−/− mice, the diabetic apoE−/− mice 
developed roughly 300% larger lesions, marked dyslipidemia, elevated 
glucose levels, and reduced plasma insulin levels. Atherosclerotic 
lesions were significantly reduced in the D-4F–treated diabetic apoE−/− 
mice and the existing lesions had significantly reduced macrophage 
content relative to non-treated mice. Oxidized lipid concentrations in 
the liver tissue of diabetic apoE−/− mice compared with non-diabetic 
apoE−/− mice were significantly reduced by D-4F treatment (Figure 4). 

The class of drugs known as apoA-1 expression stimulators can 
potentially be useful in diabetic patients given that apoA-1 levels are 

reduced during an acute inflammatory response [83-85]. However, the 
primary apoA-1 expression stimulator RVX-208 has not been tested 
yet in human or animal models of diabetes. A phase 1 clinical trial of 
RVX-208 increased endogenous apoA-1 production and improved 
HDL-mediated cholesterol efflux [86]. However, results from the phase 
II clinical trial involving patients with stable coronary artery disease 
were disappointing, with only a modest 5.6% increase in apoA-I at the 
highest dose of RVX-208 [87]. A potentially encouraging sign was a 
robust 21% increase in the fraction of large HDL particles, suggesting 
an improvement in reverse cholesterol transport secondary to greater 
maturation to the more lipid-rich HDL [88].

Drug therapies that primarily alter the quantity of HDL

The dilemma of whether raising HDL-C without necessarily 
improving function can effectively reduce cardiovascular morbidity is 
best exemplified by the CETP inhibitors. This drug class raises HDL-C 
by preventing the exchange between HDL-transported cholesterol ester 
and VLDL-transported triglyceride. A post hoc analysis of the diabetic 
patient subgroup in a phase III clinical trial of the CETP inhibitor 
torcetrapib showed a reduction in fasting serum insulin level, plasma 
glucose, and hemoglobin A1C, but the changes did not correlate with the 
magnitude in increase of HDL-C levels [89]. Furthermore, the clinical 
trial was terminated after excess cardiovascular-related morbidity and 
mortality in the torcetrapib-treated arm, despite increasing HDL-C by 

Figure 3: Metabolic pathway of high-density lipoprotein and sites of 
therapeutic intervention. The formation of nascent high-density lipoprotein 
molecules begins with apolipoprotein A-I (apoA-I) synthesis in the liver. ApoA-I 
expression stimulators increase apoA-I synthesis while apoA-I mimetic peptides 
provide a synthetic surrogate. These apoA-1 molecules and infusible HDL 
mimetics can then receive cholesterol and phospholipids from macrophages via 
ATP-binding membrane cassette (ABC) transporter-mediated efflux. The liver X 
receptor (LXR) agonists, farnesoid X receptor (FXR) agonists, and peroxisome 
proliferator-activated receptor (PPAR) agonists can upregulate this lipid efflux 
process by increasing expression of ABC transporters. Inhibition of cholesteryl 
ester transfer from the resulting HDL3 (smaller, more dense particles) and 
HDL2 (larger, less dense particles) via cholesteryl ester transfer protein (CETP) 
can be blocked by CETP inhibitors. Inhibition of HDL cholesterol uptake by 
the liver and macrophages via scavenger receptor BI (SR-BI) inhibitors can 
also lead to elevated HDL cholesterol levels. Abbreviations: ABCA1, ATP 
binding membrane cassette transporter A1; ABCG1, ATP binding membrane 
cassette transporter G1; ABCG4, ATP binding membrane cassette transporter 
G4; ApoA-I, apolipoprotein A-I; CETP, cholesteryl ester transfer protein; FXR, 
farnesoid X receptor; HDL, high-density lipoprotein; LXR, liver X receptor; 
PPAR, peroxisome proliferator-activated receptor; SR-B1, scavenger receptor 
B1.
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72% and reducing LDL-C by 25% [90]. It is not entirely clear whether 
the excess morbidity and mortality were secondary to off-target adverse 
effects or the creation of dysfunctional HDL [91-93]. The two other 
CETP inhibitors, dalcetrapib and anacetrapib, are currently undergoing 
phase III clinical testing and have thus far improved the lipid profile of 
the study participants without major adverse effects [94-96].

A number of therapies have targeted nuclear metabolic receptors 
that help regulate glucose and cholesterol homeostasis, including 
the peroxisome proliferator-activated receptor (PPAR), liver X 
receptor(LXR), and farnesoid X receptor (FXR) [97-100]. The anti-
atherosclerotic activity of these receptors is due in part to their ability 
to promote cholesterol efflux via the ATP-binding membrane cassette 
(ABC) transporters ABCA-1 and ABCG-1, which are present on 
macrophages [101-103]. Cholesterol accumulation in macrophage 
“foam cells” plays an important role in atherogenesis and studies have 
shown that chronic hyperglycemia can reduce ABCA-1 and ABCG-1 
expression [104,105]. 

Although there have been no large clinical trials completed showing 
that nuclear metabolic receptor agonists improve cardiovascular 
outcomes in diabetic individuals, a number of smaller studies show 
some potential therapeutic benefit. In phase II clinical trials with 
the PPARα/δ agonist GFT505, pre-diabetic patients treated with 
GFT505 had increased insulin sensitivity and increased HDL-C with 
reduction in plasma glucose, LDL-C, and triglyceride levels; study 
subjects also had increased levels of apoA-I and reduction of pro-
atherogenic apolipoproteins ApoB and ApoCIII [106]. Treatment with 
the PPARα/γ agonist aleglitazar in a phase II clinical trial with type 
2 diabetic subjects showed dose-dependent improvements in HbA1c 

concentrations and fasting plasma glucose compared with placebo, and 
significant dose-dependent changes in all lipid parameters, including 
an increase in HDL-C levels of up to 28% [107].

LXR agonists can affect glucose homeostasis by stimulating insulin 
production, suppressing gluconeogenesis, activating expression of 
hepatic glucokinase, and increasing GLUT4 expression in adipocytes 
[108-112]. Administration of LXR agonists has been shown to 
markedly reduce atherosclerotic lesion formation in multiple murine 
models of atherosclerosis [113]. Activation of LXR may reduce 
atherogenesis not only through  reverse cholesterol transport, but 
also by suppressing inflammatory signaling in macrophages to 
help blunt the associated inflammatory response  in atherosclerosis 
[113,114]. However, enthusiasm for LXR agonists has been tempered 
by evidence that some non-selective LXR agonistsinduce hepatic 
steatosis and hypertriglyceridemia [115,116]. Other adverse lipogenic 
effects include  chronic stimulation of lipogenesis in β-cells that may 
induce apoptosis as well as reduced expression of hepatic and adipose 
glycolytic enzymes [117].

FXR expression is diminished in livers of streptozotocin-induced 
diabetic mice and its deficiency is associated with impaired glucose 
tolerance and insulin resistance [118,119]. Treatment with FXR agonists 
in diabetic mice results in enhanced insulin sensitivity, increased 
hepatic glycogen synthesis, and reduced hepatic gluconeogenesis 
[119,120]. Mauldin et al. (2008) showed that LXR agonist treatment 
of monocyte-derived macrophages from diabetic subjects resulted in 
dramatically reduced foam cell formation [104]. While there has been 
no investigation of atherosclerosis progression in a murine model of 
diabetes, administering the FXR agonist INT-747 in apolipoprotein 
E-deficient mice reduced the extent of atherosclerotic plaques in a 
dose-dependent manner [121].

The scavenger receptor BI (SR-BI) inhibitors are a relatively newer 
drug class that has yet to be studied in a clinical model of diabetes.
SR-BI is a major regulatory factor inHDL catabolism that binds HDL 
and mediates the selective uptake of HDL cholesteryl ester in the liver 
and steroidogenic tissues for eventual excretion [122]. Diabetic mice 
peritoneal macrophages show SR-BI overexpression that results in net 
HDL-mediated cholesterol influx and greater total cellular cholesterol, 
which may promote foam cell formation and atherogenesis [123].

Conclusion 
The treatment and management of diabetic dyslipidemia first 

and foremost requires lifestyle changes to help reduce cardiovascular 
risk, including increased physical activity, improved diet, and weight 
reduction. However, given the difficulty of managing the disease 
with lifestyle modifications alone, medications are needed to achieve 
therapeutic targets. The complexity of diabetic dyslipidemia is such 
that even optimal combinations of current first- and second-line lipid-
lowering agents still leave residual cardiovascular risk. There is now 
a greater focus on developing treatments that target HDL as a means 
of reducing atherogenesis. However, the oxidative environment in 
a hyperglycemic state modifies the composition of HDL such that it 
has diminished ability to promote cholesterol efflux and acts as a pro-
inflammatory agent. 

Given the evidence that HDL becomes pro-inflammatory in a 
chronic disease state like diabetes, simply raising HDL-C levels may 
not be the ideal target for measuring success of new therapies targeting 
HDL. The complexity of HDL metabolism and the various functional 
roles it plays make the HDL-C level a weak indicator of potential 

Figure 4: Effects of D-4F treatment in streptozotocin-induced diabetic 
mice. The induction of diabetes in mice results in hyperglycemia-mediated 
generation of reactive oxygen species and advanced glycosylation end products. 
These changes create a systemic inflammatory state that promotes endothelial 
damage and atheroma formation. Many of these deleterious effects were either 
diminished or reversed following treatment with apolipoprotein mimetic peptide 
D-4F. Treatment with D-4F has a vascular protective effect as evidenced by 
decreased endothelial sloughing and increased thrombomodulin formation, a 
marker of endothelial cell function. The increase in heme oxygenase 1 (HO-1) 
and extracellular superoxide dismutase (EC-SOD) helps prevent uncoupling 
of endothelial nitric oxide synthase and reactive oxygen species formation, 
leading to improved vasoreactivity and vascular repair. D-4F mediated 
prevention of atherosclerosis development is associated with a reduction in 
lipid and macrophage content of the atherosclerotic lesions. Abbreviations: EC-
SOD,extracellular superoxide dismutase; HO-1, heme oxygenase 1.
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therapeutic benefit. Thus, therapies that effectively slow the catabolic 
rate of HDL, such as the CETP inhibitors and SR-B1 inhibitors, may 
raise dysfunctional HDL levels in diabetic patients. The more effective 
approach for reducing cardiovascular risk likely lies with therapies that 
target the composition and function of HDL. Therapies that promote 
apoA-1 production or act as surrogate apoA-1 peptides target the 
fundamental problem with HDL in a chronic hyperglycemic state, 
which is the loss of its antioxidant and anti-inflammatory properties. In 
particular, the apolipoprotein mimetic peptides help restore function 
to the existing pool of HDL molecules in the body and reverse the 
effects caused by the glycation of HDL.

It must be acknowledged that therapies that do not target improving 
the function of HDL, such as the nuclear metabolic receptor drug classes, 
have shown some benefit in early studies. Their value may arise from 
mitigating the inflammatory component that accelerates atherogenesis, 
such as improving glycemic control or inhibiting pro-inflammatory 
genes in macrophages. More importantly, the ability of these receptors 
to promote reverse cholesterol transport can be viewed as improving 
one of the functional roles of HDL. Nonetheless, measuring steady-
state HDL-C levels as a benchmark for therapeutic success may not 
accurately assess a kinetic process like reverse cholesterol transport 
[124,125]. The identification of novel biomarkers and tools to measure 
the function of HDL in preclinical trials may ultimately prove to be 
a better predictor of success for diabetic individuals in large-scale 
cardiovascular outcome trials. 

Review Criteria

The articles selected for this Review were obtained from searches of PubMed 
using the terms “diabetic dyslipidemia”, “atherosclerosis”, “type 2 diabetes 
mellitus”, “dysfunctional HDL”, “oxidized lipoprotein”, “cardiovascular disease”, 
“apolipoprotein mimetic peptides”, “apolipoprotein expression stimulators”, 
“CETP inhibitors”, “PPAR agonists”, “Liver X receptor agonists”, “HDL mimetics”, 
“Farnesoid X receptor agonists”, and “Scavenger receptor BI inhibitors.” Selected 
papers were full-text original articles and reviews published between 1970 and 
2011. Abstracts were not included. Reference lists of the identified papers were 
searched for additional material.
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