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Introduction
Diabetes affects more than 300 million people in the world [1]. The 

recent staggering increase in the number of people with type 2 diabetes 
(T2D) can be attributed partially to changing lifestyle. Increasing 
obesity and physical inactivity lead to a metabolic imbalance between 
energy intake and expenditure [2]. Insulin is at the heart of metabolic 
control, and when the insulin secretion or utilization pathways are 
impaired, diabetes ensues. 

A loss of insulin production and secretion by the pancreatic β-cells 
is typically associated with type 1 diabetes, while ineffective action of 
insulin at the peripheral tissue, such as skeletal muscle is associated 
with T2D [3]. Yet, it has long been known that dysfunctional β-cells 
exist in people with T2D [4]. Nearly 30 years ago, it was determined 
that the total β-cell mass of the pancreas from people with T2D was 
decreased compared to age- and weight-matched non-diabetics [5]. 
Since then, research has confirmed that people with T2D have reduced 
islet numbers along with β-cell reductions, and inadequate insulin 
secretion [6,7]. 

Early exercise training improves the metabolic status and insulin 
sensitivity of people, thereby reducing their risk of developing T2D later 
in life [8-10]. The majority of animal studies focused on the effects of 
exercise have concentrated on the early stage of T2D, initiating exercise 
before the animals are overtly diabetes [11-16]. In this situation, 
exercise can delay or even inhibit the development of the disease.

However, most people diagnosed with the disease are inactive, 
and may be motivated to start exercising until after the diagnosis of 
T2D. Increased physical activity and changes in diet and medication 
are the essence of management for people with T2D [17]. Numerous 
reports have shown that increased daily activity and/or exercise can 
improve glucose control and reduce medication requirements in those 
with T2D [18,19]. While lifestyle modifications such as exercise can 
improve the insulin utilization of the peripheral tissues [20], an effect of 
exercise on pancreatic β-cell function in diabetics remains unclear. In 

humans, moderate-intensity exercise for 3-8 months improved insulin 
sensitivity and insulin secretion in response to a glucose challenge in 
those with overt T2D [3]. However, the method for measuring β-cell 
function in vivo in humans is indirect [3]. The purpose of this study 
was to examine the direct effect of exercise on pancreatic islets in the 
presence of overt T2D.

Material and Methods
Animals

The animal protocol was approved by the Institutional Animal 
Care and Use Committee. The standard animal model of T2D is the 
leptin receptor deficient (fa/fa) Zucker diabetic fatty (ZDF) rat. The 
disease develops spontaneously in males when fed the appropriate diet 
(Purina #5008), and is associated with many of the clinical symptoms of 
the disease [21]. Male ZDF (fa/fa) rats and control Zucker Lean (fa/+) 
rats were obtained from Charles River Laboratories and assigned to 4 
groups: (1) sedentary (non-exercised) diabetic (n = 10), (2) exercised 
diabetic (n = 12), (3) sedentary control (n = 12), and (4) exercised 
control (n = 10). Animals were placed on the 12:12 light-dark cycle 
with food and water ad libitum. In order to induce the development 
of type 2 disease process the animals were fed with Purina 5008 diet. 

Exercise training

Aerobic exercise training was started at 12 weeks of age, immediately 
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Abstract
Exercise and physical activity improve the glycemic control in people with type 2 diabetes (T2D). It is known that 

activity improves muscle utilization of glucose, and that exercise can spare islets if initiated prior to the onset of diabetes. 
However, any effect of exercise on pancreatic islet function after the diagnosis of overt diabetes is unknown. The aim of 
the study was to investigate the effects of exercise training on pancreatic islets in a rodent model of overt T2D. 12-week 
old male Zucker Diabetic Fatty (ZDF) rats and control lean rats were divided into 4 groups: sedentary control, exercised 
control, sedentary diabetic and exercised diabetic. Exercised rats were trained with moderate intensity running on a 
treadmill for 7 weeks. Assessment of plasma insulin levels, islet cell composition (relative proportion of α, β and δ 
cells), islet density, insulin content and islet core diameter was conducted at the end of the study. Diabetes in ZDF rats 
lead to high HbA1c and BGLs, which was not reversed by exercise. Diabetes caused destruction of the islet structure 
and significant loss of β-cells, with an increased proportion of α- and δ-cells. Exercise improved islets morphology 
in the diabetic group, while islet density and islet cell composition were not affected by exercise. Increased insulin 
immunostaining of the pancreatic islets was identified in the diabetic animals after exercise. Although exercise did not 
affect the diabetes-induced decrease in the proportion of islet β cells, there appeared to be an improvement in the islet 
architecture and in β-cell insulin content. 
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after the onset of diabetes, and continued for 7 weeks using a protocol 
we have previously published [22]. A gradual progression of exercise 
intensity allowed the rats time to adapt to the treadmill. During the 
first week of training the speed was constant at 10 m/min and the 
time was increased gradually from 10 min per day to 40 min per day 
by the end of the week. After the first week, rats ran at 15 m/min, for 
40 minutes, 5 days per week. All rats assigned to the exercise groups 
completed the exercise training protocol, with occasional breaks in 
the running, if the animals appeared fatigued. Blood glucose and body 
weight measurements were taken every week. Blood glucose levels were 
measured with pricks from the rat tail using Accu-Check Active meter 
(Roche Diagnostics, Indianapolis, IN). Glycated hemoglobin (HbA1c) 
levels were measured at the Termination of the study using a A1cNow 
meter (Metrika, Sunnyvale, CA). For statistical purposes, the highest 
detectable value of blood glucose and HbA1c (600 mmol/L or 13%, 
respectively) was used when rats had blood glucose or HbA1c levels 
higher than detectable. Animals were sacrificed within 36 hours of the 
final exercise training episode. 

Plasma Insulin levels

Plasma insulin levels were determined using the insulin rat (high 
range) sandwich ELISA kit from ALPCO, as we have previously 
published [23]. Briefly, 5 ml samples were loaded to microplates 
following the manufacturer’s instruction. After washing, incubation 
with horseradish peroxide enzyme-labeled monoclongal antibody, 
subsequent washing and exposure to the stop solution, the plates were 
read at 450 nm with a reference wavelength of 620 nm.

Pancreatic tissue sections

Sample preparation and staining was completed according to the 
protocol previously published [24]. In short, harvested pancreatic 
tissue was fixed in normal buffered formalin. Pancreatic tissue was 
embedded in paraffin wax and later 8 µm thick tissue sections were cut 
and mounted on Superfrost/Plus microscope slides (Fisher Scientific, 
Pittsburg, Pa, USA, no. 12-550 15). The sections were dried overnight at 
40°C, and stored at 4°C until processing. Later, while processing, serial 
rehydration was completed by xylene, ethanol and phosphate buffered 
saline (PBS). A steamer was used to perform the antigen retrieval in 
0.01 M citrate buffer, pH 6.2, with 0.002 M EDTA. After cooling and 
washing the slides in PBS, sections were permeabilized in 1.0% Triton 
X-100 in 0.1 M PBS, pH 7.4 for 30 min. Permeabilized tissue sections 
were used for immunohistochemistry and immunofluorescence 
labeling.

Immunohistochemistry (IHC)

Insulin staining was developed on the pancreatic sections using 
anti-insulin (1:100, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, 
# sc-9168) primary antibody and Histostain-Plus Broad Spectrum 
(AEC) Kit (Invitrogen, Frederick, MD, # 859943). The IHC procedure 
was conducted according to manufactures instructions. Slides were 
counterstained with hematoxylin to identify cell nuclei.

Immunofluorescence staining

Sections were blocked with 10% normal donkey serum, 1.0% bovine 
serum albumin, and 0.03% Triton X-100 diluted in 0.1 M PBS, pH 7.4 
for 30 min. Incubation with the following primary antibodies was 
completed: anti-insulin (1:200, Abcam, Cambridge, Mass, USA, ab7842), 
anti-glucagon (1:200, Abcam, ab10988), and anti-somatostatin (1:200, 
Abcam, ab53165) at 4°C overnight in a wet chamber. Subsequently, 
samples were incubated with secondary antibody conjugated with 

DyLight 488 (1:400, Jackson Immunoresearch Laboratories Inc, 
West Grove, PA, 706-485-148), Alexa 555 (1:400, Molecular Probes, 
Eugene Ore, A31570), or Alexa 647 (1:400, Molecular Probes, A31573). 
Images were collected on a Nikon C1Si confocal microscope (Nikon 
Instruments Inc. Melville, NY). 

Islet density, morphology and cell composition

Islet density was defined as the average number of islets per area 
of pancreatic tissue using previously published procedures [25]. All 
islets contained on 9 sections of pancreatic tissues from 3 animals per 
group were analyzed. Cell composition was determined by measuring 
the relative proportion of all three types of endocrine cells (α-, β-, 
or δ-cells) present in each islet. For each group, 65 to 81 islets from 
pancreatic sections of 3 animals were analyzed independently for the 
cell composition. Islets were classified according to their morphology 
as either intact or disrupted. Intact islets had a distinct circular or 
ellipsoidal perimeter. Disrupted islets contained an identifiable border, 
but were missing sections of insulin-, glucagon-, or somatostatin-
stained cells. For an islet to be classified as disrupted, 25% or more of 
the islet area lacked endocrine cell staining. 

Islet diameter

As diabetes resulted in changes in the appearance of the islets giving 
islets the “spider-like shape”, which has been described previously [26]. 
Because of the lost islet cells and remaining extensions, determining 
the diameter of the islets was complicated. We measured the average 
islet core diameter, and excluded the extension area. 

Insulin content

To determine the insulin content, insulin immunohistochemistry 
(IHC) was performed on the pancreatic sections according to 
previously published procedures [27]. Images were analyzed with 
Ps Adobe Photoshop CZ4 extended software. Insulin intensity was 
determined from each cell and then the background staining was 
subtracted from each of the values and then the average was calculated. 
The insulin content analysis was conducted by a blinded reviewer who 
did not participate in the animal portion of the studies.

Statistics

One-way ANOVA on ranks (Kruskal-Wallis) followed by Dunn’s 
pairwise comparisons was used. T- test and Mann Whitney Rank sum 
test was used to compare the difference between groups.  Results were 
expressed as averages of each group or cell population ± SEM. P < 0.05 
was defined as significant.

Results
Daily random blood glucose measurements for each animal were 

averaged per week and plotted for the course of the study. At the 
initiation of the exercise study there was already a statistical increase in 
the starting weight of the fatty diabetic rats (ZDF) compared to the lean 
controls (Figure 1A). Within the diabetics and control groups there 
was no initial statistical difference (sedentary vs. exercise) in initial 
weight. Over the course of the study, there was a significant difference 
in the amount of weight gained by the control animals. Sedentary 
control animals gained an average of 18.2% of their baseline weight 
while exercise control animals gained 26.2% of their baseline weight 
(Figure 1A). Sedentary diabetic animals gained an average of 5.6% of 
their weight while exercise diabetic animals lost 0.5% of their initial 
weight. Although the non-diabetic animals gained a greater percentage 
of their weight during the 7 week study, still the sedentary diabetic rats 
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weighed more than the control animals at the termination of the study 
(p<0.05). 

The average blood glucose levels of all of the ZDF rats were 
classified as diabetic with levels above 300 mg/dl prior to the initiation 
of exercise, which was statistically higher than the control lean rats 
(Figure 1B, p<0.001). There was no significant difference in the blood 
glucose levels at the end of the study between the two diabetic groups 
(exercise diabetic vs. sedentary diabetic) or between the two control 
groups (exercise control vs. sedentary control). Likewise, there was no 
difference in the average HbA1c levels (sedentary control = 4.2% ± 1.3%, 
exercise control = 4.7% ± 1.3%, sedentary diabetic = 12.2% ± 3.5%, 
exercise diabetic = 12.1% ± 3.8%). There was no significant effect of 
exercise on blood ketone levels in the lean animals (sedentary control 
= 0.36 ± 0.05 mmol/l, exercise control = 0.27 ± 0.02 mmol/l). Likewise, 
there was no effect of exercise on blood ketone levels in the diabetic 
groups at the termination of the study (sedentary diabetic 0.70 ± 0.13 
mmol/l, exercise diabetic = 0.70 ± 0.11 mmol/l). However, there was a 
significant difference between the levels in the lean animals versus the 
diabetic with levels significantly higher in the diabetic rats (p < 0.01).

Islet morphology

Islets from lean control rats had β-cells located in the core of the 
islet with α- and δ-cells on the outer mantle, as described previously 
(Figure 2A) [27]. Diabetes resulted in a loss of endocrine cells resulting 
in disrupted islets (Figure 2B). These islets had a “spider”-like shape 
with entire sections of cells missing. Exercise training had no effect on 
the morphology of the islets from lean rats (Figure 2C), but appeared 
to improve islet morphology in the diabetic groups (Figure 2D). Islets 
were classified according to intact, with no missing sections or spider-
like extensions, or disrupted. Figure 2E illustrates the high level of 
intact islets in the lean control rats. Diabetes significantly increased the 
percentage of disrupted islets (p<0.001). Exercise maintained a higher 
level of intact islets in diabetic rats compared to the sedentary diabetic 
rats (p < 0.001).The results suggest that exercise helps the diabetic 
pancreatic islets maintain more of their normal morphology. 

Islet diameter

The diameter of each islet was measured. In non-diabetic lean 
control rats exercise had no effect on the core islet diameter (Figure 3A). 
For islets from diabetic animals, measurements of islet diameter were 
difficult, because a large percentage of the islets were disrupted with 
unclear borders as noted in Figure 2.  Thus, the core of the remaining 

islet cells was measured whenever the islet had disrupted regions. There 
was no effect of exercise on the core diameter in the diabetic animals.

Islet density

With loss of endocrine cells within islets apparent in the diabetic 
rats, we hypothesized that the total number of islets, or islet density, 
would be affected by diabetes and potentially by exercise. Overt diabetes 
in the ZDF rat did not result in a decrease in islet density (Figure 3B). 
Further, exercise had no significant effect on islet density in the control 
or diabetic populations. 

Islet cell composition

In the immunofluorescence images of the α-, β-, and δ-cells, there 
was clearly a rearrangement of the islet morphology in diabetic rats. 
However, it was unclear from images whether the percentage of each 
cell type changed. Cell counts of immunofluorescently stained sections 
indicated that islets from the control groups (sedentary and diabetic) 

Figure 1: Animal Characteristics. A) Body weight measurements were taken 
weekly in diabetic and control groups showing a gradual increase in weight in 
the non-diabetic rats. In contrast, the exercise-trained diabetic rats did not gain 
weight. There was a significant difference in the final weight of the sedentary 
diabetic animals (SedDiab) compared to the other 3 groups. p< 0.05 B) Daily 
blood glucose measurements were averaged based on week and plotted. Both 
diabetic groups had significantly higher blood glucose levels than the lean non-
diabetic controls throughout the length of the study. p< 0.01.
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Figure 2: Islet Morphology. Pancreatic sections were stained for insulin 
(green), glucagon (red) and somatostatin (blue) A) A representative islet from 
a sedentary lean control rat shows that in sedentary animals there is a mantle 
around the islet made of glucagon and somatostatin. Insulin-producing β-cells 
are in the core of the islet. B) Sedentary diabetic rat islets clearly contained 
regions devoid of insulin, glucagon, or somatostatin staining. Islets with 
sections void of hormone staining were classified as disrupted. C) Exercise 
did not change the shape or orientation of the cells in the control animals. D) 
However, exercise improved islet shape in the diabetic rats. E) Quantification 
of islet classifications of intact and disrupted shows no effect of exercise in 
the control rats, and a dramatic decline in the percentage of intact islets with 
diabetes (p < 0.001). Exercise of the diabetic groups significantly increased the 
percentage of intact islets and decreased the percentage of disrupted islets (p 
< 0.001). Scale bar represents 100 µm.
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were comprised predominantly of β-cells (Figure 4). However, in the 
islets from the diabetic animals, there was a statistically lower percentage 
of β-cells compared to the lean rats (p < 0.05). The percentage of 
glucagon-positive α-cells was significantly higher in islets from diabetic 
rats compared to the lean controls (p < 0.05). Finally, the percentage 
of somatostatin-positive δ-cells was also significantly higher in islets 
from diabetic rats compared to the controls (p < 0.05). There was no 
significant difference between the relative proportions of β-, α-, δ-cells 
between the sedentary diabetic and exercise diabetic groups suggesting 
that exercise did not affect the endocrine cell composition. 

Insulin content

Immunohistochemistry staining for insulin provided estimates 
of insulin content (Figure 5, red). In lean control rats (sedentary or 
exercised) there was an abundance of insulin (Figure 5A and 5C). In 
sedentary diabetic animals there was far less insulin within each islet 
(Figure 5B), and exercise appeared to improve the insulin amount 
(Figure 5D). Quantification of the over 2400 β-cells from more than 
100 islets is summarized in Figure 5E. Exercise was associated with a 
significant decrease in insulin staining/islet in the healthy, non-diabetic 
rats (p < 0.001). Diabetes caused a significant decrease in the insulin 
content of sedentary animals (sedentary control vs. sedentary diabetic; 
p < 0.001). In contrast to the non-diabetics, in diabetic animals, exercise 
actually increased insulin content (p < 0.001). The only comparison in 
Figure 5E that was not statistically different was between the exercise 
control rats and the sedentary diabetics (NS). 

Plasma insulin levels

Plasma insulin levels did not correlate with the islet insulin content. 
Not surprisingly, non-diabetic control animals had less plasma insulin 
than the diabetic animals (Figure 6). Exercise reduced the insulin level 
in the lean controls significantly (p < 0.05). Exercise did not significantly 
alter the plasma insulin levels of the diabetic groups.  However, there 
was a large variation in the plasma insulin levels in the diabetic groups 
that was not present in the controls.

Discussion
Exercise and diet have been the cornerstones of lifestyle 

interventions as a way to prevent diabetes. In healthy individuals 
and animals, physical activity alone can delay or even prevent the 
development of T2D later in life. In non-diabetics, exercise improves 
islet function within the pancreas, specifically the β-cells [28-31]. 
However, far less is understood about the effects of exercise on the 
pancreatic islets in people who already have established diabetes. 

Figure 3: Islet Quantification:
The core of the islets was significantly decreased in the diabetic groups 
compared to the lean controls with P < 0.05. However, exercise had no effect 
on the core islet diameter in either group. B) Islet density was calculated as the 
number of islets per section of pancreatic tissue. Neither diabetes nor exercise 
affected the number of islet/section in the diabetic groups.
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Figure 4: Islet Cell Composition. There was no significant difference in the 
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However, both of these groups had significantly greater numbers of beta-cells 
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Figure 5: β-cell insulin content. Representative pictures of insulin staining 
(red) with hematoxylin counterstain from all the four groups. A) Sedentary 
control rat islets contained clear insulin staining. B) Diabetic rat islets contained 
dramatically less insulin and at times, islets were difficult to identify due to the 
poor insulin staining. C) Exercised lean rats contained islets brightly-stained 
for insulin. D) Exercise appeared to improve the insulin intensity in the diabetic 
rat islets. E) Quantification of the images showed that exercise significantly 
reduced the insulin staining in the lean controls, and significantly increased 
insulin staining in the diabetic rats. Further the sedentary diabetic rat islet 
insulin staining was significantly less than the sedentary non-diabetic rats. In 
fact, the only comparison that was not statistically different was between the 
lean exercised animals and the sedentary diabetic rats. Scale bar represents 
100 µm.
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Certainly exercise, begun after the diagnosis of overt diabetes can 
reverse or minimize the peripheral tissue insulin resistance [20,32,33]. 
However, studies demonstrating exercise-induced improvement in 
β-cell function in those with overt diabetes have been scant.

In this study, ZDF rats with mature diabetes underwent moderate 
intensity exercise for 7 weeks. The intensity of exercise resulted in a 
significant difference in weight at the termination of the study between 
the exercised and sedentary ZDF rats. Exercise failed to alter plasma 
insulin levels or random glucose values in the diabetic rats. Further, 
exercise did not change the islet density or core diameter, or islet cellular 
composition. However, exercise was associated with an increase in islet 
insulin content and maintenance of more normal islet morphology in 
the diabetic animals. 

Disrupted islet morphology and loss of islet function has been well 
established with progressing diabetes [12,26,34]. Maintanence of islet 
morphology with exercise in diabetic animals has been one of the most 
consistent findings across diabetes studies [35]. Exercise prevented 
islet failure by maintaining the islet insulin stores, thereby maintaining 
overall islet quality [13]. Columbo et al. showed that exercise improved 
β-cell health in ZDF rats without significant changes in islet cell gene 
expression profiles [36]. Our results were in agreement with these three 
studies, showing a significant increase in the number of disrupted islets 
in the diabetic rats, which was mitigated by exercise. Of note, all of 
the previously mentioned studies focused on the ability of diabetes to 
maintain islet health prior to the onset of T2D. Only our study initiated 
exercise after overt diabetes.

When discussing changes in islet morphology with diabetes, one of 
the main factors is loss of β-cells. Previously only Kiraly et al. measured 
changes in islet endocrine cell composition in animal models of T2D. 
Similar to our findings, they showed that ZDF rats had decreased 
β-cell mass compared to the non-diabetic controls [35]. They also 
found a significant decrease in α-cell mass and an increase in δ-cells 
[35]. In their study, swimming caused an increase in β-cell mass with 
a decrease in α-cell and δ-cell mass [35], which is different than the 
results reported here showing no exercise effect in the diabetic animals. 
The exercise effect in Kiraly et al. [35] is likely because the ZDF rats in 
their study were only 5 weeks old when exercise was initiated, and thus 

were still in the prediabetic stage. ZDF rats used in this study were 12 
weeks of age, which correlates with mature overt diabetes model [37], 
thus the disease was well established prior to the intervention. 

Although exercise had no effect on the percentage of remaining 
β-cells in diabetic rats, the results of this study illustrate clearly the 
attempt of individual β-cells to overcome the peripheral insulin 
resistance with increased insulin production in the remaining cells. 
Exercise caused a significant increase in insulin content per β-cell in 
the pancreata of the exercised diabetic rats. Few human studies have 
examined the effect of exercise on islet insulin secretion in diabetic 
populations. However, 3 months of aerobic exercise training in people 
with T2D increased the islet insulin secretion to both oral glucose and 
arginine challenges [38]. In ZDF rats exercised for 11 weeks, in vivo and 
in vitro insulin release from isolated islets was higher than sedentary 
rats [39]. In another study with the ZDF rats also showed that the islet 
insulin store was greater in exercised compared to sedentary ZDF rats 
[13]. This finding has been consistent across diabetic animal model 
types. In partially-pancreatized rats, 8 weeks of exercise improved 
insulin secretion [40]. In a toxin-induced diabetic animal model using 
streptozotocin, exercise increased staining for insulin and preservation 
of β-cells [23,41]. Importantly the current study confirms that the same 
positive benefits can be achieved in an overtly T2D animal model.

An important marker of islet function is plasma insulin levels, yet 
we found no change in plasma insulin levels in the exercised diabetic 
rats. It is not surprising that there is a disconnect between β-cell 
function and plasma insulin levels. When insulin resistance is present 
so that insulin cannot be utilized in the periphery, β-cells attempt to 
overcome the resistance with more insulin secretion [37]. Thus, plasma 
insulin levels can actually rise with a corresponding loss in β-cell mass, 
as demonstrated previously [37]. Over time, the rising blood glucose 
levels are a result of an inability of the β-cells to replicate at a rate fast 
enough to overcome the T2D-associated β-cell death [37]. Tokuyama 
et al. measured a 7 fold increase in plasma insulin levels in fully diabetic 
ZDF rats compared to non-diabetic controls [26]. In contrast, we 
measured a nearly 3 fold increase with diabetes.

Exercise in healthy individuals and animals consistently cause a 
decline in insulin levels. A significant decrease in plasma insulin levels 
with long-term (12 week) exercise training in healthy individuals was 
demonstrated by deLemos et al. [42]. The authors concluded that most 
of the improvement in plasma insulin levels was due to improved 
peripheral insulin resistance rather than changes in the β-cells. 
Not as much insulin was necessary in the exercised groups because 
contraction of the muscle during exercise increased glucose transport 
into the muscle without insulin and increased GLUT4 to the plasma 
membrane to increase the effectiveness of insulin [43]. These findings 
are in agreement with our results in the non-diabetic group.

In diabetic animals, exercise was associated with a 57% increase 
in plasma insulin levels in the exercised ZDF rats compared to the 
sedentary ZDFs [12]. Another study found an increase with 5 weeks 
of exercise in Zucker rats [36]. Likewise, 5 weeks of regular swimming 
caused a significant increase in plasma insulin levels in ZDF rats [35]. 
In contrast, a different group of researchers found no change in plasma 
insulin levels in Zucker rats with treadmill exercise, consistent with 
our results [15]. It is again important to note that all of these studies, 
including the latter, were conducted on prediabetic ZDF rats. In 
contrast, our study used animals that were already diabetic based on 
their age and blood glucose [26]. The timing of the intiation of exericse 
is vitally important as β-cell loss continues to occur as the disease 
progresses. In an interesting study on people with overt T2D, Dela 
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et al. aerobically trained people for 3 months [44]. They found that 
people who already had a low level of insulin secretion (more β-cell 
loss) did not have a positive response to exercise with improved β-cell 
function. In contrast, if individuals started with a moderate level of 
insulin secretion before the onset of exericse, then the aerobic activity 
improved β-cell function. This is consistent with our results showing no 
effect of exercise on plasma insulin levels in the diabetic populations.

Conclusion
The study shows that exercise training, even in mature overt T2D, 

can improve the insulin content and morphology of islets. These 
improvements did not transfer to improved glycemic control or plasma 
insulin levels. However, that may be because the disease had progressed 
too far by the time exercise was initiated. It will be important to time 
the exercise intervention according to the onset of the disease and 
determine, in humans, the window of opportunity for benefitting the 
islets.
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