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Introduction
Diabetes mellitus, a well recognized risk factor for the development 

of heart failure, was initially linked to heart disease 30 years ago 
with the Framingham Heart Study [1-7]. Cardiac failure in diabetes 
is primarily due to ischemic heart disease caused by coronary artery 
disease. However, it is proposed that the incidence of heart failure in 
diabetes, except for atherosclerotic coronary lesions, is 4-5 times higher 
compared to nondiabetics. Rubler et al. propounded the concept that 
diabetic cardiac failure without coronary lesions is classified as diabetic 
cardiomyopathy and it is caused by systolic and diastolic dysfunction 
due to diabetes itself [8]. Conversely, patients with heart failure are 
also at a higher risk of developing diabetes [9]. It has been revealed 
that there is a significant overlap in the development of both diabetes 
and cardiac failure. Diabetes is characterized by increased metabolism 
of free fatty acids due to reduced glucose utilization. The mutation of 
thiamine (vitamin B1) transporter gene SLC19A2 is linked to type 2 
diabetes mellitus [10-12]. We believe that thiamine has the ability to 
increase carbohydrate metabolism and the amount of catalytic thiamine 
absorbed must necessarily increase if glucose is to be metabolized in 
large quantities.

Thiamine Status in Clinical Diabetes
Thiamine is a coenzyme that is involved in multiple steps of 

glucose metabolism and interacts with transketolase (TK) and pyruvate 
dehydrogenase (PDH) during decarboxylation [13]. It has been 
reported that thiamine is deficient in the blood of diabetic patients [14]. 
Thornalley et al. discussed that low plasma thiamine concentration 
in diabetes may be of limited significance if tissues can upregulate 
the gene expression and protein levels of thiamine transporters and 
maintain normal TK activity [15]. The above phenomenon occurs 
in the normoglycemic state [16,17]. However, Babaei-Jadidi et al. 
suggested that their findings in experimental diabetic models indicate 
that the phenomenon does not occur in renal glomeruli in the diabetic 
state in which the enhanced hexosamine biosynthetic pathway 
may block increased expression of the genes that encode thiamine 

transporter-1, thiamine transporter-2 and reduced folate carrier-1 and 
their proteins [18]. Previous studies have suggested that TK activity 
and level of TK protein decreases in renal glomeruli in diabetes [18]. 
Similar impairment of thiamine uptake and metabolism may occur in 
the retina and peripheral nerve in diabetes [19,20]. Therefore, reduced 
folate carrier-1 is associated with impaired gene expression and 
decreased protein levels in the retina of diabetic patients [20]. 

Thiamine deficiency in diabetes is caused by the excretion of 
thiamine in urine with osmotic diuresis, but the metabolic consumption 
may be due to increased glucose metabolism in hyperglycemia 
[21,22]. Renal clearance of thiamine has been reported to increase in 
diabetic patients. A link between low plasma thiamine concentration 
and a profound increase in renal clearance and fractional excretion 
of thiamine has also been suggested [15]. Thornalley et al. suggested 
that mechanisms of increased renal clearance of thiamine in diabetes 
probably involve decreased reuptake of thiamine in renal proximal 
tubules [15,18,23]. Thiamine clearance was dysfunctional in diabetic 
patients who had normal glomerular filtration rates that were assessed 
by creatinine clearance. Renal mishandling of thiamine in diabetic 
patients has been suggested to be an early marker of renal dysfunction 
in diabetes and, linked to the locus of renal thiamine reuptake, is 
indicative of proximal tubule dysfunction [15].

Diabetic complications and thiamine repletion

The pathogenesis of diabetic complications is caused by continuing 
hyperglycemia that cannot be handled by the glucose oxidation 
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Abstract
Once diagnosed with diabetes mellitus, the risk of diseases, such as nephropathy, neuropathy, retinopathy and 

heart disease also increases. The complication of diabetes accompanying myocardial disorder is known as diabetic 
cardiomyopathy, which is characterized by ventricular dilation that is usually asymptomatic as diabetes progresses. 
Myocardial fibrosis is closely related to diastolic dysfunction. Thiamine (vitamin B1), an essential micronutrient, has 
been reported to attenuate diabetic complications and all diabetics may be lacking in thiamine. Thiamine is a coenzyme 
utilized at multiple steps of glucose metabolism. We believe that thiamine repletion under hyperglycemia might activate 
glucose oxidation and reduce the overflow of glucose to the hexosamine biosynthesis pathway of glucose metabolism 
with concomitant reduction of diabetic lesions. The aim of this article is to highlight the role of thiamine, an important 
factor that combats diabetic complications, especially diabetic cardiomyopathy and also elucidate its impact on 
O-glycosylated protein in diabetes. Finally, we discuss the ability of thiamine repletion to prevent metabolic syndrome
and obesity, which are considered prediabetic states, as well as prediabetic cardiomyopathy.
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pathway as the main pathway of glucose metabolism. Instead, 
glucose enters the minor pathways of glucose metabolism, such as 
the hexosamine biosynthetic, diacylglycerol, advanced glycation end 
product and sorbitol pathways [24]. It is thought that cell function 
disorder is caused by various metabolic products based on an increase 
in the activity of these minor pathways [25]. 

Macrovascular and microvascular are general terms that refer to 
damaged larger (macrovascular) or smaller (microvascular) blood 
vessels. This damage results from a build-up of fat, blood clots and 
oxidation in the endothelium. Macrovascular disease is the most 
common cause of death among individuals with type 1 or type 2 
diabetes. Macrovascular diseases include coronary artery disease, 
cerebrovascular disease and peripheral vascular disease. Some 
complications of macrovascular diseases are ischemic heart disease, 
heart attack (myocardial infarction), intermittent claudication, 
lower extremity ulcer and stroke. Complications of microvascular 
diseases are diabetic nephropathy, diabetic neuropathy and diabetic 
retinopathy. An increased plasma level of soluble vascular adhesion 
molecule (sVCAM)-1 acts as a marker of endothelial dysfunction 
and increased risk of atherosclerosis [26,27]. In diabetic patients with 
normal renal function, sVCAM-1 level was increased and linked to 
microvascular and macrovascular complications [28-31]. Thornalley et 
al. suggested that a decreased availability of thiamine in vascular cells 
in diabetes exacerbates metabolic dysfunction in hyperglycemia [15]. It 
has also been suggested that low plasma thiamine concentration may 
be a confounding factor linked to increased sVCAM-1 in diabetes [15]. 
In addition, thiamine deficiency in clinical diabetes may increase the 
fragility of vascular cells to the adverse effects of hyperglycemia and 
thereby, increase the risk of developing microvascular complications. 
Microvascular diseases damage the small blood vessels and can 
occur in long-term diabetic patients. Thornalley et al. suggested that 
correction of the low plasma thiamine concentration with thiamine 
supplements may decrease the risk of microvascular complications in 
diabetes [15]. As reported in diabetic nephropathy and retinopathy, 
to prevent pathogenesis and development of diabetic complications, 
the physiological concentration of thiamine must be sufficient to 
produce the desirable pharmacological effects [18,25]. It has previously 
been reported that high-dose thiamine supplementation counters 
diabetic dyslipidemia [32]. It has also been demonstrated that high-
dose application of benfotiamine as a derivative of thiamine inhibits 
increases in the hexosamine biosynthetic, diacylglycerol and advanced 
glycation end product pathways under the hyperglycemic state; 
prevents the pathogenesis of diabetic nephropathy and retinopathy; 
and delays the development of complications [25]. In streptozotocin-
induced diabetes, protein kinase C activation related to increased renal 
fibrosis is inhibited by the administration of thiamine and α-lipoic 
acid as another coenzyme of PDH that attenuates renal fibrosis in 
streptozotocin diabetes [18, 33, 34].

Effect of thiamine on diabetic cardiomyopathy

Our laboratory data have clearly demonstrated the effect of 
thiamine repletion on cardiac fibrosis, which contributes to heart 
failure in streptozotocin-induced diabetic rats [35]. Diabetes was 
induced in rats by an intraperitoneal injection of streptozotocin, which 
is a chemical that is selectively toxic in the insulin-producing β-cells 
of mammals, to obtain an animal model of diabetes [36]. In these rats, 
the thiamine levels are low both in plasma as well as red blood cells 
and as expected, supplemental thiamine enhances these levels (Table 
1). Blood glucose levels were remarkably higher in thiamine-deficient, 
streptozotocin-induced diabetic rats compared with normal controls. 

Thiamine repletion did not influence blood glucose levels in diabetic 
rats that were not deficient in thiamine.

The key findings are summarized as follows: 

1. Streptozotocin-induced diabetes resulted in left ventricular 
fractional shortening, as shown by echocardiography and this 
deficiency reduced the cardiac contractile activity. 

2. The brain natriuretic peptide mRNA expression level in the 
left ventricle, a cardiac hormone that serves as a biochemical 
marker during heart failure, increased in streptozotocin-
induced diabetes.

3. Cardiac fibrosis, which is a characteristic of diabetic 
cardiomyopathy, was histologically shown using Sirius red 
stain to have a higher affinity for collagen. 

4. The mRNA expression levels of thrombospondin, fibronectin, 
plasminogen activator inhibitor-1 and connective tissue 
growth factor increased, all of which promote cardiac fibrosis.

5. The O-glycosylated protein was higher in the left ventricle in 
streptozotocin-induced diabetic rats.

Thiamine repletion improved all of the above, suggesting that 
thiamine has the ability to protect against diabetic cardiomyopathy 
[35]. In support of this hypothesis, Ceylan-Isik et al. demonstrated 
that benfotiamine rescues cardiomyocyte contractile dysfunction 
[37]. Furthermore, thiamine may significantly suppress not only the 
cardiac fibrosis but also the O-glycosylated protein in the left ventricle, 
suggesting that activation of the hexosamine biosynthetic pathway 
also may be related to the pathogenesis and development of diabetic 
cardiomyopathy [35] (Figure 1). 

Protein O-glycosylation contributes to diabetic 
cardiomyopathy 

Uncontrolled elevated blood glucose levels in diabetes produce 
chronic tissue damage. These occur largely due to a process called 

Elevated glucose entry into cells

Hyperglycemia

Overflow of glucose 
to the minor pathway

The main pathway
of 

glucose metabolism

Activation of HBP

Protein 
O-glycosylation

O-glycosylation
of PDH E1α 

Cardiac fibrosis

Diabetic cardiomyopathy

PDH activity

Thiamine repletion

Thiamine↓

Figure 1: Hypothetical scheme to explain the prevention of diabetic 
cardiomyopathy by thiamine repletion [35,45,49]. HBP: Hexosamine 
Biosynthetic Pathway; PDH: Pyruvate Dehydrogenase.

Group                   Blood plasma thiamine 
(nM)

Red blood cells thiamine 
(nmol/μg protein)

Control 298.6 ± 60.1 0.98 ± 0.07
Streptozotocin diabetes   94.1 ± 4.51* 0.49 ± 0.05*
Thiamine-treated 
streptozotocin diabetes   409.1 ± 17.3# 0.97 ± 0.05 #

Thiamine-treated 267.8 ± 25.9 0.85 ± 0.02 

Table 1: Blood plasma and red blood cells thiamine levels in each 
experimental group. Each value represents the mean ± S.E. of five experiments. 
*p<0.01, compared with the control. #p<0.01, compared with “Streptozotocin 
diabetes”. Modified from Kohda et al. [35].
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glycosylation, which adds a glucose molecule to protein thus modifying 
it and interfering with its function [38-40]. Activation of a minor pathway 
of glucose metabolism has been proposed as potentially contributing 
to the development of diabetic complications, such as the activation 
of the diacylglycerol, polyol or hexosamine biosynthesis pathways 
[24,41]. Among these, the diacylglycerol and hexosamine biosynthesis 
pathways most likely influence gene expression via post-translational 
modifications, such as phosphorylation and O-glycosylation of various 
transcriptional factors [42-44]. We have suggested that cardiac fibrosis 
and the level of protein O-glycosylation are elevated in diabetes [35]. 
Furthermore, we examined if the hexosamine biosynthesis pathway 
was involved in collagen expression in rat cardiac fibroblasts. The 
glucosamine treatment of rat cardiac fibroblasts caused an increase in 
collagen expression and enhanced O-glycosylated proteins [45]. These 
results suggest that O-glycosylation of protein induced by activation 
of the hexosamine biosynthesis pathway modifies collagen expression 
and contributes to diabetic cardiomyopathy [45] (Figure 1).

Effect of thiamine on diabetes-induced inhibition of PDH; 
the connection between PDH activity and O-glycosylation of 
PDH E1α

The activity of PDH is reduced in diabetic patients, which interferes 
with glucose metabolism [46,47]. PDH activity is regulated by 
reversible phosphorylation. It is dependent upon PDH kinase, which 
phosphorylates the PDH E1α subunit, contributing to the suppression 
of PDH activity [48]. It has been suggested that phosphorylation by 
PDH kinase renders PDH inactive. 

We investigated the exact mechanism of diabetes-induced 
PDH inhibition and effect of thiamine upon rat cardiac fibroblasts. 
Thiamine dramatically restored high glucose-induced PDH inhibition. 
Interestingly, high glucose loads did not alter the phosphorylated PDH 
E1α. PDH inhibition in rat cardiac fibroblasts was not accompanied 
by an increase in PDH E1α phosphorylation. O-glycosylated protein 
levels markedly increased in rat cardiac fibroblasts exposed to high 
glucose and was inhibited by thiamine. These results suggest that 
thiamine ameliorates diabetes-induced PDH inhibition by suppressing 
increased expression of the O-glycosylated protein. O-glycosylation 
of PDH E1α may be involved in the regulation of PDH activity [49] 
(Figure 1). Discovering the exact mechanisms that lead to a reduction 
in PDH activity may enable the prevention of diabetes and diabetic 
cardiomyopathy.

Future prospects of thiamine repletion in prevention against 
metabolic syndrome

Associated with excess weight, metabolic syndrome is a dangerous 
precursor to heart disease and type 2 diabetes. Unfortunately, obesity 
is occurring in endemic numbers in many countries [50]. While 
metabolic syndrome has its own individual characteristics, it is 
really a cluster of symptoms that are markers of much greater health 
problems to come. Once diagnosed with diabetes, many other health 
issues, such as nephropathy, neuropathy, macular degeneration and 
foot ulcers can manifest. The risk of stroke, heart disease, including 
heart attack, angina, atherosclerosis, arteriosclerosis and postoperative 
complications also increase. Metabolic syndrome inevitably leads to 
insulin resistance, which is a risky condition that promotes a whole 
cascade of other health issues apart from diabetes and heart conditions 
[51]. We chose Otsuka Long–Evans Tokushima Fatty (OLETF) rats, 
developed by Kawano et al., as models for studying human obesity 
[52,53]. Cholecystokinin is associated with satiety control mechanisms 
and polyphagia-induced OLETF rats lack functional cholecystokinin-A 

receptors [54,55]. OLETF rats exhibit progressive obesity and 
metabolic disorders similar to human metabolic syndrome [56]. Four-
week-old OLETF rats were randomly divided into two groups; an 
untreated control group and a thiamine-treated group. OLETF rats 
were given water or water containing 0.2% thiamine. All rats were 
housed in cages and provided with standard rodent chow. Body weight 
and food intake were measured weekly throughout the experimental 
period. Thiamine repletion, which plays an important role in glucose 
metabolism, can prevent diabetic cardiomyopathy and nephropathy, 
including that which occurs in obesity. We found that thiamine 
intervention can impact metabolic abnormalities, such as progressive 
obesity and metabolic disorders similar to human metabolic syndrome 
in polyphagia-induced OLETF rats [57]. Thiamine intervention 
averted obesity, mainly resulting from a reduction in visceral adiposity 
and prevented metabolic disorders in OLETF rats. Thiamine has the 
potential to prevent obesity and metabolic disorders in OLETF rats. 
Although corroboration is necessary, the present findings indicate 
that thiamine may be beneficial in targeting composite physiological 
abnormalities rather than individual component criteria and can be 
used for preventive intervention. Epidemiological data have shown 
that few patients develop diabetes or coronary heart disease when they 
consume thiamine-containing brown rice or wheat germ, as opposed 
to white rice [58-62]. Absorption of thiamine from food might be 
important in preventing metabolic syndrome. However, if thiamine 
intake is insufficient, it can be increased by consuming dietary 
supplements or medicines. Thiamine is a soluble vitamin and seems to 
have no potential side effects even if consumed in excess due to urinary 
excretion of the quantities not used by the body.

Closing Notes
Diabetes may well be the paradigm for all chronic disease. It is 

a syndrome that affects every organ system in the body. Metabolic 
syndrome should be considered as a prediabetic or a pre-cardiovascular 
disease state. In metabolic syndrome, there is a cluster of imbalances 
which work simultaneously and when this occurs, degenerative disease 
can accelerate at an alarming rate. Metabolic syndrome is largely a 
disease of modern times which can be blamed on overconsumption of 
carbohydrate-rich foods and excess weight. Although it is a disorder 
that can be easily identified and eradicated with a few dietary and 
lifestyle changes, many people find it difficult to make these changes. 
Therefore, it is critical to develop a new preventive strategy against 
metabolic syndrome. Obesity frequently leads to type 2 diabetes 
mellitus that can progress to diabetic complications. Fortunately, 
recent years have seen a renaissance in the development of methods 
to treat diabetes effectively. Current pharmaceutical interventions 
are moderately effective in treating clinical symptoms of metabolic 
syndrome; nevertheless, a basic pharmaceutical method for preventing 
obesity and its related metabolic disorders remains to be established. 
Moreover, elucidation of the mechanisms concerning obesity and 
diabetes mellitus contributes to the prevention of metabolic syndrome 
and the appearance of effective new medications available to treat 
diabetic cardiomyopathy. 
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