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Introduction
Glucose transport in to adipocytes and skeletal muscles is a major 

mechanism by which the body disposes excess glucose from the blood 
stream after a meal. These tissues express a unique glucose transporter 
isoform known as glucose transporter 4 (GLUT4) [1]. The majority 
of the GLUT4 expressed are retained in intracellular compartments 
in an unstimulated state and undergo rapid redistribution to the 
plasma membrane in the presence of the hormone, insulin, to carry 
out the massive uptake of glucose [2,3]. The insulin stimulated GLUT4 
translocation is mainly mediated through a phosphatidylinositol 
3-kinase (PI3K) dependent pathway [4]. Studies have shown that
activation of AMP-activated protein kinase (AMPK) pathway can
also induce GLUT4 translocation [5]. Defects in the insulin signal
transduction machinery which in turn results in impaired GLUT4
translocation is one of the leading causes for insulin resistance and type
2 diabetes [6]. In this scenario, there is considerable interest in finding
molecules that enhance GLUT4 translocation and glucose transport.
Given the role of AMPK in regulating glucose transport, compounds
that activate AMPK would have significant therapeutic implications.

Several plant extracts and/or small molecules have been shown to 
demonstrate hypoglycemic activity in animal model systems [7-9] as 
well as in cell based assay systems [10-13]. A study from our laboratory 
has identified gallic acid as the active principle from seabuckthorn 
leaf extract that induces glucose uptake in 3T3-L1 adipocytes [14]. It 
was later proved to be antihyperglycemic in streptozotocin induced 
diabetic rats [8]. Another example is berberine, an isoquinoline 
alkaloid that has gained substantial attention due to its blood glucose 
lowering effects in diabetic and insulin resistant states [15,16]. The 
widely used oral hypoglycemic agent metformin itself is a derivative 
of galegine from the plant Galega officinalis [17]. In an attempt to 
identify novel modulators of glucose transport from medicinal plant 
extracts, the methanol extract prepared from the leaves of Terminalia 

arjuna was found to stimulate glucose transport in 3T3-L1 adipocytes. 
Fractionation of the extract led to the identification of ellagic acid 
(EA) as an active component present in the extract. Further studies 
revealed that EA stimulated GLUT4 translocation occurs in an AMPK 
dependent manner and involves extracellular signal-regulated kinase 
1/2 (ERK1/2) and atypical protein kinase C ζ/λ (aPKC ζ/λ) activation.

Materials and Methods
Chemicals and reagents

Tissue culture media and supplements were purchased from 
Sigma Aldrich (St Louis, MO, USA). 3T3-L1 fibroblasts and C2C12 
myoblasts were obtained from National Centre for Cell Sciences, Pune, 
Maharashtra, India. 2-deoxy-D-[3H]-glucose was purchased from 
Amersham Life sciences (Buckinghamshire, UK). The myc-GLUT4-
GFP construct was a kind gift from Prof. Jeffrey E. Pessin, (Albert 
Einstein College of Medicine, NY, USA). The primary antibodies 
against myc epitope, phospho-Akt (Ser473), Akt, phospho-AMPK alpha 
(Thr172), AMPK, phospho-PKC ζ/ λ (Thr410/403), phospho-ERK (Thr202/
Tyr204), ERK ½, phospho-As160 (Thr642) and β-actin, alexa-conjugated, 
and HRP-conjugated anti-mouse, anti-rabbit secondary antibodies 
and Enhanced chemical luminescence (ECL) were purchased from 
Cell Signaling (Beverly, MA, USA). Wortmannin, Compound C, 
PD98059 and the authentic sample of EA were obtained from Sigma. 
Berberine was kindly provided by Dr Asoke Banerji (Amrita Vishwa 
Vidyapeetham, India). Organic solvents for extraction and other 
chemicals used were of the highest analytical grade.
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Abstract
Glucose transporter 4 (GLUT4) plays a pivotal role in maintaining whole body glucose homeostasis by mediating 

insulin responsive glucose transport into adipocytes and skeletal muscles. This is achieved through translocation 
of GLUT4 from an intracellular pool to the cell surface and certain compounds may enhance this process. In the 
present study we have shown that ellagic acid, a plant polyphenol, can stimulate glucose uptake activity in both 3T3-L1 
adipocytes and C2C12 myotubes by inducing GLUT4 translocation. Unlike insulin, ellagic acid did not stimulate the 
Ser473 phosphorylation and activation of Akt. However, it was found to induce AMP-activated protein kinase (AMPK) 
activation in both cell lines. Analyzing the downstream mechanism suggested an absence of involvement of Rab 
GAP AS160 in ellagic acid induced GLUT4 translocation. Further studies revealed that ellagic acid stimulated glucose 
transport occurs though a mechanism involving extracellular signal-regulated kinase (ERK1/2) and atypical PKC ζ/λ 
(aPKC ζ/λ) activation. 
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Plant material, extraction and fractionation

Terminalia arjuna leaves were collected from Wayanad, Kerala, 
India. The authenticity of the plant was confirmed by Dr M.K. Ratheesh 
Narayanan, Senior Scientist, M S Swaminathan Research Foundation 
(MSSRF), Wayanad. Leaves (485g) were dried in hot air oven at 
500C, powdered and successively extracted with petroleum ether, 
chloroform, ethyl methyl ketone and methanol in a soxhlet apparatus. 
A portion of the methanol extract was subjected to acid hydrolysis (8% 
H2SO4, 2h at 70°C) and the individual components were separated by 
column chromatography. The progress of separation of compounds in 
column was monitored by thin-layer chromatography (TLC); circular 
paper chromatography and high-performance liquid chromatography 
(HPLC, Shimadzu, CTO-104SUP) were used for the direct comparison 
of isolated compound with authentic sample. Confirmatory chemical 
tests, melting point determination, optical spectroscopy (infra red, 
ultra violet) were used for molecular characterization.  

Cell culture, differentiation and transfection

3T3-L1 fibroblasts and C2C12 myoblasts were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% 
fetal bovine serum (FBS), 1% penicillin, 1% streptomycin and 0.1% 
amphotericin B in an atmosphere of 5% CO2 at 37°C. Differentiation 
of 3T3-L1 fibroblasts was induced by incubating confluent plates in 
differentiation induction medium containing 500 µM 3-isobutyl-
1-methylxanthine (IBMX), 250 nM dexamethasone and 100 nM 
insulin. Two days after induction, the medium was replaced with 
DMEM containing 100 nM insulin. The medium was subsequently 
replaced with fresh culture medium every alternative day until the cells 
attained adipocyte morphology. Differentiation of C2C12 myoblasts 
was induced by switching confluent cells to DMEM supplemented 
with 2% FBS and allowing formation of myotubes with medium 
changes every 24 h. Cells were used for experiments 4-5 days after 
differentiation. 3T3-L1 preadipocytes were transfected with the myc-
GLUT4-GFP construct by electroporation at 250 mV. The transfected 
cells were maintained in DMEM containing 600 µg/ml G418 to allow 
the growth of stable clones. Each clone was subcultured and monitored 
by fluorescent microscopy to detect GFP expression. One of these 
clones with the proper intracellular localization of GFP was selected 
for further studies.

Glucose uptake assay 

Differentiated 3T3-L1 adipocytes and C2C12 myotubes grown on 
24-well plates were serum starved for two hours and treated with 0.1% 
dimethyl sulphoxide (basal), 50 nM insulin (positive control) or various 
concentrations of EA for 30 min. After induction, cells were washed 
with Krebs-Ringer-Phosphate (KRP) buffer (pH 7.4) containing 130 
mM NaCl, 5 mM KCl, 0.8 mM CaCl2, 1.3 mM MgSO4 and 10 mM 
Na2HPO4. Glucose uptake was initiated by the addition of 0.5 ml KRP 
buffer containing 10 µM 2-deoxy D-glucose and 0.25 µCi/ml 2-deoxy-
D-[3H]-glucose at 37°C. Glucose uptake was terminated after 5 min by 
three rapid washes with ice-cold KRP buffer. Cells were lysed with 0.1% 
sodium dodecyl sulfate (SDS) and the cell associated radioactivity was 
measured in liquid scintillation counter (Beckman Coulter, LS 6500, 
Fullerton, CA, USA). Glucose uptake assay was also conducted in cells 
prior treated with inhibitors; wortmannin, compound C or PD98059.

GLUT4 translocation assay

3T3-L1 cells stably expressing a myc-GLUT4-GFP chimera were 
grown to 70% confluency on glass cover slips. After serum starvation 
for 2 h, cells were incubated with varying concentrations of EA for 30 

min. Treatment with 50 nM insulin was used as the positive control. The 
cells were washed twice with phosphate buffered saline (PBS), and fixed 
with 2% paraformaldehyde for 30 minutes in dark. The cells were again 
washed with PBS and quenched with 50 mM NH4Cl for 10 minutes. 
The cells were then incubated with anti-myc antibody for 1h at room 
temperature, washed, and counterstained with alexa-conjugated rabbit 
anti-mouse secondary antibody for 30 min and membrane GLUT4 was 
visualized by fluorescence microscopy. Fluorescence intensity of the 
cells attached to cover slips was quantified and plotted. Fluorescence 
intensity was calculated by Image-Pro Plus software (version 5.1.2). 

Immunoblotting

Differentiated adipocytes and muscles were serum starved for 2 h. 
Following treatment with insulin and EA for 30 min, cells were washed 
with PBS and lysed with 1× SDS loading buffer. Proteins were resolved 
on 10% SDS-polyacrylamide gels and transferred to PVDF membranes. 
The membranes were blocked for 1 h with 5% (w/v) BSA, incubated 
with primary antibodies overnight at 4°C and the secondary antibodies 
for 1 h at room temperature. The bands were detected by the ECL kit.

Statistical analysis

The data are expressed as mean ± s.d. Statistical comparisons 
were made using Student’s unpaired t-test using Microsoft excel and 
P-values < 0.05 were considered significant.

Results
Extraction and isolation of ellagic acid from Terminalia 
arjuna leaves

Each of the sequential extracts was analyzed for their effect on 
glucose transport in 3T3-L1 adipocytes, among which the methanol 
extract (hence forth referred to as TM) stimulated glucose uptake in 
a dose dependent manner (Figure 1A). The compounds in the extract, 
due to their possible complex nature, did not resolve well in the TLC. 
Hence an acid hydrolysis was carried out with aqueous sulfuric acid 
followed by extraction with ethyl acetate. In order to isolate the active 
compound, the products of hydrolysis (henceforth referred to as TMH) 
were subjected to silica column chromatography. Several fractions were 
collected and pooled together based on their similarity in TLC. The 
active fraction was a light beige crystalline powder which was slightly 
soluble in water and was found to be ferric chloride positive. HPLC 
analysis of this fraction suggested the presence of a single peak with 
a characteristic UV absorption at 253 and 367 nm. The preliminary 
observations suggest that the isolated compound could be EA and it 
was confirmed by direct comparison of UV, IR, melting point, TLC and 
paper chromatography data of the compound with an authentic sample 
of EA. The subsequent studies were carried out with commercially 
obtained EA.

Ellagic acid stimulates glucose transport in 3T3-L1 adipocytes 
and C2C12 myotubes

In the present study, TM displayed a concentration dependent 
increase in glucose uptake activity in 3T3-L1 cells, with a maximum 
response at a concentration of 50µg/ml (Figure 1A). TMH fraction 
also exhibited a similar activation of glucose uptake suggesting that 
acid hydrolysis has not affected the activity of the compounds (data 
not shown). Subsequent fractionation led to the identification of 
EA as an active principle in the TMH fraction. Treatment with EA 
for 30 min induced basal glucose uptake in 3T3-L1 adipocytes in a 
concentration dependent manner. A  maximumum of 1.9 fold increase 
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in glucose uptake was observed with 100nM EA and further increase 
in concentration reduced the rate of glucose transport (Figure 1B). 
EA (1-500nM) was also found to stimulate glucose uptake in C2C12 
myotubes. There was a 1.7 fold increase in glucose uptake activity at 
100 nM concentration beyond which the activity was reduced (Figure 
1C). 50 nM insulin was used as the positive control in these assays.

Ellagic acid stimulated GLUT4 translocation in transfected 
3T3-L1 preadipocytes

GLUT4 translocation from an intracellular pool to the cell surface 
is the primary factor responsible for insulin induced glucose uptake 
in adipocytes and skeletal muscles. This process can be studied in 
vitro by employing a chimeric GLUT4 construct with an epitope at an 
extracellular domain so that the extent of the epitope externalization 

directly matches with the amount of GLUT4 present on the plasma 
membrane [18]. To determine whether the increased glucose uptake 
by EA was a result of enhanced GLUT4 translocation, cell surface 
expression of GLUT4 was monitored. Upon treatment with different 
concentrations of EA, the rate of GLUT4 translocation was increased 
in a dose dependent manner and 100nM EA showed a 2 fold increase in 
3T3-L1 cells (Figure 2A and 2B). This increase in GLUT4 translocation 
correlates with the increase in glucose uptake observed at the same 
concentration. EA treatment was also found to induce GLUT4 
translocation in differentiated myotubes as assessed from plasma 
membrane sheet assay (data not shown).

EA stimulates the activation of AMPK but not of Akt

Since EA was stimulating GLUT4 translocation our next attempt 

Figure 1: Effect of TM and EA on glucose uptake. Differentiated cells were serum starved for 2 hours and incubated with varying concentrations TM or EA for 
30 minutes. Graph showing increase in glucose uptake upon treatment with different concentrations of TM in 3T3-L1 adipocytes (A). Graph showing concentration 
dependent increase in glucose uptake with EA in 3T3-L1 cells (B) and C2C12 cells (C). Cells incubated with vehicle (0.1% DMSO) alone were used to measure 
the basal rate of glucose uptake and 50 nM insulin as positive control in both cell types. Data shown are fold increase in glucose uptake compared to the basal. 
Values are shown as the mean ± S.D. of three different experiments carried out in duplicates. *P<0.05 vs. unstimulated cells.

Figure 2: Effect of EA on GLUT4 translocation. 3T3-L1 preadipocytes stably expressing myc-GLUT4-GFP chimera were serum starved for 2 h and incubated 
with indicated concentrations of EA or insulin for 30 min. Myc epitope externalization was measured by indirect immunofluorescence. (A) Images showing cell 
surface GLUT4 and (B) showing fold increase in fluorescence intensity of secondary antibody upon treatment with insulin or EA compared to the basal. Cells 
treated with vehicle (0.1% DMSO) were used to measure non-specific fluorescence. Values are shown as the mean ± S.D. of three different focal planes of the 
same experiment. *P<0.05 vs. unstimulated cells.



Citation: Poulose N, Vishnu Prasad CN, Nidhina Haridas PA, Anilkumar G (2011) Ellagic Acid Stimulates Glucose Transport in Adipocytes and 
Muscles through AMPK Mediated Pathway. J Diabetes Metab 2:149. doi:10.4172/2155-6156.1000149

Page 4 of 7

Volume 2 • Issue 7 • 1000149
J Diabetes Metab
ISSN:2155-6156 JDM, an open access journal

was to delineate the signaling mechanism involved in this process. 
To evaluate the role of protein kinase B (PKB/Akt), classical insulin 
signaling pathway intermediate, in EA stimulated glucose transport, 
differentiated adipocytes were treated with 100 nM EA for 30 minutes 
and the phosphorylation status of Akt was examined. Unlike insulin, 
EA had no effect on Ser473 phosphorylation and activation of Akt 
in 3T3-L1 adipocytes and C2C12 mytubes (Figure 3A and 3B). This 
suggests that EA induced glucose transport is not mediated through 
Akt pathway.

AMPK activation is known to stimulate glucose transport in 
adipocytes and muscles in an insulin independent manner [19]. We 
have analyzed the phosphorylation status of AMPK in response to 100 
nM EA treatment in 3T3-L1 adipocytes and C2C12 myotubes. A well 
known AMPK activator, berberine was used as the positive control 
[15]. EA induced AMPK activation in both 3T3-L1 adipocytes (Figure 
3C) and C2C12 myotubes (Figure 3D). There was a 1.7 fold increase in 
AMPK phosphorylation in response to EA in 3T3-L1 adipocytes and a 
1.8 fold increase in C2C12 myotubes. These results suggest that AMPK 
activation is involved in mediating the metabolic effect of EA.

EA induced activation of ERK and atypical PKC

Since EA was activating AMPK our next attempt was to identify 
the downstream targets. Both AMPK and Akt are known to mediate 
its effect on GLUT4 through phosphorylating and inactivating Akt 
substrate of 160 kDa (AS160), a rab GTPase activating protein (GAP) 
normally bound to GLUT4 vesicles restricting its translocation [20]. 
The phosporylation status of AS160 was analyzed after treatment with 
100 nM EA for 30 minutes. An increase in AS160 phosphorylation was 
not observed with EA in either adipocytes or muscles, where as 50 nM 
insulin enhanced AS160 phosphorylation in both cell lines (Figure 
4A and 4B). This means that EA effect on GLUT4 translocation is 
independent of AS160. 

Another pathway that operates downstream to AMPK is ERK/
Phospholipase D (PLD)/aPKC pathway [21]. The effect of EA on 
ERK1/2 activation in adipocytes and myotubes was investigated. 
As seen in (Figure 4C and 4D), phosphorylated ERK1/2 was 
significantly raised in adipocytes and muscles respectively. Next the 
phosphorylation status of atypical PKC ζ/λ was analyzed. Treatment 

with EA resulted in a 1.4 fold activation of PKC ζ/λ in both 3T3-L1 
adipocytes (Figure 4E) and C2C12 myotubes (Figure 4F). Therefore 
protein phosphorylation studies with EA suggest that its stimulatory 
effect on GLUT4 translocation is achieved through stimulating AMPK-
ERK-aPKC pathway.

Effects of inhibitors on EA signaling

Inhibitors of AMPK, MEK and PI3K were employed to analyze 
their effects on EA stimulated glucose transport in C2C12 myotubes. 
It was found that glucose transport stimulated by EA was inhibited 
by treatment with AMPK inhibitor Compound C and MEK inhibitor 
PD98059 (Figure 5). However, PI3K inhibitor wortmannin was not 
found to have a significant effect on EA stimulated glucose uptake 
(Figure 5). Compound C effectively blocked EA induced AMPK 
phosphorylation (Figure 6A). Interestingly it was observed that 
application of compound C also inhibits ERK1/2 phosphorylation to a 
similar extent, suggesting that AMPK lies upstream to ERK in the EA 
signaling pathway (Figure 6B).

Discussion
In the present study, we have shown for the first time glucose 

uptake stimulatory property of EA in both adipocyte and muscle cell 
lines. EA is a polyphenol naturally occurring in berries and nuts mainly 
as ellagitannins [22]. Many studies have reported beneficial effects of 
EA in preventing various kinds of cancer [23-25]. EA has also been 
shown to act as antioxidant [26], antimicrobial [27] and antimutagenic 
agent [28]. However, so far no study has reported any antidiabetic 
potential for the compound. Terminalia arjuna (Combretaceae) is an 
ayurvedic plant used for the treatment of various ailments [29] and 
its leaf extract has recently been shown to possess antihyperglycemic 
activity in streptozotocin-induced diabetic rats [30]. The study 
reported here is a bioassay directed fractionation and identification of 
EA as an active principle from Terminalia arjuna leaves that induces 
GLUT4 translocation and glucose uptake in both adipocyte and muscle 
cell lines.  

EA stimulated GLUT4 translocation and glucose uptake was 
mediated through AMPK activation while there was no effect on Akt 
activation. AMPK is a serine threonine protein kinase, considered as 

Figure 3: Effect of EA on phosphorylation status of Akt and AMPK. Differentiated adipocytes and myotubes were serum starved for 2h followed by treatment 
with insulin or  berberine (Ber) and EA as indicated for 30 min and phosphorylation status of Akt and AMPK was determined by western blot analysis. Treatment 
with EA did not stimulate Akt phosphorylation in adipocytes (A) or muscles (B) but stimulated AMPK phosphorylation in adipocytes (C) and muscle cells (D). 
The protein bands were scanned and the intensities were determined using Bio-rad’s quantity one software. Data are average of at least three independent 
experiments. *P<0.05 compared with basal.
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the metabolic sensor of the mammalian cells, and is activated by a rise 
in the cellular AMP:ATP ratio [5]. AMPK is activated in response to 
different metabolic stress’ to facilitate a PI3K independent mode of 
glucose transport [19,31]. Therefore, it is a crucial player in regulating 

blood glucose homeostasis. The antidiabetic drug, metformin is a 
potent stimulator of AMPK and is widely used in diabetes therapy [32]. 
Several plant derived compounds have been shown to activate glucose 
transport through AMPK activation. Berberine is one such compound 

Figure 4: Effect of EA on phosphorylation status of AS160, ERK 1/2 and aPKCζ/λ. Differentiated adipocytes and myotubes were treated with 50 nM insulin or 
100 nM EA for 30 min. EA neither stimulated AS160 phosphorylation in adipocytes (A) nor in muscles (B). EA induced ERK and aPKC activation in both adipocytes 
(C & E) and muscles (D & F). Data shown are representative immunoblots of 3-5 independent experiments. Bars represent mean ± S.D. *P<0.05 compared with 
basal.

Figure 5: Effect of inhibitors on EA stimulated glucose transport. C2C12 myotubes were serum starved for 2 h, treated with or without 50 µM Compound C 
(CC) for 1 hour or 50 µM PD98059 (PD) for 30 min or 100 nM wortmannin (W) for 20 minutes. After inhibitor treatment, cells were stimulated with 100 nM EA in 
the presence of either PD or CC. Cells were also stimulated with EA in the absence of inhibitors. Cells incubated with vehicle (0.1% DMSO) were used to measure 
the basal rate of glucose uptake. Values are shown as the mean ± S.D. of three different experiments carried out in duplicates. *P<0.05 vs. unstimulated cells. 

#P<0.05 vs. EA stimulated cells.
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which mediates hypoglycemic effects through AMPK activation [15]. 
Curcumin, a principal curcuminoid of turmeric [33], salidroside, a 
bioactive component from Rhodiola rosea [34] and cryptotanshinone, 
a quinoid diterpene [35] were also reported to have AMPK mediated 
stimulatory effect on glucose uptake in adipocytes and muscles. 

Activated AMPK is known to trigger GLUT4 translocation by 
phosphorylating and inactivating AS160 which normally acts to tether 
GLUT4 containing vesicles inside the cell [20]. Treatment with EA did 
not enhance the level of AS160 phosphorylation in either adipocytes 
or muscle cells suggesting that AS160 does not have any role in EA 
induced increase in GLUT4 translocation and glucose uptake. Another 
pathway that acts downstream of AMPK is aPKC pathway. AMPK 
activators, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside 
(AICAR) and metformin increase glucose transport in L6 muscle 
cells through sequential activation of ERK, PLD and aPKC [21]. ERK 
mediated PLD activation generates phosphatidic acid which in turn 
activates aPKC. AMPK activator, dinitrophenol has also been found 
to activate glucose transport through ERK/PLD/aPKC pathway [36]. 
Sorbitol (osmotic stress) [37] and extracellular glucose [38] mediated 
GLUT4 translocation also occurs in PI3K independent, aPKC 
dependent manner. In the present study, EA was found to stimulate 
phosphorylation of ERK as well as aPKC in both adipocyte and muscle 
cell lines. Though the proximal signals involved in aPKC activation 
differ with respect to various stimuli, aPKC has undoubtedly been 
proven to be a master player in GLUT4 translocation. The mechanism 
by which aPKC activation contributes to GLUT4 trafficking is not 
clearly defined. PKC ζ is proposed to mediate its effect on GLUT4 
translocation through actin remodeling [39]. PKC ζ has also been 
shown to interact with munc 18c in an insulin regulated manner 
suggesting an involvement of this interaction in enhanced GLUT4 
translocation to the plasma membrane [40]. PKC λ has been shown to 
cause association of a small GTPase-binding protein Rab4 with motor 
protein kinesin that plays a role in translocating GLUT4 vesicles to the 
cell surface [41]. 

Studies have shown that AMPK activation is dispensable for 
some insulin independent glucose transport like contraction and 
hyperosmolarity [42]. In order to check whether AMPK activation 
caused by EA is requisite for glucose transport stimulation, a 

pharmacologic inhibitor of AMPK, compound C was employed. Since 
AMPK activation is known to induce ERK activity through MEK, an 
MEK1 inhibitor PD98059 was also employed to test whether MEK/
ERK activation is essential for glucose uptake. It was found that glucose 
transport induced by EA was markedly inhibited by treatment with 
compound C as well as PD98059. Application of compound C also 
blocked EA induced ERK activation. These studies indicate that both 
AMPK and ERK activation is essential for mediating EA effect and that 
AMPK lies upstream to ERK in the signaling pathway. Application 
of wortmannin ruled out the possibility of PI3K involvement in the 
glucose uptake stimulatory effect of EA. 

In conclusion our data suggest that EA stimulated GLUT4 
translocation and glucose transport in 3T3-L1 adipocytes and C2C12 
myotubes is mediated through AMPK-ERK-aPKC pathway. Further 
studies are needed to understand how EA induced aPKC ζ/λ activation 
mediates GLUT4 translocation and subsequent vesicle docking and 
fusion with the plasma membrane.
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