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Abstract

The use of transcriptome sequencing has become very cheap, and it is increasingly being used for
enzyme discovery in non-model plants. Especially in plants where no other genomic data is available (being
99.99% of all plants). This short commentary highlights the use of novel sequencing technologies in
terpenoid biosynthesis characterization. It is also shown how tissue specific transcriptomic can be useful in
this kind of research. Finally, a short overview of general procedures is given together with the perspectives
of transcriptomics in plant biochemistry.

Keywords: Terpenoids; Transcriptomic; Non-model plants;
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Introduction to Terpenoids
Terpenoids comprise the largest group of specialized plant

metabolites, with tens of thousands known structures [1]. Terpenoids
have key functions in cellular life (e.g. membrane fluidity, hormones
and signalling compounds) in all kingdoms, but the vast majority of
the characterized terpenoids are specialized metabolites in plants that
influence the fitness of their biosynthesising plant [2]. The specialized
plant terpenoids serve as defence compounds, deterrents, and
pollinator attractants [3]. The role of the terpenoids has a huge impact
on where in the plant the terpenoids are biosynthesized, and tissue
specific biosynthesis is an important feature to understand when
utilizing transcriptomic data for biosynthesis discovery [4]. Some are
synthesized in specialized structures such as trichomes, oil bodies or
resin ducts [5,6], whereas some are biosynthesized in general tissues
like fruits and roots [7], and others are produced all over the plant [8].
The largest subgroups of terpenoids are the sesqui- and diterpenoids.
These subgroups contain molecules that are highly valuable and are
used in a range of industrial and medicinal applications [9-12]. For the
majority of the described terpenoids their biosynthesis have not been
described and no attempts have been made. Specialized terpenoid
biosynthesis in general consist of first a terpene synthase that utilize a
diphosphate substrate, this is often followed by a cytochrome p450 that
decorate the backbone with different oxidations (alcohols, aldehydes,
ketones and carboxylic acids) [13,14]. Following the cytochromes
P450, there can be from one to 10’s of these, enzyme groups such as
alcohol dehydrogenases, reductases, and acyl transferases further
decorate the molecule to form the final bioactive terpenoid [15]. The
diversity of terpenoids is mainly due to the huge diversity within
terpene synthases [16] and cytochromes P450 [17] that are involved in
the biosynthesis. Recently the branching point in the artemisinin
biosynthesis (the reductase DBR2) have been shown to be the key
regulator enzym that determine the final product, thus the specific
terpenoid profile of a given Artemisia annua variety, therefore it is
important for the terpenoid diversity within Artemisia [14].

Recent observations within sesquiterpenoid biosynthesis studies
found that less than ten cytochromes P450 had been described as part
of a sesquiterpenoid biosynthesis and so far only within the CYP71
clan [13]. This number is larger for diterpenoids, but excluding
enzymes part of general metabolism, such as gibberellins, lowers this
number significantly and limits the described cytochromes to enzymes
in the CYP71 and CYP85 clans [18,19]. Among the specialized
terpenoids the biosynthesis of the sesquiterpene lactone artemisinin is
possibly the most well studied [14,20,21] closely followed by the
sesquiterpene lactone costunolide [22-26], with several diterpenoids
from gymnosperms picking up with an increasing number of
publications, especially from the group of Jörg Bohlmann [5,15,27-32].
The use of transcriptome data are greatly facilitating this, and the
number of papers utilizing this technology will dramatically increase
in the coming years.

Examples of the Use of Transcriptome Data for
Terpenoid Biosynthesis Elucidation
The enzyme family, terpene synthases has been known for decades,

also before next generation sequencing took off. In 1995 Joe Chappel
[33] in one of the first reviews of terpenoid biosynthesis have a chapter
on “How little we know about terpenoid biosynthesis”. The same year
two papers was published on terpene synthases from plants describing
the biochemistry and thereby providing an enzyme and transcriptomic
sequence that could be used in subsequent BLAST searches [34,35].
These and many successive studies provides the first baits for the initial
searches into a newly sequenced plant transcriptome, and today several
papers have described the biosynthesis of specific terpenoids along
with several on the general parts of terpenoid metabolism [17,36-38].

Within sesquiterpenoids, the artemisinin biosynthesis is the best
described, and this was mostly elucidated without transcriptomics
available. Subsequently, it has been shown that all five genes involved
can be found in the transcriptome of the leaf trichomes [6]. This
provided evidence that the trichomes are indeed the cellular
compartment that perform the biosynthesis of artemisinin, which has
also been confirmed using Gus staining and promoter analysis of the
genes involved [14]. This has opened for the use of transcriptomics to
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study expression levels of known and unknown genes involved in the
biosynthesis in specific tissues. Other sesquiterpenoids biosynthesis
has been fully or partly elucidated using transcriptomics. In 2009 and
2010, the transcriptome of the root and fruit of Thapsia garganica and
the root of Thapsia laciniata (syn. T. villosa) was sequenced. This
showed the presences of several terpene synthases and CYP71 genes
that could be involved on the biosynthesis of terpenoids, especially
sesquiterpene lactones [39]. Using both 4-5-4 and Illumina for the
sequencing, followed by thorough annotations of the sequenced genes
lead to the discovery and characterization of the first step of the
biosynthesis of thapsigargin from Thapsia garganica [40]. Another
example within sesquiterpenoids is the characterization of the
biosynthesis of the main component in the sandalwood oil, santalol.
Following the transcriptomic analysis of the plant, the sesquiterpene
synthase and the cytochrome p450 involved in was discovered in 2008
and 2013 [41,42]. The characterization of the terpene synthases in 2008
did involve cDNA isolation and genome walking, since the
transcriptomic data at that time did not provide the same depth and
coverage as the later analysis did. This is a general trend seen in non-
model plants and not only for terpenoid biosynthesis [43].

Chemical analysis of pine trees have revealed a stunning chemical
diversity of the resin. The transcriptomic analysis revealed that this is
biosynthesized by only a few genes. The first genes was discovered
using traditional degenerate primer design followed by genome
walking, but later transcriptomic analysis was adopted. This has led to
description of several genes from numerous gymnosperm including
Sikta spruce, Abies balsamea and other pine trees [5,27-32,44-47]. The
studies has described the biochemically characterization of a range of
terpene synthases mainly found through blast searches that initially
started with the general enzymes copalyl synthase and/or ent-kaurene
synthase [46]. Subsequently the BLAST searches included cytochromes
p450 and this lead to the description of e.g. the multifunctional
cytochrome P450 CYP720B4 that is involved in the biosynthesis of a
range of conifer defence compounds [5].

Other examples of the use of transcriptomics for the discovery of
biosynthesis of terpenoids include that of ginsenoside and saponins
[48-50]. These examples are just some of those described in the
literature and they include a variety of genes that have been discovered
and biochemically characterized. As part of the development, the use
of transcriptomic analysis will also lead to phylogenetic studies. This
has been seen both within gene families and across plants species. In
gene families, the phylogeny of terpene synthases have been studied in
several papers. This has led to a useful classification annotated TPSa-h
that include plants from bryophytes to angiosperms [16,39]. Within
cytochromes P450 the use of phylogeny was established long before
next generation sequencing and are continuously used in the
annotation of these enzymes [51]. Transcriptomic data also contain
information that can be used in phylogenetic studies across species
[52].

Lately, tissue and developmental specific transcriptomic analysis has
proven to be a very effective tool in the discovery on new biosynthetic
genes [53]. In grapes, a developmental study revealed the presence of
several new genes that subsequently could be characterized and shown
to be involved in the biosynthesis of the peppery aroma of Shiraz wine.
This study also revealed that the transcription of specific terpene
synthases was depend on the maturation state of the grape, which
could be correlated to terpene content during the grape maturation
[54,55]. In another example in Coleus plants, the use of laser dissection
and imaging revealed that special cells in the cork of the root contained

the interesting diterpenoids. The transcriptomic analysis of these
special cells revealed parts of the biosynthetic machinery of forskolin
biosynthesis [4,9]. These studies show that by combining
transcriptomic analysis with modern dissection techniques the
likelihood of discovering enzymes part of a biosynthetic route is
significantly increased. Likewise, when the study is focused on specific
tissues in specific developmental stages.

A Useful Approach
Discovery of any new biosynthesis of small molecules should

include the following steps in order to be truly successful and utilize
the full potential of the transcriptomic analysis. It is important first to
establish profound chemical knowledge of the plant, especially where
and when the chemical constituents are found. The use of advanced
metabolomics tools such as GC-MS and LC-MS is crucial to establish
at what developmental stage the constituents are produced. Utilizing
advanced microscopic techniques to establish the cellular location of
the constituents will show what cells to target. This will establish when
and on what tissue to perform transcriptomic analysis in order to get
the best coverage of biosynthetic genes. The first transcriptomic
analysis should be based on tissues that clearly produce the
compounds of interest. Subsequently, this can then be followed by
studies that include stress inducement of producing tissues in order to
enhance the biological understanding.

It is important early on to obtain very deep coverage of the RNA,
since this eventually will prove useful for sorting out chimeric and
other miss assemblies. Here the use of the latest developments within
transcriptomics should be utilized (these techniques constantly
improve and please consult technical reviews to obtain the latest
knowledge on this). A first deep transcriptomic dataset open an avenue
for later transcriptomic analysis of large sample sets including time-
course, developmental and stress studies. Collectively all these studies
will provide a solid database that include knowledge on sequence data,
expression level, and time of expression.

The obtained database can then be used for BLAST searches of gene
families. Here the utilization of minimal datasets that are family
specific can be very useful [56]. Discovery of the genes of interest, have
to be followed by the design of primers that can confirm that the gene
sequence is also found in the living plants by PCR on the original plant
material. Only then can one order a synthetic clone of the gene of
interest for biochemical characterization. The PCR will confirm the in-
planta sequence and even with the current technologies and assembly
algorithms miss assemblies do occur.

Perspectives
With continuously falling prices on transcriptomic sequencing,

increasing depth and coverage in the obtained datasets followed by
continuously increasing amount of online available genomic data the
perspectives in this field are daunting. The lack of transcriptomic
sequence data will never again be the bottleneck in biology and
biochemistry. However, the lack of fast biochemical and physiological
screening methods will be the bottleneck for the decades to come.
From just one transcriptomic analysis at € 2000, one will obtain
enough RNA sequence information to keep tens of biochemistry post
docs and PhD students busy for many years. Utilization of tissue and
developmental specific transcriptomics will significantly shorten the
discovery time as shown with both the grape and forskolin studies.
Thus, chemical profiling and physiological studies of the plant prior to
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transcriptomic analysis is highly recommended to lower the amount of
biochemical characterization needed in the later studies.

It is foreseen that numerous studies will utilize transcriptomics
throughout plant biology and that the field will explode in publications
within the next couple of years.
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