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Abstract

Ischaemic heart disease is an increasingly prevalent disease in the developed world, and accounts for a large
degree of both morbidity and mortality in many countries. Diabetes Mellitus is also increasing in prevalence and as
ischaemic heart disease is associated with Diabetes Mellitus, diabetic cardiomyopathy is an increasing problem
globally. MicroRNAs are short, non-coding RNAs which negatively regulate gene expression through either
translational repression or mRNA cleavage. These are found to exist in a stable form in both tissue and blood, and
are specific to the tissue of origin. Cardiovascular miRNAs have been found to play roles in cardiac
arrhythmogenesis, hypertrophy, and cardiac stem cell differentiation, as well as showing considerable links with
diabetic cardiomyopathy. This interaction is important when considering the therapeutic potential of cardiovascular
miRNAs, with possible therapeutic value in the treatment of vascular dysfunction, as well as the development of
biomarkers for the early diagnosis and therefore treatment of the disease.
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Introduction
Ischaemic heart disease is a major cause of death in many developed

countries and is becoming more often associated with diabetes
mellitus, with cardiovascular disease as one of the primary causes of
both morbidity and mortality in patients with diabetes, noted as early
as 1970 [1]. As the incidence of diabetes rises, with a projected increase
from 14% in 2010 to 25-28% in 2050 among United States adults, so
does the occurrence of associated heart disease. It is therefore
imperative for new and innovative ways to diagnose and treat such
complications early on in the disease progression [2].

Diabetic Cardiomyopathy
Diabetic cardiomyopathy was first described in the literature in a

study of post-mortem findings carried out on patients with confirmed
diabetic glomerulosclerosis. Of the 27 patients, four were found to
have cardiomegaly and congestive heart failure without any obvious
cause, including hypertension, coronary artery disease, or valvular
diseases. Further analysis of cardiac tissue revealed left ventricular
hypertrophy and fibrosis, and with the absence of any other causative
factor, this heart disease was characterized as diabetic cardiomyopathy
[3].

Left ventricular diastolic dysfunction was described to be an early
sign of diabetic cardiomyopathy, with even young insulin-dependent
diabetic patients with no apparent systolic dysfunction showing
diastolic dysfunction, including reduced diastolic filing, increased
atrial filling, and longer times for isovolumetric relaxation and
deceleration time [4].

The Multicentre Investigation of the Limitation of Infarct Size
(MILIS) study included a comparison of left ventricular function in
diabetic and non-diabetic patients with acute infarction. Even after
adjusting for the baseline differences between the two groups (with

diabetic patients presenting with worsened cardiovascular risk
factors), results showed an increase in the incidence of adverse
outcomes such as mortality, reduction in ejection fraction, and post-
operative complications such as post-infarction angina, further
infarcts, and intraventricular conduction delay [5]. This has been
further investigated, with one group exploring the effect of diabetes on
left ventricular function in patients with aortic stenosis. Peri-operative
left ventricular biopsies were obtained along with echocardiography
results from patients undergoing aortic valve replacement.
Hyperphosphorylation of the stiff N2B titin isoform in diabetic
patients could explain the increased resting tension of isolated
cardiomyocytes. Collagen deposition in the myocardium was also
found to be increased, along with glycated end-product deposition in
the cardiac vasculature. The combination of all of these factors results
in significant left ventricular dysfunction characteristic of diabetic
cardiomyopathy [6].

The Framingham study showed that diabetic men of the age bracket
45-74 years had twice the incidence of heart disease than non-diabetic
subjects, with diabetic women displaying five times the incidence of
heart disease. This risk seemed to be irrespective of other
cardiovascular complications and thus supports the characterisation of
diabetic cardiomyopathy [7]. Coronary flow is also affected in insulin-
dependent diabetics, as shown by a study by Strauer et al., [8] in which
echocardiography was employed to measure cardiac function. Both
coronary flow and reserve were significantly reduced whilst coronary
resistance was increased. It was also shown that diastolic function was
impaired with increased relaxation time and reduced diastolic inflow
[8]. Increased deposition of collagen fibres leading to fibrosis causes a
stiffening of the ventricular wall, resulting in a reduced ability of the
heart muscle to effectively contract or pump [9,10]. This translates to a
longer relaxation time as previously mentioned coinciding with a
reduction in the amount of blood able to flow into the heart. Thus the
key feature of diabetic cardiomyopathy seems to involve a loss of
function in the left ventricular significantly associated with fibrosis.
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MicroRNAs
MicroRNAs (miRNAs) are short (~22 nucleotides), noncoding

RNAs that modify protein expression by targeting the 3’ untranslated
region of mRNA, thus regulating specific gene expression at a post-
translational level. An early study into Caenorhabditis elegans
development reported that the gene lin-14 controlled the timing of
developmental sequences in this species by encoding a nuclear protein
present only in early stages of development. Deletion of the 3’-
untranslated region (present in two types of lin-14 mutation involving
gain-of-function) resulted in raised levels of these nuclear proteins in
later development stages. This indicated the importance of lin-14 in
the temporal switch of development and posed the idea that some
factor was responsible for maintaining normal levels of regulatory
proteins, potentially through the 3’-untranslated region [11]. The role
of the 3’-untranslated region was also reported in 2005, where genes
that are involved in basic regulatory cellular processes that were not
regulated by miRNA showed short 3’-untranslated regions with a lack
of miRNA binding sites [12].

miRNAs were originally identified in the aforementioned C. elegans
nematode, in which lin-14 translation was regulated via antisense RNA
interactions, but have since been shown to exist in many other
organisms extending from single-cell algae to humans [13-17]. Whilst
originally thought to have developed along with other multicellular
organisms, miRNAs have also been found to exist in the single-cell
alga Chlamydomonas reinhardtii, functioning in similar ways to those
in multi-cell organisms through RNA silencing and are important in
processes ranging from Zebrafish embryonic development to cancer
and other disease states [18-20].

The existence of miRNAs in such a wide range of species indicates
that miRNA function is not only important but also essential for
normal cell development and regulation, thus preserved throughout
evolution, with species of higher order development displaying more
miRNAs. This importance is also evident in the degree of sequence
conservation within and across species. A four-genome analysis of 3’
untranslated regions showed regulatory relationships in approximately
30% of the human gene set, with more than 5300 human genes (one
third) as potential conserved miRNA targets [21].

The pathway which forms mature miRNAs has been well studied
and consists of various enzymatic steps, as shown in Figure 1. Most
miRNAs are transcribed by RNA polymerase II into primary miRNAs
(pri-miRNAs), with some, such as the human chromosome cluster of
miRNAs, transcribed by polymerase III [22,23]. The RNase III Drosha
processes the pri-miRNAs in the nucleus, resulting in the formation of
pre-miRNAs, which are commonly 70-100 nucleotides long, with a
characteristic ‘hairpin’ structure. RNA interference to deplete Drosha
levels in HeLa cells causes a loss of function of Drosha, resulting in a
build-up of the pri-miRNA, with reduced levels of pre-miRNAs and
mature miRNA in vivo [24]. These pre-miRNAs move into the
cytoplasm where the endonuclease Dicer, a member of the RNase III
family of nucleases, develops the pre-miRNA into a double stranded
miRNA [25,26]. This is known as a RNA-Induced Silencing Complex
(RISC), which is a negative controller of gene expression, through both
translational repression and mRNA cleavage [27]. The specificity of
this RNA-induced silencing complex is dependent on the type of
miRNA incorporated within it, and thus the gene regulation is
dependent on the miRNA (Figure 1).

miRNA Action

Figure 1: Schematic of the formation of miRNA

miRNA in the Tissue
Many studies have shown that miRNAs are stable in tissue, plasma,

and even urine. One such study reported miRNAs (such as miR-141)
deriving from human prostate cancer to be detected in human plasma
using RT-PCR assays. This was not significantly altered by extended
periods up to 24 hours at room temperature, and these endogenous
miRNAs remained stable whilst exogenous miRNAs were degraded by
plasma RNases. These levels were similar between plasma and serum
[28]. Another group showed that even in total RNA samples damaged
by heat incubation the miRNA levels were still detectable with no
obvious difference to the intact samples, while the mRNAs decreased
as the sample integrity decreased [29]. miRNA profiling in diabetic
plasma revealed a reduction in miR-126, a potential factor involved in
the impaired peripheral angiogenic signalling characteristic of
diabetes, with this also detected using qPCR in both human and mice
plasma [30]. Circulating miRNAs are also detectable in other disease
states, including gastric cancer, and ST Elevation Myocardial
Infarction (STEMI) [31,32]. miRNAs have also been detected in saliva
with qPCR performed on saliva samples from oral squamous cell
carcinoma patients, with a similar result showing that endogenous
miRNA degraded to a lesser extent compared to exogenous miRNA
[33].

One study used pigs in a coronary occlusion-reperfusion model to
study plasma, urine and tissue miRNA expression. Plasma miR-1,
miR-133a, miR-208b, and miR-499-5p were all elevated in the porcine
model after coronary occlusion was induced, with significant increases
also apparent in the plasma of ST-Elevation Myocardial Infarction
(STEMI) patients. These correlated with the glomerular filtration rate,
indicating a renal elimination route [32]. MiR-133a levels have also
been noted to be elevated in patients with STEMI, with increased
miR-133a levels correlating with reduced myocardial salvage,
worsened and larger infarcts, and greater reperfusion injury, as
reported from a study of 216 patients with STEMI who were
undergoing primary angioplasty. While the increase meant that
miR-133a levels could be used as a prognostic marker, the levels of
miR-133a were not detected any earlier than other current biomarkers
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such as troponin I and troponin T so could not add independent
prognostic information in high-risk populations [34].

As ribonucleases in the plasma would be expected to destroy any
miRNA present in the blood, suggestions have been made as to
whether miRNAs are protected within vesicles or protein complexes. It
was proposed that RNA in the plasma was protected via protein or
lipid vesicles, including exosomes, microvesicles, and apoptotic bodies.
It was revealed in normal healthy human plasma samples by RT-PCR
of the peripheral blood mononuclear cells and plasma microvesicles
that miRNAs were co-expressed in both components. Those detected
were involved in either blood cell differentiation or immune function,
this being the first description of microvesicular compartmentalisation
of miRNAs in plasma [35,36]. Whilst exosomes and microvesicles
would both involve fusing or blebbing of the plasma membrane,
release of miRNAs in apoptotic bodies would indicate cell damage
severe enough to activate apoptosis, and is thus likely to be relevant in
many disease states. However evidence is showing that miRNAs are
more likely to be found bound to RNA-binding proteins, forming
protein complexes [37].

The clear stability of miRNAs in the plasma begs the question of
why the body has developed to allow such stability. Whilst the
potential of using miRNAs as biomarkers arises, another hypothesis
involves the ability of miRNAs to act in intercellular messengers which
could be to modify the destination environment to somehow reflect
the environment from which the miRNAs derive.

miRNA Specificity
Specificity of either the vesicle or the associated protein can indicate

where the miRNA originates, and thus most research claims miRNA
specificity to certain tissues. Lim et al, 2005, studied the effect of
miRNAs on transcription rates in human cells. HeLa cells were
transfected with the RNA duplexes of two miRNAs, miR-1 or
miR-124. These miRNAs are known for tissue specificity, with miR-1
expressed in heart and skeletal muscle, and miR-124 expressed in the
brain [38,39]. The mRNA was purified and profiled on microarrays,
resulting in down-regulation of 96 annotated genes by miR-1, and 174
genes by miR-124. Genes down-regulated for miR-1 corresponded
with the same genes in cardiac and skeletal tissue with endogenously
low levels, with the same effect also noted with miR-124. The authors
concluded that the addition of particular miRNAs can shift the
expression profile to that of the tissue for which a miRNA is specific,
indicating that such tissue specificity is linked to the type of genes
regulated by the miRNAs [40].

Cardiovascular miRNAs
As most disease states involve some change in gene expression, the

regulation of gene expression by miRNAs is thought to be altered, thus
a major focus of miRNA research has been to investigate how specific
disease states and miRNAs correlate. Specificity of miRNAs to certain
tissues has been well studied, with many cardiovascular miRNAs
documented, shown in Table 1.

MicroRNA Cardiovascular function

miR-1 Involved in cardiac arrhythmogenesis [41,42].

miR-132 Regulation of cardiac hypertrophy, as well as roles in cardiomyocyte autophagy [43].

miR-133 Involved in cardiac hypertrophy and hyperplasia, with regulation of myocardial matrix remodelling, as well as contributions to
QT interval prolongation in the diabetic heart [44,45].

miR-206 Involved in cardiac apoptosis during myocardial infarction, as well as a role in cardiac remodelling after a cardiac event
[46-48].

miR-208 Upregulated in a myocardial infarction [49,50].

miR-499 Associated with cardiac cell differentiation [51,52].

Table 1: Various cardiac specific microRNAs and their roles in the cardiac system

MiR-1 is considered to be muscle specific and is overexpressed in
patients with coronary artery disease [41]. One study used an
ischaemia – reperfusion rat model of cardiovascular disease through
occlusion of the coronary artery for 30 minutes followed by 24 hours
of reperfusion, showing that miR-1 levels in the myocardium were
increased while levels of Bcl-2, a key protein involve in apoptosis
regulation, were reduced. In in vitro studies based in H9c2 (a rat
ventricular cell line) and HEK293 (human embryonic kidney cell line)
it was similarly shown that overexpression of miR-1 resulted in a
reduction of Bcl-2 mRNA and protein, which could contribute to
increased apoptosis in cardiomyocytes [53].

Induction of cardiac hypertrophy in mice resulted in an increased
expression of both miR-212 and miR-132, with evidence pointing
toward the subsequent down-regulation of FoxO3 transcription factor,
which is known to be both anti-hypertrophic and pro-autophagic [43].
It is clear that apoptosis is a major process affected by miRs in
cardiovascular disease.

Cardiovascular miRNAs in Diabetic Cardiomyopathy
The role of tissue-specific miRNAs in diabetic cardiomyopathy is

becoming an increasingly studied field, with many of these miRNAs
identified to be involved in the disease. A study published in 2007
measured the expression of 428 miRNAs found in human left
ventricular samples from patients with ischaemic cardiomyopathy,
dilated cardiomyopathy, or aortic stenosis. It was reported that 43
miRNAs tested showed differential expression, and concluded that
different cardiac diseases are associated with different miRNA profiles
[54]. Another study used cardiac tissue from the area bordering the
infarcted region from patients who were undergoing heart transplant
surgery. This tissue also showed differential expression of miRNAs
which was similar to the expression profiles found in mice with
induced myocardial infarctions [55].

MiRNAs are therefore differentially expressed in human cardiac
disease; however research is limited pertaining to the role of miRNAs
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in diabetic heart disease. The interaction of miRNAs and diabetic
cardiomyopathy has been investigated further using both in vitro and
in vivo techniques. MiR-1 and miR-206 have been reported to play a
role in the expression of Hsp60, subsequently contributing to
apoptosis mediated by glucose in cardiomyocytes [56]. An increase in
miR-1 in diabetic mice has also been correlated with a decrease in
Pim-1, a known pro-survival factor which also interacts with HSP-60,
with this reduction in Pim-1 associated with further cardiac apoptosis
[57]. Diabetic mice with cardiac hypertrophy have been shown to have
reduced levels of miR-133a, which could indicate a role of miR-133a in
the development of diabetic cardiac hypertrophy [58].

The link between miRs and increased apoptosis demonstrated in
cardiac disease is also seen in diabetic cardiomyopathy, with one study
reporting in cardiomyocytes exposed to high glucose conditions
increased apoptosis, which was linked to the activity miR-1 [59].
Another study investigated the levels of miR-320 in myocardial
microvascular endothelial cells from type-2 diabetic rats, with an
increase in miR-320 correlating with a decrease in the expression of
insulin-like growth factor 1 which acts to inhibit apoptosis [60]. This
evidence, along with the previously mentioned effect of miR-1 on
Hsp60 expression in glucose induced cardiac apoptosis, indicates that
the increased apoptotic drive seems to be a key component of miRNA
involvement in diabetic cardiomyopathy [56].

Mice with streptozotocin-induced diabetes have been shown to
develop cardiomyopathy after only 2 months of diabetes duration,
with miRNA analysis in cardiac tissue from these mice showing that
miR-133a contributes significantly to the characteristic cardiac
changes, with down-regulation of miR-133a occurring in diabetic
cardiomyopathy. Further in vitro studies in neonatal rat
cardiomyocytes using a miR-133a mimic demonstrated the causal
relationship of miR-133a in the glucose-induced cardiomyocytes
hypertrophy. Results from both in vivo and in vitro models showed
that the miR-133a end-targets IGF1R and SGK1 are both up-regulated
in diabetic cardiomyopathy which could be a potential way in which
miR-133a mediates cardiac hypertrophy in diabetes [58].

Hsp60 is a known component of protection against myocardial
injury but is seen to be reduced in the diabetic myocardium.
Cardiomyocytes cultured in hyperglycaemic conditions show a
significant up-regulation of miR-1 and miR-206, with post-
transcriptional modification of Hsp60. Both serum response factor
and the MEK ½ pathway were also linked to the miR-1 and miR-206
involvement in diabetic cardiomyopathy, although the major role of
these particular miRNAs in the associated apoptosis of diabetic
cardiomyopathy seems to be through the regulation of Hsp60 [56].

Therapeutic Potential of miRNAs
The potential of using miRNAs as therapeutic targets in diabetic

cardiomyopathy is a relatively new concept in this field. A recent study
induced cardiac hypertrophy in mice by TAC and injected antagomirs,
oligonucleotides that are complementary to miRNA targets with a
mispairing at cleavage sites or base modification to inhibit base
cleavage, into these mice intravenously. This successfully knocked-
down endogenous miR-132 levels in cardiac tissue, resulting in
improved preservation of cardiac function and less dilatation. This
could be a potential method to be investigated as a therapeutic
intervention to prevent development of hypertrophy and heart failure
in diabetic cardiomyopathy [43]. In another study miR-221 was found
to be increased in hyperglycaemic conditions in Human Umbilical

Vein Endothelial Cells (HUVECs), mimicking the endothelial cell
dysfunction observed in diabetics, a condition which can contribute to
diabetic cardiomyopathy. This study went on to postulate that by
manipulating the miR-221 and associated c-kit pathway could lead to
potential treatment of such vascular dysfunction [61].

A clear advantage of miRNA involvement in diabetic
cardiomyopathy is the use of miRNAs as biomarkers for the disease,
especially in the earlier stages where diabetic cardiomyopathy often
goes unnoticed. Diabetic cardiomyopathy is difficult to diagnose early,
as many pathological changes do not manifest as symptoms until later
in the disease progression. Diagnostic methods are helpful in general
cardiac dysfunction, but are not specific to diabetic cardiomyopathy,
with no single tool for this diagnosis readily available [62,63]. As the
major symptom of diabetic cardiomyopathy is a myocardial infarction,
most damage has already occurred, and this damage is irreversible.

Several miRNAs, including miR-454, miR-500, miR-1246, and
miR-142-3p/5p, have been identified in patients with diastolic
dysfunction in plasma samples, using standard miRNA profiling
techniques, with different profiles of up or down regulation in the
disease state seen among the different miRNAs [64].

miRNAs are a new and exciting field in the context of disease states,
with much research investigating the roles they play in diseases
including cancer and cardiomyopathies. By modifying protein
expression through negative control of gene expression, miRNAs have
the ability to alter significant cellular processes. This is part of normal
cellular activity but has been shown to become deregulated in various
disease states, becoming both markers for disease, as well as causing
further damage. The potential for these relatively tissue-specific
regulatory molecules to be used as biomarkers and even therapeutic
targets for diseases such as diabetic cardiomyopathy is a widely
promising research focus, and remains an open question to be
answered. There is a great need for further research in this area, with
the role of miRNAs in human diabetic cardiomyopathy an emerging
and exciting topic of research.
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