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Mini Review

Abstract
Diabetes mellitus (DM), including type 1 and type 2, is a significant and substantially enhancing burden in 

adolescents and adults. Diabetic patients are at high risk for several cardiovascular disorders: coronary heart 
disease, stroke, peripheral arterial disease, cardiomyopathy, and congestive heart failure. Cardiovascular diseases 
are the most predominant cause of morbidity and mortality among diabetic patients. The pathophysiology of the 
diabetes-associated cardiovascular disease has not been completely elucidated. Therefore, there is a critical need 
for new therapies and clear strategies for research, prevention and treatment to stop the progression of the disease. 
The purpose of this mini-review is to discuss the recent literature linking heart, endoplasmic reticulum stress, and 
to address the potential role of endoplasmic reticulum stress in diabetic heart and potential therapies targeting its 
modulation.
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Introduction
Diabetes remains the 7th leading cause of death in the United States 

and affects 9.3% of the American population with cardiovascular 
disease being the number one cause of mortality. According to a new 
analysis from the Center for Disease Control and Prevention, one-third 
of all adults will develop diabetes by 2050 [1].

Medical expenses for people with diabetes are about 2.3 times 
higher than would be without the disease. In 2012, the United States 
of America spent a total of $245 billion dollars towards the cost of 
diagnosed diabetes with a 41% increase in expenditures from 2007 in 
which the total estimated cost was 174 billion dollars [1]. Thus, the 
increasing number of people with diabetes represents a significant 
burden on the economy and the public health in the United States. 

As obesity rates rise worldwide, management of diabetes becomes 
increasingly important. Obesity is characterized with increased plasma 
leptin, TNF-α and non-esterified fatty acids that have been closely 
associated with, insulin resistance, type 2 diabetes, and cardiovascular 
disease. Excess nutrient intake is the primary cause of obesity. 
The endoplasmic reticulum (ER) stress appears to be the earliest 
consequence of nutrient excess and the reasons for the development 
of insulin resistance [2,3]. Thus, Ozcan et al. [4] demonstrated that 
obesity causes ER stress induction that in turn leads to a decrease in 
insulin receptor signaling. The authors found that the administration 
of chaperone proteins reduced ER stress and insulin resistance in mice. 
Moreover, ER stress is increased in subcutaneous fat of obese human 
subjects [5].

Heart Failure and Diabetes
Diabetes and heart failure (HF) are closely related and often coexist 

[6]. According to the Framingham Heart Study, the risk of HF was 
increased 2.4-fold in men and fivefold in women with diabetes [7]. In 
another study of 10,000 patients, HF was more frequent in diabetic 
patients; 11.8% versus 4.5% in non-diabetic patients [8]. The HF is a 
complex syndrome resulting from functional and structural disorders 
that affect the capacity of the heart to fill or eject blood. Complications 
associated with Type 2 diabetes such obesity, lifestyle and hypertension 
are well known to contribute to the cardiovascular disease in diabetic 
patients. HF accounts for 33% of diabetic hospitalizations [7,9]. 

Evidence from clinical, experimental, and epidemiological studies has 
shown that diabetes mellitus causes cardiac dysfunction independently 
of hypertension, coronary artery disease or any other cardiac diseases, 
known as diabetic cardiomyopathy (DCM) [10,11]. Diabetes is 
characterized by chronic low-grade inflammation and secretion/
activation of pro-inflammatory cytokines contributing to cardiac 
insulin resistance [12]. In addition to hyperglycemia, hyperlipidemia, 
and the activation of renin-angiotensin II- aldosterone system (RAAS), 
oxidative stress emerges as a major contributor to cardiac insulin 
resistance and subsequently damaging cardiac cells leading to DCM 
and HF [12,13]. 

Genetic predisposition to type 2 diabetes is associated with higher 
risk for coronary heart disease [14]. Even a slight increase in the 
glucose levels at the pre-diabetic stage can accelerate this progression if 
a genetic predisposition is present [14].

Intima-media thickness of the common carotid artery (IMT-CCA) 
is an early marker of atherosclerosis and associated with coronary 
heart disease [14]. IMT-CCA is increased in normal, overweight 
and obese glucose-tolerant patients with a family history of diabetes 
versus those with no family history of diabetes at all [14]. Mild insulin 
resistance in the pre-diabetic stage leads to endothelial dysfunction 
secondary to increased endothelial reactive oxygen species production 
[15]. Therefore the state of pre-diabetes, especially in those with a 
family history and increased IMT-CCA [14], may enhance the risk for 
cardiovascular disease. 

The mechanisms underlying the diabetic heart complications are 
still not completely understood [11,16]. Recently, ER stress emerges as 
an important factor underlying heart function, DCM, and HF [16-19].
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Endoplasmic Reticulum (ER) Stress
The ER is a multifunctional organelle with multiple vital functions 

such lipid synthesis, calcium homeostasis, protein folding, and 
maturation [20]. The ER responds to stress such ischemia, oxidative 
stress, and disturbance in calcium homeostasis by inhibiting protein 
translation and activating protein chaperones via a process called 
unfolded protein response (UPR). The UPR activates signaling 
pathways through 3 major ER resident proteins: the protein kinase 
R-like ER kinase (PERK), the inositol-requiring kinase-1 (IRE-1), 
and the activating transcription factor (ATF) 6 (Figure 1) [20]. In 
normal conditions, the ER luminal domain of PERK, ATF6 and IRE-

1 are bound to ER protein GRP78 and are inactive. When unfolded 
proteins accumulate in the ER, 78 kD glucose-regulated protein 
GRP78 dissociates from the 3 ER-sensors and translocate to the 
misfolded proteins leading to the activation of the 3 ER sensor proteins. 
Initially, the UPR aims to compensate for damage and restore cellular 
homeostasis. However, once the UPR fails to control the level of 
unfolded and misfolded proteins in the ER, cellular dysfunction and 
apoptosis events occur (Figure 2). Abnormalities in the UPR have been 
involved in several diseases including cardiovascular diseases, [21] 
neurodegenerative diseases such as Parkinson’s, Alzheimer’s, prion 
disease [22] and cancer [23].

Figure 1: ER stress response activated by the three ER resident proteins – PERK, IRE-1, and ATF6.

Figure 2: ERSR-induced cell death pathway.
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(CHOP), cleaved caspase-3, and caspase-12 [40]. In diabetic mice, 
cardiac apoptosis was significantly increased two weeks after diabetes 
onset associated with significant up-regulation of the ER chaperones 
such glucose-regulated protein GRP78 and GRP94, cleaved ATF6, 
and phosphorylated eIF2α. Interestingly, Apoptosis was detected in 
myocytes, endothelial cells, and fibroblasts of ventricular myocardial 
biopsies obtained from diabetic patients [41].

In 2006, Ozcan et al. [42] showed that chemical or pharmaceutical 
chaperones, such as the 4-phenyl butyric acid (PBA) and 
tauroursodeoxycholic acid (TUDCA) reduce ER stress in a mouse 
model of type 2 diabetes. Subsequently, the inhibition of ER stress 
by TUDCA normalizes GRP78, GRP94, and mitochondrial GSK-3β 
in a rat model of type 2 diabetes resulting in a significant prevention 
of diabetic cardiac damage [43]. These findings suggest the link 
between ER stress and apoptosis events that occur in the diabetic 
heart. Thus, in vivo mechanistic and preclinical studies are needed 
to address the contribution of each ER stress pathway in the diabetic 
heart. Using various models of diabetes and different pathological 
states of cardiovascular system will enable us to determine whether 
manipulating ER stress can prevent diabetic cardiomyopathy in T2D. 

Diabetic cardiomyopathy a genetic understanding

It is well established that a family history of diabetes can increase 
the risk of an individual to develop diabetes and cardiovascular disease 
[12]. Individuals with a first-degree relative with type 2 diabetes shows 
signs of insulin resistance before they even develop diabetes. Jermendy 
et al. [44] showed that while certain risk factors for diabetes are 
environmental, others such as weight circumference, serum creatinine, 
and blood pressure were associated with genetics and family history.

Epigenetics, including histone modification and methylation, 
and microRNAs (single- strand non coding RNAs) play a significant 
role in the development of cardiovascular disease and is a novel way 
to understand the pathophysiology of DCM [45]. External factors 
and stressors induce transcription factors to trigger gene expression 
resulting in changes in cardiac structure and remodeling [45]. Altered 
gene expression is present in DCM [45]. Hyperglycemia produces ROS 
that leads to increased expression of NF-κB subunit p65 [45], which is 
associated with cardiac cell death and cardiac remodeling in HF [46]. 
Hyperglycemia additionally induces changes in DNA methylation that 
is associated with diabetic HF [45].

miRNAs regulate gene expression at the post-transcriptional level 
by increasing degradation or decreasing translation of certain mRNAs. 
Alteration in the expression of relevant miRNAs is associated with 
DCM. miRNA-1, which represents 40 percent of the miRNA in the heart 
is linked to diabetes-induced cardiomyopathy [45]. The miRNA-133 is 
critical for cardiac hypertrophy and up-regulates MEF2A and MEF2C, 
two transcription factors involved in myocardial hypertrophy [47]. 
Additionally, the miRNA 133 controls connective tissue growth factor 
(CTGF), which induces fibrosis and thus contributes to DCM [45]. 
An extensive understanding of the role of genetics, epigenetics, and 
miRNAs in DCM can help us better understand the pathophysiology 
of DCM and acquire novel therapeutic targets. 

Recently, a connection has been suggested between miRNAs 
and ER stress -dependent signaling [48]. In a clinical study, miR-
146a (involved in the regulation of inflammation) has been found to 
be down-regulated and negatively correlated with ER stress markers 
in type 2 diabetic patients [49]. The existence of such a relationship 
between ER stress signaling and miRNAs regulation offers a new way 
to regulate survival and death balance once the ER stress is activated. 

Endoplasmic reticulum stress in heart 

The role of ER stress in the heart is still unclear. UPR is a favorable 
response to stress, but prolonged activation can be detrimental to the 
heart [19]. Hypoxia, pressure overload, and ischemia have been shown 
to disturb the ER and activate the UPR in the heart [24,25]. Mouse 
hearts subjected to ischemia-reperfusion injury exhibit an increase in 
ER stress protein GRP78 in the border zone of the injury, highlighting 
the importance of ER stress signaling in ischemia-reperfusion injury 
[26]. Moreover, other studies showed an induction of ER stress 
chaperone “GRP78” and the activation of ER stress involved in the 
development of ischemic heart disease in murine model expressing the 
inflammatory factor MCP-1 in the heart [26,27]. Glembotski and his 
team were the first to report the cardioprotective role of ATF6 after 
myocardial ischemia-reperfusion injury [28]. Using transgenic mice 
with a cardiac-restricted expression of the activated ER stress ATF6, 
the authors showed that ATF6 provides cardioprotection in a model of 
myocardial ischemia-reperfusion injury.

Other studies reported the UPR activation and ER stress induction 
in hypertrophic and failing hearts under experimental and clinical 
studies [29-31]. These studies were supported by the findings showing 
that the UPR was found in both hypertrophic and failing hearts [32]. 
The mRNA levels of ER stress components ATF4, CHOP, GRP78, 
and caspase 12 were up-regulated in a mouse model of heart failure 
[33,34]. Furthermore, the increased expression of ER stress-CHOP has 
been proposed as a key player in the transition from hypertrophy to 
heart failure [35]. Thus, the disruption of CHOP attenuates cardiac 
hypertrophy and dysfunction suggesting the potential of modulating 
CHOP in cardiac therapy. Recent studies revealed a crosstalk between 
ER stress and autophagy in the heart after ischemia-reperfusion injury 
highlighting the potential cardioprotective effect of ER stress inhibition 
[36]. Overall, these studies emphasize the complexity of the role played 
by the ER stress in the physiopathology of the heart. For instance, during 
myocardial infarction, the ATF6 seems to play a cardioprotective role 
[28], while IRE1α-ASK1 pathway-mediated ER stress appears to be 
detrimental [37]. The complexity relies on the fact that UPR signaling 
exerts dual biological function related to both survival and apoptotic 
pathways. 

How the heart chooses between life or death once the UPR is 
activated and the ER stress is induced? How the ER stress is activated 
in cardiac physiology and cardiac pathology? How can we differentiate 
between the ER stress survival pathway and the ER stress detrimental 
pathway? How can we manipulate and activate the safe side of ER stress 
without stimulating the bad side? To answer these questions; future 
studies are needed to determine the exact role of each ER stress pathway 
in the heart and the contribution of theses pathways in myocardial 
infarction and heart failure [35]. 

Endoplasmic reticulum (ER) stress in diabetic hearts

Diabetes mellitus is one of the major risk factors for cardiac 
hypertrophy, inflammation, alterations in intracellular Ca2+ 
homeostasis, hyperglycemia, generation of reactive oxygen species, 
hyperinsulinemia, and insulin resistance, which can alter the 
homeostasis of the ER and induce the UPR [38]. In 1986, ultrastructure 
analysis showed a dilation of ER in diabetic myocardium suggesting 
the disturbance of ER and the induction of ER stress in diabetic hearts 
[39]. However, the relationship between ER stress and DCM is yet to be 
determined. In type 1 diabetic mouse model, ER stress in the heart was 
detected by the expression of ER chaperones, and apoptosis detected 
by CCAAT/enhancer-binding protein (C/EBP) homologous protein 
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Strategies and Associated Therapies
Recent studies in the cardiovascular field reported that ER stress 

and UPR are highly activated in atherosclerosis, ischemic diseases, 
diabetes and heart failure. Therapies involving the modulation of 
the ER stress pathways show promising effects in the treatment of 
cardiovascular disease [50]. Two primary therapeutic strategies are 
proposed to target and modulate the ER stress response. The first 
approach consists in the activation of the adaptive ER stress response 
to restore cellular homeostasis and normalize cell function. The second 
procedure consists in inhibiting ER stress-induced apoptosis pathways 
to prevent cell death [50]. Studies on obesity and type 2 diabetes showed 
that Chemical chaperones such as a 4-phenyl butyric acid (PBA), and 
tauroursodeoxycholic acid (TUDCA) were able to alleviate the ER 
stress, correct hyperglycemia, normalize insulin sensitivity and restore 
Serca2a protein level in animal models [42,50,51]. These studies, open 
new opportunities for chemical chaperones therapies and clinical 
investigations for these molecules could be beneficial for cardiovascular 
complications in diabetes and obesity. Currently, TUDCA is used in 3 
clinical trials on amyloid cardiomyopathy, the onset of type 1 diabetes 
and effect of ER stress on metabolic function. 

Atorvastatin, a clinical statin drug, has been shown to improve 
left ventricular function and attenuate left ventricular remodeling 
in patients with heart failure [52]. In a rat model of heart failure, ER 
stress modulation was proposed as a mechanism by which atorvastatin 
protects the heart against heart failure [53]. In line with the statin drugs, 
Pravastatin was also shown to inhibit the UPR and prevents cardiac 
remodeling after pressure overload [54]. Valsartan, an Angiotensin II 
receptor type 1 antagonist, reduces ER stress response and prevents 
cardiac remodeling by blocking ER stress-CHOP and slowing down 
DCM [55].

AMP-activated protein kinase (AMPK) recognized as a cellular 
energy gauge have been extensively studied in the pathophysiology of 
the heart [56]. Dys-regulation of AMPK has been reported in humans 
and animal models of metabolic syndrome. AICAR and metformin, 
anti-diabetic drugs activate AMP Kinase (AMPK), reduce ER stress 
and slow the progression of HF [50]. AICAR additionally activates 
nuclear factor-E2-related factor (Nrf2) through AMPK independent 
pathways, which helps combat oxidative damage [57]. Increased 
expression of Nrf2 reduces cardiac hypertrophy, myocardial infarct, 
and the progression of HF [58]. However, AMPK and Nrf2 pathways 
show convergence as well [59]. Therapeutic targets that activate 
AMPK and Nrf2, as well as targets in UPR and apoptotic pathways, 
hold promise in the treatment of the diabetic heart. Therapeutic efforts 
aimed at oxidative stress also reduce the ER stress.

Thus, the ER stress appears to be a key player in cardiovascular 
complications related to type 2 diabetes. Also, a large number of 
drugs used in type 2 diabetes or heart failure involved ER stress 
modulation. Targeting ER stress pathways hold a great feature for 
diabetic patients. As the prevalence of diabetes rises yearly in the 
United States, it becomes significant to understand the relationship 
between diabetes and heart failure. Although the role of ER stress has 
been well established in diabetes, there is still much to learn about the 
contribution of ER stress in heart complication in diabetes. Through a 
better understanding of cardioprotective therapies tailored for diabetic 
hearts could be administered and potentially increase longevity and 
decrease morbidity and mortality due to diabetes. 

Summary and Perspectives
ER stress has been involved in several cardiovascular complications 

and multiple studies linked ER stress to cell death in diabetes. The 
pathophysiological role of ER stress in diabetes in general and in 
diabetic cardiomyopathy specifically has progressed in recent years, 
but important issues are still unresolved. How cells choose between 
life and death once the ER stress is induced still remains unanswered. 
Activating the survival pathway and blocking cell death pathway 
induced by ER stress without altering autophagy is a significant 
challenge. Indeed, with the discovery of miRNAs and their potential 
connection with the ER stress markers, open new avenues. Depending 
on the nature of miRNAs and its up- or down-regulation, the impact 
on cell fate can be significantly modulated, leading to either pro-
survival or pro-apoptotic effects. More basic research, clinical studies, 
and relevant pathological models are needed to alleviate the effects of 
ER stress in cardiovascular complications in diabetes. Understanding 
the cross-talk between the different ER stress signaling members and to 
be able to pharmacologically manipulate the UPR to favor pro-death or 
pro-survival pathway might provide a new treatment for cardiovascular 
complications in diabetes. 
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