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Estradiol Synthesis in the Premenopausal Ovary
All steroid hormones, of which estradiol is an example, are 

lipids that have cholesterol as their common precursory substrate. 
The synthesis of sex steroid hormones from cholesterol involves 
a series of sequential steps that result in the cleavage of side-chains, 
reorganization of olefinic bonds, and the addition of hydroxyl groups. 
For estradiol synthesis, this pathway is from cholesterol to pregnanes, 
then on to androstanes and arriving finally at the estranes [1]. Estradiol 
synthesis requires the activity of members of the Cytochrome P450 
enzyme family (gene constructs CYPs 11,17 and 19), and a second 
family of enzymes, the hydroxysteroid dehydrogenases (HSD), which 
catalyze bi-directional reactions involved in both the biosynthesis 
and inactivation of steroid hormones. HSD exist in several different 
isoforms [2], and cooperate with steroid sulfotransferases, reductases 
and steroid sulfatases to regulate the level of bioactive hormone in all 
target tissues [1]. 

Estradiol synthesis in the premenopausal ovary requires the 
synergistic efforts of at least two cell types that synthesize their product 
when stimulated by independent upstream mechanisms. In theca, 
pregnenalone undergoes enzymatic conversion to androstenedione in 
a sequential fashion. Since thecal tissue lacks P450 aromatase (CYP 19) 
the final conversion to estradiol occurs in the adjacent granulosa cells 
and requires the actions of 17β HSD1 in converting androstenedione to 
testosterone, after which aromatase completes the conversion through 
to estradiol 17β [1]. This pathway is subsequently termed “the aromatase 
pathway” for estradiol synthesis. In the luteal phase of the ovulatory 

cycle, mammalian theca and cells of the corpora lutea (theca lutein) 
act together with granulosa lutein cells of corpora lutea, to produce 
sizeable amounts of both estradiol and progesterone. Throughout 
the cycle, estrone-sulphate (E1S) and dehydroepiandosterone sulfate 
(DHEA-S - available in small amounts in the premenopausal ovary) 
may also undergo conversion to estrone and DHEA respectively via the 
sulfatases (STS). This is “the sulfatase pathway” for estradiol synthesis, 
since the actions of the sulfatases allows the final conversion through to 
estradiol to be completed by HSDs 3 and 17 and P450arom. 

The localization and expression of the major enzymes required for 
ovarian steroidogenesis are shown in figure 1.

To summarize, the availability of cholesterol, the relative amounts 
and type of enzymes in each tissue or cell compartment, and the 
actions of FSH on granulosa cell [3] are the three variables upon which 
estradiol synthesis in the premenopausal mammalian ovary depends. 

Estradiol and the Postmenopausal Ovary: Potential for 
Oncogenesis

Following menopause, peripheral estradiol levels in the blood 
are thought to be mainly due to contribution from the adrenals and 
peripheral aromatization of androgens to estrogen in adipose tissue 
and skin, where aromatase activity correlates with estradiol production. 
There is evidence however, that the postmenopausal ovary retains the 
ability to produce both androgens [4] and estrogen [5,6]. 

The degree to which ovarian surface epithelium (OSE) is capable of 
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Abstract
Estradiol, the most potent of the biological estrogens, is implicated in the genesis of ovarian epithelial cancer, a 

heterogeneous cancer affecting mainly older women. The postmenopausal ovary traditionally has not been viewed 
as contributing significantly to estradiol synthesis, since this is thought to occur almost exclusively as the result of 
peripheral aromatization of adrenal androgens. Recent evidence supports a role for both normal and malignant ovarian 
tissue in de novo synthesis of estradiol using inactive biological precursors and available enzymatic pathways. The 
process is termed “intracrinology”. The present paper reviews available evidence for the intracrinological synthesis of 
estradiol in ovarian surface epithelium. It further proposes how exogenous supplementation with synthetic hormone 
replacement may act to augment this process by increasing the risk of developing ovarian epithelial cancer in older 
women. Phytoestrogens are also examined for their role in regulating levels of estradiol metabolites with potent 
estrogenic and carcinogenic potential. 
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steroidogenesis has only in recent years received attention, due largely 
to the OSE’s unresolved role in ovarian epithelial cancer, a cancer of 
mainly older women. Although recent attention has turned to the 
adjacent fimbriated oviductal epithelium as being the tissue of origin 
for ovarian epithelial cancers (specifically high grade serous carcinomas 
(HGSC)) [7,8], the most up-to-date evidence retains a definitive 
oncogenic role for mammalian OSE cells near the hilus of the ovary, 
at the point of OSE-mesothelial transition [9]. Since epidemiological 
evidence increasingly links estrogen to ovarian epithelial cancer [10-
18] and OSE has intracrinological capacity, the possibility of in situ 
estradiol-induced carcinogenesis in the postmenopausal ovary requires 
further investigation. 

In vitro and in vivo evidence for aromatase activity in normal human 
OSE has been demonstrated using reverse transcription polymerase 
chain reaction (RT-PCR) [19,20] and immunohistochemistry 
[20,21]. Both benign and malignant ovarian epithelial tumors 
show immunohistochemical evidence of aromatase function in the 
cytoplasm of tumor cells [22], and aromatase is reported to be localized 
in stromal cells adjacent to ovarian carcinoma involving OSE [23]. In 
postmenopausal women, aromatase expression in normal OSE has been 
documented as six-fold higher than in stroma, and is also significantly 
greater in normal OSE when compared to malignant ovarian epithelial 
tumors [20]. This may indicate that when OSE undergoes malignant 
transformation, the aromatase pathway may not be the preferred 
pathway for the de novo synthesis of estradiol. Indeed the targeting of 
ovarian epithelial cancers with aromatase inhibitors has had mediocre 
success, perhaps not only due to the heterogeneity of ovarian cancers, 
but also because there is more than one player in localized estradiol 
synthesis. It has already been established that the sulfatase pathway is 
the dominant pathway for in situ estradiol synthesis in postmenopausal 
breast cancers, where it prevails over the aromatase pathway by some 
50-200 fold [24].

Ovaries from older mice have been shown by aging-specific 
gene array to have increased not only mRNA levels of aromatase, 
but also progesterone receptor (PR) and estrogen sulfotransferase 
(EST) compared to younger mice. EST, an enzyme that catalyzes the 
conjugation of estrone to a sulphur group producing estrone sulfate 
(E1S, Figure 1), is the most abundant circulating estrogen conjugate 

and renders estrone inactive [25]. However, once the sulphur 
group is removed, estrone can bind to estrogen receptor but does 
so with low affinity. Interestingly, Zimon et al. [25] were not able to 
demonstrate increases in EST at protein level using Western Blot and 
immunofluorescence in older mouse ovary. Instead, they found levels 
of EST protein to be significantly reduced. EST mRNA expression has 
recently been reported to be markedly reduced in cultured primary 
ovarian epithelial cancer cells and all ovarian cancer cell lines when 
compared to normal OSE cells using quantitative RT-PCR [6]. 

Human OSE in cell culture additionally expresses steroid sulfatase 
(STS). STS works antagonistically to EST and converts E1S and 
dehydroepiandosterone-3 sulfate (DHEA-3-sulfate) to estrone and 
DHEA respectively (Figure 1). This raises the possibility that localized 
changes in the ratio of STS to EST in aging ovarian surface epithelium 
may boost levels of unconjugated estrone. Existing in vitro evidence 
using ovarian cancer cell lines, primary ovarian cancer cells and normal 
OSE, shows that activity of EST relative to STS is greater in normal 
OSE when compared to the cancerous state [6]. This finding may be 
important and invites more investigation into EST to STS ratios in OSE 
from postmenopausal women.

The significance of increased STS to EST ratio in OSE is that OSE 
also expresses mRNA for 17βHSD reductase required for the synthesis 
of estradiol from estrone [26]. In confluent culture, normal OSE from 
pre and postmenopausal women has been shown capable of de novo 
synthesis of both estrogen and progesterone using HSDs [27]. Thus, 
an increase in the STS to EST ratio may potentially boost local ovarian 
tissue levels of estradiol 17β, the far more potent biologically active 
estrogen that binds with strong affinity to its receptor. A current review 
targeting sulfatase activity for estrogen production in OSE supports 
this view [28] and underpins the emerging significance of the sulfatase 
pathway for generating potentially damaging levels of estradiol in OSE, 
conceivably predisposing it to oncogenesis. 

It is possible that ovarian aging may have an effect on the stability 
of EST proteins. This may confer reduced ability to sulfonate estrone 
and estradiol obtained from peripheral blood via organic anion 
transporting polypeptides [28], which in turn may lead to increased 
levels of unconjugated estradiol in the ovary. Indeed in a recent study 
completed by our own lab, we found using radioimmunoassay, that 
some older mice had elevated levels of endogenous estradiol in ovarian 
tissue (>300 pg/mL; normal range 66.2-117 pg/mL). Furthermore, 
mice administered exogenous estradiol continued to show significantly 
elevated estradiol levels in ovarian tissue 2 weeks following cessation of 
estrogen treatment, indicating that unconjugated estradiol accumulates 
and is retained in ovarian tissue [29,30]. 

These findings may go some way to providing an explanation as to 
why older women taking exogenous estradiol in the form of hormonal 
replacement therapy carry greater risk for the development of ovarian 
epithelial cancer. Friel et al. [31] reported that an oral estradiol dose 
regimen of between 1-2 mg/day can lead to a condition of estradiol 
overdose - as evidenced by urinary excretion of estrone 5-10 times the 
upper limit of the reference range for premenopausal women. Of note 
is that the present recommended estradiol dose in the U.S remains 
anywhere between 0.45 mg/day–2 mg/day.

Phytoestrogen Intake and Risk of Ovarian Epithelial 
Cancer

While ample epidemiological evidence exists for hormone 
replacement therapies as having a role in the development of ovarian 
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Figure 1: The ovary: Pathways of steroid hormone biosynthesis and the key 
enzymes involved.
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cancers, some evidence suggests that phytoestrogens taken in the diet 
may actually have the opposite effect. Phytoestrogens which include 
isoflavones (mostly soy-derived) and lignans (derived from grains, 
seeds, vegetables, fruits and berries) are established as having both 
estrogenic and anti-estrogenic properties [32,33]. Phytoestrogen 
consumption has been reported to either confer significantly reduced 
risk of ovarian cancer [34-36] show a non-significant inverse 
association with ovarian epithelial cancer [37], or show no association 
with overall ovarian epithelial cancer risk [38]. Interestingly in the latter 
prospective cohort study, fiber intake was associated with a decreased 
risk of borderline, but not invasive ovarian epithelial cancer [38]. Re-
uptake of estradiol metabolites found in bile is slowed by the presence 
of fiber in the intestine, lowering total estrogen. This mechanism for 
regulating estradiol may have little effect on established tumors capable 
of autonomous endocrine activity. 

 The differing results from the above studies may be a consequence 
of their differing methodologies (case-control based or prospective 
cohorts, dietary-derived only phytoestrogens versus dietary and 
supplement derived), different sample populations, age and 
menopausal status of the women. Moreover, ovarian cancers are highly 
heterogeneous and this has received little attention in the design and 
interpretation of these studies. Perhaps importantly, authors of the 
recent Swedish study [38] (where no association was seen between 
phytoestrogen intake and ovarian cancer risk) reported that overall 
bean/soy consumption in their cohort was low. Since other studies [34-
37] were able to show a dose-response correlation, whereby subjects 
making up the highest quintile of phytoestrogen consumption showed 
reduced risk for ovarian cancer compared to those in the lowest 
quintile, the normally low intake of phytoestrogens in the Swedish 
cohort may have influenced results from that study. Studies which 
report changes to estradiol metabolism that reduce risk for developing 
ovarian cancer when women ingest higher rather than lower quantities 
of phytoestrogens in the form of flaxseed (a lignan) and isoflavones 
[39,40], lend further support for a protective role for phytoestrogens in 
the development of ovarian cancer.

There is an important emerging body of research investigating how 
ingested phytoestrogens act to control endogenous levels of estradiol 
by controlling the activity of estradiol’s active metabolites. Circulating 
estradiol in human blood is controlled by regulatory mechanisms 
that act independently of the well-known endocrine feedback loops, 
including activin and inhibin. In humans, levels of Sex Hormone 
Binding Globulin (SHBG) act to bind and therefore control to some 
extent the actions of free unbound estradiol. Levels of SHBG increase 
with increasing levels of circulating estradiol and reflect the fact that 
more hormone is available for binding. The half-life of estradiol in 
the postmenopausal female is around 3 hours [41] with significant 
amounts of estradiol undergoing conversion to estriol and estrone 
followed by excretion of these well-known metabolites into the urine, 
bile and feces. 

The formation of hydroxyl derivatives of estrogens (the catechol 
estrogens) during estradiol metabolism forms a potentially very 
important pathway for the control of endogenous estradiol levels. 
The principal hydroxylation products are 2-hydroxyestrone, 
2-hydroxyestradiol, 4-hydroxyestrone, 4-hydroxyestradiol and 
16-hydroxyestrone, 16-hydroxyestradiol [42]. Oxidation reactions 
allowing for the insertion of hydroxyl groups at positions 2-, 4-, or 
16- are catalyzed by members of the Cytochrome P450 (CYP) family 
of enzymes. CYP1A1 catalyzes the 2-hydroxylation of estradiol and 
can be induced by dietary constituents [42]. CYP1B1 catalyzes both 

16α- and 4-hydroxylation [42,43], and it has been reported that 
16-hydroxyestradiol may be induced by pesticides and other xenobiotic 
carcinogens [42]. Estradiol catabolism continues when poly-hydroxyl 
entities undergo conjugation with sulfates and gluconarates, or are 
methylated via catechol-O-methyl transferase (COMT) before being 
excreted in the urine. However, 4-hydroxyestrogens are unstable, and 
can be oxidized by peroxidases to form highly reactive semi-quinone 
and quinone metabolites [42,43].

Metabolite activity can be measured from samples of blood, tissue 
and urine. It is known that 2-hydroxyestrones are rapidly methylated 
in the blood by COMT and have anti-estrogenic (anti-proliferative) 
effects [43]. Although 4-hydroxyestrone and 4-hydroxyestradiol 
are found only in small amounts in the blood, they none-the-less 
have estrogenic action (hyperplasia, hypertrophy) and carcinogenic 
potential via the generation of free radicals [43-45]. The metabolite 
16α-hydroxyesterone has been found to have potent estrogenic effects 
equivalent to, or stronger than, 17β-estradiol. These include DNA 
synthesis, persistent proliferation and anchorage-dependent growth 
[42,46].

A diet that is high in soy isoflavones increases the 2α-hydroxyestrone 
to 16α-hydroxyestrone ratio and lowers mid-cycle gonadotropin levels, 
leading to decreases in circulating estradiol, progesterone and SHBG 
in premenopausal women [47]. Decreases in 16α-hydroxyestrone, 
4-hydroxyestrone and 4-hydroxyestradiol have also been shown in 
premenopausal women with high soy isoflavone intakes of 130 mg/day 
compared to those with low intakes of 7-10 mg/day [40]. Moreover, 
the daily ingestion of large amounts (10 g) of ground flaxseed over a 
period of seven weeks in postmenopausal women has been reported to 
dramatically induce 2-hydroxylation of estrone and improve the ratio 
of 2/16α-hydroxyestrone, whereas only moderate effects were observed 
with reduced intakes of 5 g flaxseed per day [39]. Interestingly, 
supplementation with flaxseed lignans appears superior to soy in 
altering estrogen metabolism in postmenopausal women with respect 
to increasing 2α to 16α- hydroxylation. Flaxseed also moderately 
inhibits Cytochrome P450arom [48,49] and modulates the activity of 
the 17-HSD [50].

Some studies investigating estrogen metabolism and breast cancer 
have shown that estradiol metabolism favoring formation of 2-α 
hydroxylation over 16α-hydroxylation decreases the risk for developing 
breast cancer [51,52], although other studies show mixed results [53]. 
The differences in results may relate to the varying methodologies 
employed by researchers, but may also relate to menopausal status in 
the women studied. Recently, in an in vitro study using ovarian cancer 
cell line OVCAR-3 to examine the effects of the metabolites of estradiol 
on proliferation and apoptosis in comparison to estradiol itself, the 
17β proliferative and anti-apoptotic activity of the 16α-hydroxylated 
estrone was shown to outstrip that of estradiol. Surprisingly 
4α-hydroxyestrone gave similar results to 17β estradiol at physiologic 
concentrations [54], and may exert its effects through the PI3K/Akt 
signaling pathway to promote ovarian carcinogenesis. Importantly, 
the 2α-hydroxyestrone metabolite was shown to have little activity. 
Although there is more research needed, these results indicate that the 
maintenance of pro-oncogenic to anti-oncogenic estradiol metabolites 
in the ovary may prove to be a very important factor in the genesis of 
ovarian epithelial cancer.

Finally, many phytoestrogens are known to bind both functional 
estrogen receptor subtypes (ERα and ERβ), and are capable of inducing 
transcription of estrogen responsive target genes in a dose-dependent 
manner [55-58]. Whether phytoestrogen binding to ER produces 
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the same or opposite effect to estradiol appears to depend on several 
factors: the type and amount of phytoestrogen [55-60], its relative 
binding affinity for the receptor subtype [56,57,61], the abundance 
from tissue to tissue of one ER subtype relative to the other [62], 
the presence of low-affinity (type II) nuclear binding sites [63], the 
ability of the phytoestrogen to utilize other non-genomic modalities 
(such as akt phosphorylation and NFκB) to modulate estrogenic and 
carcinogenic effects [64,65], and the presence of endogenous estrogen 
[66]. Activation of ERα by estradiol induces marked proliferation 
in normal and cancerous ovarian epithelial cells in vitro and in vivo 
[29,67-69], whereas activation of ERβ opposes the proliferative effects 
of ERα and has pro-apoptotic and anti-tumoral effects [69-71]. 

Phytoestrogens are known to bind ER with much lower affinity 
than estradiol [60,61], and preferentially bind ERβ [72]. Moreover, 
they induce the transcription of estrogen-responsive target genes to 
a much greater degree when bound to ERβ, rather than when bound 
to ERα [66]. Phytoestrogens are also capable of inducing ER-mediated 
gene transcription to higher levels than estradiol itself [66]. Taken 
together, it may be proposed that in tissues such as ovary where ERβ 
is abundantly expressed, phytoestrogens may act to augment the anti-
carcinogenic effects of that receptor subtype. However, it should be 
noted that some phytoestrogens (e.g. genistein and resveratrol) have 
been known to act synergistically with estradiol in MCF-7 breast 
cancer cells [66,73], and can act as ‘super agonists’ that bind ERα as well 
as ERβ. It is therefore important that further research defines the effects 
of different phytoestrogens on the ovary, and elucidates the cellular and 
molecular basis for their action. 

Conclusion
At this time there appears to be a paucity of both in vitro and in 

vivo data for estradiol intracrinology and metabolite activity in the 
older female, and in the development of ovarian epithelial cancer. Since 
long-term exposure to estradiol is an established risk factor for ovarian 
cancer, this is an area of research that requires much more attention.
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