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Abstract 
Accurate calculations of protein–protein binding free energies based on rigorous models, which consider the 

binding complex structure in atomic detail, are computationally expensive and impracticable to apply to T cell repertoire 
formation that occurs in the thymus because this process involves the interactions among numerous combinations of T 
cell receptors (TCRs) and presented peptides. By comparison, an evaluation of binding free-energy using a combination 
of the string model and Miyazawa-Jernigan matrix is very efficient and was therefore applied to estimate interaction 
energies between T cell receptor–peptide–MHC (TCR–pMHC) complexes, which appeared to successfully explain the 
effects of binding capacity of MHC on repertoire–formation and the reason for the presence of elite-controllers of some 
viral infections. However, this evaluation method is overly simplified and requires more detailed considerations when 
applied to evaluating TCR-pMHC interactions. In this study, we examined this method exhaustively and revealed the 
limitations of the method. Following features necessitate cautious attitude when interpreting the calculation results: 
first, the apparent increase in the number of hot spots in accordance with an increase of educational epitope pool size 
does not mean an increased TCR specificity of surviving clones; second, strong binders to any TCR converge to some 
limited sequences that are determined by the physical nature of the Miyazawa-Jernigan matrix. 
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Introduction 
The education of T cells in the thymus, primarily involving 

positive and negative selection, is an essential process for establishing 
immunological recognition of self and non-self. Among numerous 
proteins involved in the interactions between thymocytes and 
epithelial cells, the T cell receptor (TCR) and peptide-MHC 
(pMHC) play the most important roles. The interactions between 
them, binding free energies, and to some extent the kinetic features, 
determine the fate of these cells [1-5]. Several attempts have been 
made to calculate the binding free energy between TCR–pMHC as 
precisely as possible despite the extremely high calculation costs 
[6,7]. A continuum solvent dielectric model was developed, which 
was far more efficient for calculations than a rigorous method, such 
as thermodynamic integration, and had substantial accuracy [8,9]. 
However, this method is not feasible for calculating the interactions 
among numerous combinations of TCRs and the epitopes presented 
on thymic epithelia. Miyazawa and Jernigan devised the Miyazawa–
Jernigan matrix (M–J matrix) in which the inter–residue potentials 
were extracted from the crystallography results of 1168 proteins 
[10]. The principle adopted for this contact potential estimation 
was that the frequencies of residue–residue contacts observed in a 
large number of protein crystals would represent the actual intrinsic 
inter–residue interactions. Li et al. defined the designability of a 
structure on a hydrophobic-polar (HP)–lattice model as the number 
of sequences that bear this structure as the ground state (most stable 
structure) [11]. In other studies, instead of an HP lattice, 20 amino 
acids (AAs) with the M-J matrix was used, and the results confirmed 
that designability also applied as an indicator of the folded state in 
these cases [12-14]. Wang and Wang determined the minimal protein 
folding alphabets required to form a structured protein using the M–J 
matrix [15]. The M–J matrix was also used to categorize 20 AAs into 
several groups [16,17]. 

String model, which approximates protein–protein interactions 
as the sum of relevant, ladder-forming AA pair interactions, has been 

used to study TCR–pMHC interactions [18-21]. The calculation cost 
of using a combination of the string model and M–J matrix to estimate 
TCR–pMHC interactions is quite low, and several attempts have been 
made to evaluate TCR–pMHC interactions based on this model [22-
25]. Kosmrlj et al. applied this method to explain the effect of an MHC 
molecule on T cell repertoire formation, particularly its capacity to 
bind diversified peptides, and seem to have succeeded to some extent 
[26,27]. Despite these attempts, the actual configuration of a TCR–
pMHC complex may not be so simple as to be simulated by a string 
model. The M-J matrix has been used primarily to determine the 
native folded state. However, the density of the interface between TCR–
pMHC is not so high as observed with a folded protein [28]. Thus, it is 
necessary to consider the validity of applying this model to calculations 
of TCR–pMHC binding energies. Here, we exhaustively characterize 
this estimation method. 

Materials and Methods
TCRs and 9-mer epitopes were generated randomly based on 

the frequency distribution for mouse endoplasmic reticulum [29]. 
Epitopes restricted to MHC molecules were generated using Gibbs 
sampling, taking into consideration both AA frequency and binding 
scores estimated by position–specific scoring matrix (PSSMs) 
[30]. PSSMs for Class I were from the Immune Epitope Data Base 
(IEDB, http://www.immuneepitope.org/), and those for Class II were 
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calculated using the Multiple Em for Motif Elicitation (MEME) suite 
(http://meme.sdsc.edu/meme/cgi-bin/meme.cgi) based on epitope 
data registered in IEDB. Mouse cDNA sequences to extract self–
epitopes were from the Riken Expression Array Database (http://
read.gsc.riken.jp/fantom2/) and FANTOM (http://www.osc.riken.
jp/contents/fantom/). Computers used for calculations included a 
X8DA3 mother board (SuperMicro, California, USA) and dual Xeon-
E5620s (Intel Corp., California, USA). The calculation algorithm 
used for determining the binding free energy was same as that in a 
previous study [26]. Programs used for the calculations were coded 
using Mathematica v.8 (Wolfram Research, Illinois, USA). Molecular 
images were drawn using Chimera 1.5.3 [31]. 

Results
String model and M–J matrix

Several studies have applied the string model to approximate 
protein–protein interactions in immunology. Kosmrlj et al. used the 
string model and M–J matrix to calculate TCR–pMHC binding energies 
and explained the effects of the binding capacity of MHC molecule 
on repertoire formation [26,27]. As shown in Figure 1A, this model 
assumes that the CDR1 and CDR2 of a TCR interact with MHC helices, 
and only CDR3 interacts exclusively with a peptide presented on the 
MHC. For simplicity, Kosmrlj et al. took into account the interaction 
only between CDR3 and the presented peptide, and we also did so. If the 

Figure 1: String model for TCR–pMHC complex
In this simplified model, CDR1 and CDR2 of TCRs mainly interact with helices running along both sides of MHC molecules, between which the presented peptide is located. In this case, CDR3 
(LKVEGTRVY) interacts with a presented peptide (LDIRASELT) so as to form a ladder with 9 rungs (L–L, K–D, V–I, E–R, G–A, T–S, R–E, V–L, Y–T). For simplicity, only the interaction between CDR3 
and the presented peptide is considered (SI 1). (A) AA contact energies were assigned respectively to these rungs (AA pairs) by the M-J matrix, and the binding energy between CDR3 and the presented 
peptide could be calculated by summing these values. (B) Actual 3-dimensional structure of a TCR–pMHC complex (PDBID: 1AO7) is shown. Both CDR3 loops comprise α and β chains running across 
rather than parallel to the presented peptide. CDR2 mainly interacts with helices, whereas CDR1 interacts with both MHC helix and presented peptide. The TCR–pMHC binding mode also varies widely. 
This image was generated using Chimera 1.5.3. 

Figure 2: Altered expression of M–J matrix according to energy level
The M–J matrix assigns interaction energies to AA pairs. Columns of an original matrix were transformed so that AAs were arranged according to their binding energy values expressed in units of kT, 
where k is Boltzmann’s constant and T is absolute temperature. Red bar indicates that the AA pair is hydrophobic and blue indicates it is hydrophilic. Green bars were placed between the 10th and the 11th 
AA in the order of energy levels, above which a selected AA behaves as a hot spot. As an example, the binding energy between TCR (LKVEGTRVY) and presented peptide (LDIRASELT) was calculated 
as follows: interaction between L and L (black–circle) was numbered as 1, –7.37 kT; between K and D was numbered as 2, –1.68 kT; V and I was numbered as 3, –6.05 kT, and so on were read from the 
M-J matrix and summed to a total of –33.4 kT. Note that the pattern of each column is quite similar; within each column hydrophobic residues (red) are located on the upper side (stronger) and hydrophilic 
residue (blue) are located on the lower side(weaker). Columns for hydrophobic residue (C, M, F, I, L, V, and W) are also located entirety above (stronger) and those for hydrophilic residue (N, Q, D, E, R, 
K, P) are located below (weaker).  
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interaction of CDR1 and CDR2 of any TCR with an MHC molecule can 
be assumed to be constant and the thresholds for positive and negative 
selection (EP and EN, respectively) are set appropriately, then this 
approximation seems applicable for considering the principle binding 
characteristics based on the M-J matrix. However, this model may still 
seem too simplified. An actual TCR–pMHC complex, as shown in 
Figure 1B, does not assume such a simple configuration. For example, 
CDR1 interacts not only with MHC but also with the presented peptide 
and CDR3 is not configured in parallel with the presented peptide. 
Moreover, several aberrant binding modes for TCR–pMHC complexes 
have been reported [32-35]. These results strongly suggest that one 
should be cautious when applying this method to evaluate TCR–pMHC 
binding free–energy. 

M–J matrix rearrangement according to energy–levels

Figure 2 shows an M-J matrix, in which each column is rearranged 
such that bars indicating AAs are placed in accordance with the binding 
free energy, from stronger (upper) to weaker (lower). Red bars indicate 
hydrophobic AAs and blue bars indicate hydrophilic AAs, as plotted by 
Kyte and Doolittle [36]. The interaction energy between TCR and the 
presented peptide is calculated based on the string model as the sum of 
interacting AA energies. As an example, the interaction energy between 

the TCR CDR3 (LKVEGTRV) and a peptide LDKIRASELT, as shown 
in Figure 2 (lower left), was calculated as –(7.37 + 1.68 + 6.05 + 2.27 + 
2.31 + 1.96 + 2.27 + 6.48 + 3.01) kT (k is Boltszmann’s constant and T 
is absolute temperature), where each of these energies corresponds to 
the binding energy between L–L, K–D, V–I, E–R, G–A, T–S, R–E, V–L, 
and Y–T, respectively. 

Dependence of the strongest binder on the educational 
epitope pool size

Thymocytes are educated in the thymus through the interactions 
between TCRs and self-peptides presented on MHC molecules of thymic 
epithelia. TCRs interact with self-peptides with varying strengths; 
those that interact with interaction energy weaker than EP are subject 
to apoptosis, and those that interact with interaction energy stronger 
than EN are deleted (negative selection) [1-5]. Therefore, epitopes 
that should be recognized as non-self must interact with TCRs with 
energies stronger than EN when encountered after thymic education 
(SI 1). As the size of the pool of educational epitopes increases, the 
range of interaction energies between individual epitopes and TCRs 
becomes wider. Figure 3A shows an example of calculated binding 
profiles, namely histograms of bound peptides, of a TCR with sequence 
AMLSYCIEK against epitope–pools of 32, 100, and 316 peptides. The 

Figure 3: Binding profile of a TCR and the effect of educational epitope pool size
In this model, a TCR binds to any peptide with an energy calculated based on the M-J matrix. A histogram of binding energies (binding profile) against a particular epitope pool can be generated for an 
individual TCR. One hundred of TCRs (9-mers) and an epitope pool of 107 peptides were randomly generated based on the AA frequency of the mouse proteome. (A) For the TCR sequence AMLSYCIEK, 
which was randomly selected from the 100 TCRs, 32, 100, and 316 peptides were extracted from the epitope pool of 107 peptides and the binding energies were calculated. The possible strongest and 
weakest binders for this TCR, uniquely determined based on the TCR sequence, are LFLFLLLLL and KKKKKKKEK, respectively. Also shown are the strongest and weakest binders within each pool: 
EVRCIHVVR and EGREKSPEE, respectively, among 32 peptides; MPKNILLEC and EEEQEEQEQ, respectively, among 100 peptides; and HFRLIVIKR and EEEQEEQEQ, respectively, among 316 
peptides. As the pool size increases, the strongest binder becomes stronger and the weakest binder becomes weaker. (B) Dependencies of the strongest and weakest binders based on epitope pool 
size. A series of epitope pools from 32 to 107 peptides were generated. As an example, binding profiles of a TCR (YSLEPHRFI) against this series of epitope pools were calculated and the strongest and 
weakest binders within each pool were determined. The sequences of bound epitopes are shown. The means and standard deviations of these pools remained nearly constant. (C) Binding profiles are 
shown for 3 representative TCRs (strong, intermediate, and weak binders selected from the 100 TCRs) against the epitope pool of 107 peptides. As the mean of the binding profile becomes stronger, the 
standard deviation becomes greater. (D) Exemplified relationship among EP, EN, and binding profile against educational epitopes (considered as self) and exogenous epitopes for a TCR of a surviving cell 
is shown. Exogenous epitopes that bind stronger than the discrimination threshold were recognized as non-self. The discrimination threshold should be stronger than EN. As the size of the pool increases, 
the strongest binding energy becomes stronger and the weakest becomes weaker. To survive this educational process, the binding energy of the strongest binder among educational epitopes should be 
weaker than the threshold for negative selection. 



Citation: Tsurui H, Takahashi T, Matsuda Y, Lin Q, Sato-Hayashizaki A (2013) Exhaustive Characterization of TCR–pMHC Binding Energy Estimated 
by the String Model and Miyazawa-Jernigan Matrix. General Med 1: 126. doi: 10.4172/2327-5146.1000126

Page 4 of 7

Volume 2 • Issue 1 • 1000126General Med
ISSN: 2327-5146 GMO, an open access journal

profiles appear similar to Gaussian curves with the very near averages 
and standard deviations. The strongest and weakest binders within 
the individual pools are EVRCIHVVR (–29.99 kT) and ERGEKSPEE 
(–18.44 kT), respectively, for a 32 peptide pool; MPKNILLEC (–30.72 
kT) and EEEQEEQEQ (–17.6 kT), respectively, for a 100 peptide pool, 
and HFRLIVIKR (-32.22 kT) and EEEQEEQEQ (-17.6 kT), respectively, 
for a 312 peptide pool. This TCR binds strongest to LFLFLLLLL (-48.36 
kT) and weakest to KKKKKKKEK (-16.8 kT). As shown in Figure 3B, 
a wider range of epitope pool size 101.5-107 peptides was investigated. 
As an example, the TCR with sequence YSLEPHRFI, a medium binder, 
was adopted. While the size of the epitope pool increased, the mean and 
standard deviation remained nearly constant (~approximately 29 kT 
and 3 kT, respectively). In contrast, the strongest binder within the pool 
became stronger and the weakest binder became weaker. This feature 
was common to other TCRs. The binding profiles of 107 peptides for 
3 TCRs, RSKHESEGT (weak binder), YSLEPHRFI (medium binder), 
and LFWTLVLMF (strong binder), are shown in Figure 3C. Effects of 
haplotypes on binding profiles for those TCRs as shown in Figure S2, 
were almost negligible except for on Dd. Scatter graphs of the means and 
standard deviations against an epitope pool of 107 peptides, restricted 
to several MHC–haplotypes, for 100 TCRs are shown in Figure S3. In 
this case, epitopes were generated not only randomly, but also with 
some restriction so as to bind to the indicated MHC molecule more 
strongly than a given criteria. Binding profiles that had strong mean 
values had large standard deviations, as indicated by Figure 3C and 
linear regression analysis shown in Figure S3. These distributions were 
highly correlated. Exemplified relationships among EP, EN, and binding 
profiles of educational epitopes and epitopes recognized as non-self, 
are illustrated in Figure 3D. If a clone was to survive after positive and 
negative selection, the strongest binding energy against an educational 

self-epitope should be weaker than EN, and if an epitope should be 
recognized as non-self, the binding energy must stronger than EN. 
Epitopes that bind more weakly than this threshold will be recognized 
as self, regardless of their actual origin. 

Number of hot spots increases as the educational epitope pool 
size increases

As shown in Figure 3, an increase in the educational epitope pool 
size results in a wider range of binding profiles. This means that the 
discriminating thresholds of the surviving clones become stronger as 
the size of the educational epitope pool increases. A hot spot is defined 
as a site where more than 10 (half of the 20 various AAs) mutations 
weaken the binding energy. This means that an AA in the hot spot 
site is located above the green bar in Figure 2. As the discrimination 
threshold becomes stronger, each peptide AA must bind more strongly, 
on average, causing a decrease in acceptable mutations (which provide 
stronger binding) and thus increasing the number of hot spots. This can 
be simulated as shown in Figure 4. In this simulation, 3 representative 
TCRs were selected (Figure 3). The discrimination threshold was set as 
the strongest binding energy in the epitope pool; therefore, it behaves 
as a monotonically increasing function of educational epitope pool size 
in the range of 101-107 peptides. Gibbs sampling was used to generate 
104 peptides that bind stronger than the given thresholds, and hot spots 
for these peptides were calculated. As is clear from all the panels in 
Figure 4, an increase in the epitope pool size resulted in an increase in 
hot spots for these 3 TCRs, weak (RSKHESEGT, Figure 4A), medium 
(YSLEPHRFI, Figure 4B), and strong (LFWTLVLMF, Figure 4C) 
binders. The mean values of 100 TCRs shows similar features (Figure 
4D). 

Figure 4: Dependence of the number of hot spots on the size of the educational epitope pool    
The strongest binding energies from epitope pools of 101 –107 peptides for each TCR obtained in the Figure 3 were adopted as the thresholds. A total of 104 peptides with binding energies stronger than 
these thresholds were generated by Gibbs sampling. For these newly generated epitopes, the numbers of hot spots (as defined in the text) were calculated. Histograms for 3 representative TCRs (A, B, C; 
same as in Figure 3) and the average of randomly generated 100 TCRs (D) is shown. As the epitope pool size increased, the number of hot spots also increased (i.e., histograms shifted from left to right).  
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Strongest binders converge to very limited sequences

An increase in the number of hot spots means an increased rigidity 
for TCR recognition. In this context, rigidity means any perturbation 
of the sequence weakens binding of TCR-pMHC. Therefore, Figure 
4 apparently shows that the increase in the educational epitope size 
brings about an increased specificity of TCR-recognition of surviving 
T cells. By comparison, the M-J matrix, illustrated in Figure 2 shows 
that the patterns of energy level–distributions are very similar among 
almost all the columns. This suggests that stronger binders for any TCR 
converge to some limited common sequence. As can be observed from 
this matrix, C, F, I, L, V, Y, A, G, T, S, D, E, R, and K bind strongest to 
L, and M, W, N, Q, H, and P to F. We generated 200 peptides that bind 
with energies stronger by 5, 10, 15, and 20 kT than the mean binding 
energy of the epitope pool size of 107 peptide. Ten of these peptides were 
randomly selected (Table 1). Peptides with binding energy stronger by 5 
kT contained a variety of sequences, and this diversity decreased as the 
binding energy became stronger. Peptides with binding energy stronger 
by 15 kT contained very similar sequences that were abundant in L and 
F. This feature was obvious in both YSLEPHRFI and FLWTLVLMF 

cases. Especially in the case of YSLEPHRFI with binding energy 
stronger by 20 kT than the mean, which corresponded to the region 
that is within 1.5 kT from the strongest binding energy for this TCR, 
all the sequence consisted of almost L and F. These results derive from 
the fact that the distributions of energies within the columns of the M-J 
matrix are quite similar to each other. At the same time, an apparent 
increase in strictness of recognition (increase in the number of hot 
spots) involves the convergence of interacting peptides to the common 
strongest binders irrespective of the TCR sequence. 

Discussion
In this study, we considered the interaction between CDR3 and 

presented peptides only. Kosmrlj et al. also adopted this model [26]. 
As mentioned in SI 1, this model seems applicable if the interaction 
of CDR1 and CDR2 with MHC can be presumed as constant and EP 
and EN are set appropriately. The M-J matrix is one of the successful 
knowledge-based potentials that are widely used as effective free 
energies to parameterize protein coarse-grained models. This matrix 
was obtained from databases of known protein structures and has 

                                              difference from the mean                  ....

TCR -5 -10 -15 -20 the strongest
                                         the strongest energy in 104 the strongest energy in 107

RSKHESEGT
-18.3

VQYELLSGI -24.74 IVMLILLGE -28.46 FLLFYFVLL -34.02

LFLFLFLLL -35.89

LVMGCYLQS -23.97 YFLWLLFVH -31.4 ILFFMLLLV -33.7

KHGIAILLC -23.88 IFHLLLRIK -28.41 CFYLLLLLL -33.33

VFLRIWPES -23.32 CLILVLLYI -31.26 IVLLLLFLL -34.16

ILTLHGLES -24.14 MFLFWAVF -30.17 LLFLLLSLL -33.34

LPGGLVFGA -23.66 VIIFVGLVY -2884 LFYIWLIFL -33.44

QFCFFGETL -25.25 RYFWLLFF -29.86 FVLILLLII -33.45

FQLMSHNVI -25.33 PFLLFCVFT -28.97 LLVFLCLFI -33.41

MEFILSFAV -26.69 LFMLMEIIG -28.57 LWLLLLWFL -33.9

RFAVRLSMS -23.48 IVYLLGLKL -28.31 LFWFFLWVL -33.7

                                                                              the strongest energy in 104 the strongest energy in 107

YSLEPHRFI
-26.5

FPPFLVIKK -32.77 LLLQMGIGF -38.58 LLLFLPLRF -41.82 FLLLLWLFF -46.85

LFLLFFLLL -48.02

FQEFESLVY -33.05 LLLNLSRMQ -36.56 VLLIMCELF -42.64 IVLLLFLLL -46.58
LVISLPVKR -33.75 LTLQYLFSI -38.69 SFLTILILI -41.66 LLLLLLLLL -47.64
VSSKKIFLE -31.55 VHIYVHWLA -38.2 IVMFFFMIV -43.3 FLLLLVFLL -46.62
GEATYFTML -34.75 TIISSMIYL -36.93 IILELLVML -42.46 LLIFLFIFL -47 09
FRVPIISIR -35.01 ACLSLENFF -37.16 CILLTLVLL -42.47 LLLFLLFVL -46.57
YFCRVFTLF -40.4 MMAKLVLIS -36.82 VHLVMILVL -41.72 LLIIFLLLL -47.04
PICYCEGFV -35.58 QSIISMLLC -37.31 FSLLVFVLL -43.77 LLLLLILFL -47.22
VKKIFEFPA -31.69 AILKFELMI -39.58 IMFLPLVIL -42.39 FLILVFLLL -46.65
QPLVELVMA -34.59 LITLICCVR -36.97 FMFMLFLSL -42.92 LFLIFLILF -46.87

                                                                              the strongest energy in 104the strongest energy in 107

LFWTLVLMF
-35.8

SAYVMLRIE -43.27 ALLEIFCEA -46.93 ILLCLNVFY -52.47 LLCHLLLLL -56.93

LLFLLLLFL -60.21

GAAAHYPLI -41.72 FLPMSAVFI -49.64 FYMILFELH -50.95 LLFAMVLFF -56.25
RGEKIGLW -41.71 RPRAYLLLL -47.22 FLAMFLVTF -52.9 LFIIVLVLV -56.58
NLCFFFIEQ -47.85 QTLLLLTMS -46.47 FVLSLWYHL -51.15 VLILMLFLV -56.75
ELAIIFGGG -43.54 AVLLLMYVT -49.64 LLCFHPVLL -51.91 VFLLWVMFL -56.13
VTLSVTKGI -42.4 RWIFALAAM -47.05 IYIVHLLQL -50.91 LMALLIVFF -55.81
NREYLVNLV -42.9 VFCFSLSVI -49.45 LLEAVLFTF -50.97 FLPVILFLL -56.24
KLPVREMYL -43.14 LLAMQLYTA -46.49 ILELLFLLT -53.37 LIFYLLLYV -55.8
GELSFMGLM -45.55 LVLISLWTT -48.16 LLLKLEFLF -53.09 FLLHVLILL -56.81
VPEGCRIYL -43.78 GALMQIFFT -46.83 LGLNICIIF -51.84 LLLVIIYLL -56.7

Table 1:
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been used in some of the best known protein structure prediction and 
folding modeling algorithms [12-14]. In 1985, Miyazawa and Jernigan 
formalized the theory for contact interactions among 20 natural AAs 
based on the quasi-chemical approximation, which treats the chain 
connectivity effects and solvent effects with simple inter-residue 
parameters [37,38]. The M-J matrix was revised in 1996, in which there 
were 6 times more residue–residue contact pairs and used 1168 protein 
structures containing 1661 subunit sequences. The new attractive 
contact energies were nearly identical to the older ones, except for those 
with Leu and the rarer AAs Trp and Met, which showed maximum 
variation, and the estimates of hydrophobicity from the contact energies 
for non-polar side–chains agreed well with experimental values. In an 
application of these contact energies, the sequences of 88 structurally 
distinct proteins in the Protein Data Bank (http://www.rcsb.org/pdb/
home/home.do) were threaded at all possible positions without gaps 
into 189 different folds of proteins which differed from each other by at 
least 35% in their sequence identities. The native structures of 73 of 88 
proteins, excluding 15 exceptional proteins such as membrane proteins, 
were all demonstrated to have the lowest alignment energies [10].

The essence of the M–J matrix is summarized in two simple first 
degree inequalities: 

ePP > eHP > eHH 

eHP > (ePP + eHH) / 2,

where ePP is the interaction energy between arbitrary polar 
residues, eHP is the interaction energy between arbitrary polar and 
hydrophobic residues, and eHH is the interaction energy between 
arbitrary hydrophobic residues. This study shows that these inequalities 
nearly explain the statistical results obtained in many previous studies, 
such as that of Kosmrlj et al. [26]. 

Moreover, Li et al. analyzed the physical meaning of the M–J matrix, 
which in principle could have 210 independent elements, by using 
only 20 parameters qi, associated with the 20 AAs, and 3 interaction 
coefficients. Pair-wise inter-residue interactions responsible for folding 
could be attributed to the hydrophobic force and a force of demixing; 
the latter obeying Hildebrand’s solubility theory (HST). Although HST 
was derived for simple non-polar molecules, it was previously found 
that this theory describes the behavior of polymer blends well. The 
application to proteins is another example of the more general scope 
of HST [39]. Subsequently, Keskin et al. arrived at the same conclusion 
and proposed a reduced set of energy parameters comprising 20 one-
body and 3 two-body terms (as opposed to the 20 × 20 tables of inter-
residue potentials). This reproduced the conventional 20×20 tables with 
a correlation coefficient of 0.99 [40]. 

Because the potential parameters of the M–J matrix are obtained 
from known protein structures, the parameter values may implicitly 
contain physico-chemical properties such as: (i) solvation effect (i.e., 
hydrophobic groups of a soluble protein tend to distribute inner side), 
(ii) electrostatic stabilizing effect (i.e., formation of hydrogen bonds and 
salt bridges); and (iii) steric hindrance of side chains (i.e., tendencies 
for secondary structure formation, such as Ala in an α–helix and Val 
in a β–sheet). In addition to the physico-chemical factors, biological 
factors subject to natural selection during evolutionary processes also 
constrain the amino acid sequences and structures (i.e., a specific 
sequence is conserved for a specific biological function). 

As previously mentioned, the major factor is (i) HST, which is the 
origin of the 2 inequalities, and the effects described in (ii) and (iii) 
are weak in the M-J potential. The effect of higher order structure was 

independently considered in a subsequent study, where the potential 
used included a secondary structure potential representing short-
range interactions for secondary structures of proteins, and a tertiary 
structure potential consisting of a long-range, pairwise contact 
potential and a repulsive packing potential [41]. Because the M–J 
matrix used by Kosmrlj et al. was the 1996 version, such higher order 
structure contributions were not considered. Moreover, because the 
quasi-chemical approximation breaks down at low temperature, we 
should be careful when applying the M-J matrix and similar models to 
temperature–dependent phenomena [38]. 

For all T cells, EN is set at quite a narrower range compared to EP 
because of the compartmentalization of Ras/MAP signaling [2]. In the 
calculations for Figure 4, EN for each cell was set equal to the strongest 
binding energy within the interacting epitope pool for counting the 
number of hot spots. This was due to the request that the boundary 
between self and non-self should be stronger than EN. To be close to 
the actual repertoire-formation process, surviving clones should first be 
selected rigorously based on their binding profiles and a pre-determined 
EN, and the number of hot spots should be calculated. Because EN was 
stronger than the strongest energy within the pool, the number of hot 
spots increased in accordance with the epitope pool size, which resulted 
in a shift in the histogram to the right. Adopting a common EN or 
individual mean-based EN was not essential for these results.

The differences in MHC haplotypes mainly affect two factors: 
interactions of CDR1 and CDR2 with MHC helices, and the selection 
of peptides through binding to MHC molecules. The effect of peptide–
selection is shown in Figure S3 as scatter graphs of the mean and 
standard deviations for 100 TCRs for several MHC haplotypes. The 
effect of peptide–selection is quite small, with the exception that Db 
selects weak binders (approximately by 2–3 kT). The reason for this is 
not certain. 

At present, how the epitope pool size affects repertoire–formation, 
both in terms of positive- and negative-selection, remains controversial 
[42,43]. Kosmrlj et al. provided a conclusion from the theoretical point 
of view to some extent. However, as shown in Figure 4, the relationship 
between the educational epitope pool size and the specificity of 
surviving clones is not simple. 

Although careful consideration is necessary to interpret the 
calculation results obtained by using the string model and the M-J 
matrix, the study by Kosmrlj et al. to evaluate the interaction energies 
between numerous TCRs and pMHCs rather than a single TCR–pMHC 
pair was a significant achievement in investigating the mechanisms 
involved in repertoire formation [26]. The methods, in terms of both 
hardware and software, to calculate protein–protein or protein–
peptide interactions, are under rapid development [44]. More precise 
calculations with practical computational costs will be feasible in the 
near future. 
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