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Introduction
Diabetes mellitus is a chronic metabolic disease of multiple 

etiologies characterized by deficiency in insulin secretion, action or 
both, which result in hyperglycemia. This hyperglycemia induces a 
number of secondary complications including polyuria, glycosuria, 
polydipsia and polyphagia that are the first clinical signs of diabetes 
[1]. Patients may present several forms of diabetes including type 
1 and type 2. Type 1 diabetes results from autoimmune destruction 
of pancreatic ß-cells, which leads to a drastic or absolute deficiency 
in the insulin levels [2,3], while type 2 diabetes is characterized by 
deficiency in insulin action, caused by genetic factors associated with 
unsound habits, being obesity an important risk factor to the disease 
development [4,5].

Diabetes is considered a huge public health problem. Its incidence 
is increasing over the years in countries at all stages of economic and 
social development, and its chronic nature and complications make 
it a very expensive disease. According to the International Diabetes 
Federation, more than 371 million people have diabetes and only in 
2012, 4.8 million people died due to diabetes and more than 471 billion of 
United State dollars (USD) were spent on diabetic’s healthcare. Beyond 
the direct costs, there are indirect costs of the illness. Many diabetic 
patients are unable to continue working due to chronic complications 
or remain with some limitation in their professional performance [6]. 
Although type 1 diabetes, once called juvenile diabetes, begins mainly 
in children and adolescents, there are rising rates of adults developing 
the disease [7]. Unfortunately, maybe as consequence of deficient 
medical care, many adults with autoimmune diabetes have been 
diagnosed withtype 2 diabetes, which make more difficult the correct 
treatment and may exposes the patients to the disease complications 
[8], including cardiovascular disease, retinopathy, nephropathy and 
neuropathy [9-12]. It is notorious the participation of hyperglycemia 
in the diabetes complications, nevertheless other diabetic features 
may contribute to these dysfunctions, directly leading to themor 
even exacerbating the hyperglycemia. One important factor to be 
considerate is the hyperactivity of the hypothalamic-pituitary-adrenal 
(HPA) axis in diabetics [13].

HPA Axis
The HPA axis is an integral part of a neuroendocrine system 

with an important role in maintaining homeostasis through adaptive 
change under physical and psychological demands. This axis 

regulates the glucocorticoid hormones production and release. In 
basal conditions, the activity of HPA axis is regulated by a circadian 
rhythm driven by centrally-coordinated mechanism integrated in the 
hypothalamic suprachiasmatic nucleus and strongly associated with 
the day/night cycles [14]. This mechanism named CLOCK system is 
a high conserved, ubiquitous molecular “clock” that synchronizes 
their daily rhythms in endocrine system to solar time by direct retinal 
afferents [15,16]. In humans, that are diurnal animals, the light 
activates central master CLOCK in the hypothalamus which influences 
the HPA axis and promotes a high production of glucocorticoids in 
the early morning and a decrease of glucocorticoid levels in the late 
evening [14]. Furthermore, recent evidence suggests a contribution of 
peripheral “clocks” on the control of the glucocorticoids production, as 
adrenal gland-intrinsic rhythm. In particular, the steroidogenic acute 
regulatory protein (StAR) seems to be an important link between the 
CLOCK system and the glucocorticoids synthesis in adrenals [17]. 
Studies show that adrenal StAR levels present daily variations even 
after 2 days of constant dark conditions [18].

The HPA axis activation needs a complex and dynamic interplay 
between the sympathetic nervous system, neurons in the paraventricular 
(PVN) nucleus of the hypothalamus, anterior pituitary and peptidic 
mediators resulting in the release of glucocorticoids to circulation. 
Hypothalamic secretion of corticotropin releasing factor (CRF) and 
vasopressin (AVP) stimulates pituitary adrenocorticotrophic cells 
to produce adrenocorticotrophic hormone (ACTH), which in turn 
activates the glucocorticoids production in adrenal cortex. CRF is a 41 
amino acid-peptide hormone produced by hypothalamic PVN and the 
major stimulator of pituitary ACTH production at normal conditions 
[19]. It acts via CRF receptor type 1 (CRF1), a seven-transmembrane-
domain G protein-coupled receptor (GPCR) expressed not only in 
the anterior pituitary but also in the brain with major expression on 
cerebral cortex, amygdala and hippocampus [20]. Via the pituitary 
portal system, CRF activates the ACTH production in a mechanism 
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Abstract
Diabetes is a chronic metabolic disease whose incidence is increasing over the years in both developed and 

developing countries. Uncontrolled or poor controlled diabetic patients present several secondary complications 
induced by hyperglycemia, which are involved with the high morbidity and mortality of this disease. Moreover, the 
reduction of insulin production in diabetic patients induces increase of the activity of HPA axis that results in an 
increase of glucocorticoid production. This review gives an update of the state-of-the-art concerning the relationship 
of hyperactivity of HPA axis observed in type 1diabetic patients and the development of the disease complications.
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potentiated by AVP, a cyclic nonapeptide also produced in PVN with 
a wide range of functions including fluid metabolism and regulation of 
pituitary corticotroph cells. AVP acts through GPCR vasopressin 1b 
receptors (AVP1b) to enhance ACTH production in anterior pituitary 
[21]. 

ACTH is obtained after the cleavage of pituitary proopiomelanocortin 
(POMC) by specific pro-hormone convertases [22]. Once synthesized, 
the hormone is secreted into the blood circulation reaching the adrenal 
glands, where it binds to melacortin-2-receptors (MC2R) in fasciculate 
zone of the gland cortex. The binding of ACTH to MC2R results in 
stimulation of adenylyl cyclase with subsequent activation of protein 
kinase A, which leads to gene transcription involved in glucocorticoids 
production [23]. Thus, glucocorticoids are synthesized from cholesterol 
by a series of biochemical steps catalyzed by cytochrome P450 
enzymes that involve terminal reactions of hydroxylation leading to 
the production of two active forms of this hormone by adrenocortical 
steroidogenic cells, cortisol and corticosterone [24]. Cortisol, also 
called hydrocortisone, is the most important human glucocorticoid, 
while corticosterone is the major glucocorticoid present in rodents. 
Although this difference in the profile of circulating glucocorticoids, 
both hormones present the same effects in the organism, including 
regulating metabolic activity, immune function and behavior [25-27].

Besides being regulated by circadian rhythm, the HPA axis is also 
the major system which responds to adaptive stress, part of a complex 
homeostatic control that acts to provide resistance to changes in the 
internal environment [21]. The characteristics of stress response are 
strongly associated with the stressor agents themselves, intensity, 
duration and individual psychological resources which determine 
the resulting coping strategies [28]. When subjected to a stressor, 
appropriate brain regions, depending on particular characteristics of 
the stressors, leads to a HPA response that begins on the amygdala, 
a key component of the limbic system that coordinates negative 
emotional responses to threatening stimulus [29]. Once activated, 
amygdala conveys their message to the hypothalamus, leading to 
the HPA axis activation and glucocorticoids production. Besides its 
immunological functions, glucocorticoids affect energetic metabolism 
and cardiovascular responsiveness preparing tissues to physical 
“needs” that may be pivotal to the body response to stress [21]. 
However, situations in which there is a prolonged exposure to stressors 
or failure of the HPA axis control and high productions of cortisol, 
glucocorticoids can bind to its receptor in hippocampus, modifying 
brain functions [30]. This is supposed to be a key mechanism to control 
the potentially harmful hyperactivation of HPA axis.

Both basal and stress related HPA axis activity are regulated by a 
glucocorticoid negative feedback which occurs on slow and fast time 
frames [31]. The slow feedback mechanism is mediated by genomic 
glucocorticoid signaling via glucocorticoid (GR) and mineralocorticoid 
receptors (MR) [32]. Glucocorticoid acts on the hypothalamus 
PVN and pituitary gland repressing the production of CRF and 
ACTH, respectively, which contributes to the restoration of the axis 
homeostasis [33]. Fast feedback inhibition of the HPA axis is associated 
with nongenomic pathways and occurs within minutes. Some authors 
suggest a participation of membrane-associated GR and MRon this 
phenomenon instead of the classic intracellular via of activations of 
these receptors [31,34]. Moreover, recent data suggest a role of the 
enzyme 11beta hydroxysteroid dehydrogenase type 1 (11βHSD1) in 
HPA axis feedback. This enzyme modulates glucocorticoid signaling 
in various tissues converting inactive cortisone in its active form, 

and is expressed in human hypothalamus colocalised with CRF and 
AVP. 11βHSD1 may amplify the negative feedback of the axis through 
autocrine conversion of cortisone to cortisol [35].

Thus, the comprehension of HPA axis operation, including 
production and regulation of glucocorticoids hormones, is crucial 
to understanding the possible mechanisms associated with the 
development and/or aggravation of stress-related diseases. In general, 
these stressors are psychological, culminating in fight-or-flight 
responses, however the hyperactivity of HPA axis can be associated 
with non-psychological stressors, as metabolic disruption observed in 
diabetes.

HPA Axis in Diabetes
Diabetic patients present several similar complications seen 

in patients with Cushing`s syndrome, including hypertension, 
immune response suppression, muscle weakness and increased risk 
of depression, leading to the suggestion that diabetics may present 
abnormality in the HPA axis [36]. In fact, patients with Diabetes 
mellitus present increased activity of the HPA axis, resulting in elevated 
circulating levels of glucocorticoids along with increased urinary 
free cortisol levels [37]. We and others showed that type 1 diabetic 
animals also present high levels of serum glucocorticoids [13,38]. One 
explanation for the hyperactivity of HPA axis in diabetics is the effect of 
hyperglycemia-induced stress, once high glucose levels induce increase 
of glucocorticoid production as demonstrated by systems such as zebra 
fish embryos and primary rat adrenocortical cells in vitro [39,40]. The 
effect of hyperglycemia on HPA axis may be related to the activation 
of polyol pathway, an alternative route of glucose metabolism, once 
adrenal glands present high levels of aldose reductase, major enzyme 
of polyol pathway, and this enzyme is reported as responsible for 
generating intermediates in the catabolism of corticosteroid hormones 
in these glands [41,42]. Moreover, we previously showed that the 
inhibition of aldose reductase was able to restore the hypercorticolism 
observed in alloxan-diabetic rats [43].

In animal models of type 1 diabetes, the hyperactivity of HPA 
axis is associated with an increase in central drive and an impaired in 
glucocorticoid negative feedback sensitivity [13]. These animals present 
dynamic changes in hypothalamus, pituitary and adrenal glands, which 
results in high levels of AVP and increase in POMC expression by 
hypothalamus with consequent increment in ACTH production [44-
46]. Furthermore, we showed that alloxan-diabetic animals present 
a high expression of ACTH receptors (MC2R) in fasciculate zone of 
adrenal glands (Figure 1). The decreased of glucocorticoid negative 
feedback sensitivity of HPA axis in type 1 diabetic animals was 
observed by us and other after dexamethasone suppression test [13,38]. 
This inability of glucocorticoids in doing the negative feedback of HPA 
axis in alloxan-diabetic animals can be explained by the fact that these 
animals present a down-regulation of GR and MR in pituitary (Figure 
1). The hyperactivity of HPA axis in type 1 diabetes is associated with 
decrease in insulin levels, once insulin treatment normalize HPA axis 
activity by suppression of ACTH and glucocorticoid secretion in a 
mechanism possibly associated with an increase in GR mRNA levels in 
pituitary, and presumably an improvement on glucocorticoid feedback 
at the corticotroph cells [13,47].

Besides the reduction of insulin levels in diabetic animals appear to 
have a direct role in hyperactivity of HPA axis, since its administration 
restores the glucocorticoid production, the insulin deficiency can also 
act indirectly through alterations in homeostasis of other hormones, 
including increasing of glucagon and decreasing of leptin and prolactin 
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levels [47-49]. Glucagon stimulates HPA axis by a hypothalamic 
mechanism and the subsequent cortisol synthesis in human beings. 
Moreover, an intracerebroventricular (icv) administration of glucagon 
is able to increase corticosterone levels in chickens, suggesting that 
glucagon can activate the HPA axis [50]. Thereby, the existence of 
increased levels of glucagon in diabetic patients may contribute to the 
overproduction of the glucocorticoids in these subjects.

Leptin can modulate de HPA axis response to stress in rodents and 
humans by a peripherally and centrally mechanism. Leptin acts in all 
levels of the axis: hypothalamus, pituitary and adrenal glands inhibiting 
the glucocorticoids production [51]. Besides, the chronic subcutaneous 
leptin infusion in rhesus monkeys reduces the HPA axis responsiveness 
enhancing the glucocorticoid negative feedback and reducing CRF-
induced increase in both ACTH and cortisol [52]. Prolactin also inhibits 
the reactivity of HPA axis, once in hyperprolactinemia condition 
animals present a reduced response to different stressor agents [53,54]. 
In addition, during acute Trypanossomacruzi infection the HPA axis 
hyperactivity and the increase of glucocorticoids production were 
shown inversely correlated with the prolactin levels [55]. 

It is noteworthy that glucagon signaling is able to induce the 

increase of cAMP levels and the activation of protein kinase A 
(PKA) that are fundamental to a number of the hormone functions 
[56,57]. On the other hand, is described that insulin, leptin and 
prolactin proteins act by the intracellular phosphoinositide 3-kinase 
(PI3K) pathway determining different biological functions [58-61]. 
Interesting, substances that elevate cAMP levels like inhibitors of 
phosphodiesterase 4 (PDE 4) also increase basal HPA axis activity, 
increasing plasma concentrations of ACTH and corticosterone [62,63]. 
Oppositely, PI3K pathway is associated with HPA axis inhibition. Some 
antipsychotic drugs can down-regulate the human CRF gene promoter 
function by activating PI3K/Akt dependent pathway, indicating a 
possible molecular mechanism associated with HPA axis control [64]. 
Thereby, the intracellular increase of cAMP levels and reduction of 
PI3K activation in diabetes associated with increase in glucagon levels 
and decrease of insulin, prolactin and leptin, respectively, may be 
correlated with the hyperactivity of the HPA axis in diabetic patients.

In addition to diabetes inducing hyperactivity of HPA axis, 
the opposite may also happen. Non-diabetic patients can present 
functional and non-functional adrenocortical tumors or nodules, 
called incidentalomas. Functional masses can induce hyperactivity of 
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Figure 1: Diabetic rats present increased levels of MC2R in adrenal glands and reduced expression of corticosteroid receptors in pituitary.
Type 1 diabetes was induced by a single i.v. injection of alloxan (40 mg/kg) and analyses were performed after 21 days. The receptors expression was evaluated 
by immunohistochemistry. We observed an increase in MC2R expression in the adrenals of diabetic (B) compared with non-diabetic animals (A). Besides, both the 
expression of GR and MR were found down-regulated under diabetic conditions (E and H, respectively) in anterior pituitary compared with control animals (D and G, 
respectively).Quantitative evaluations of MC2R, GR and MR labeling are seen in panels C, F and I, respectively.Positive reactions are determined by the red color. 
Data are expressed as mean ± S.E.M. of at least 3 animals, +p<0.05 as compared to non-diabetic animals.
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HPA axis and subclinical Cushing disease characterized by an increase 
on glucocorticoid levels [65]. The hypercorticolism observed in these 
Cushing patients can leadto hypertension, obesity and insulin resistance 
which in turn may be associated with a late-onset diabetes [36]. Besides, 
patients with non-functioning adrenocortical tumors also present high 
prevalence of glucose tolerance,  insulin  resistance  and hypertension, 
but independently of hyperactivity of HPA axis [66].

The Role of Hyperactivity of HPA Axis on Diabetic 
Complications Development

Diabetes is a disease associated with a wide spectrum of 
complications secondary to hyperglycemia that have direct impact 
in the life of patients, frequently generating deep limitation on 
professional and personal abilities or even causing death. The main 
pathological diabetes manifestations are originated by vascular and/or 
neuronal dysfunction compromising the correctly function of different 
physiological systems and affecting several organs, including kidneys, 
blood vessels and heart [67]. Beyond hyperglycemia, hyperactivity of 
HPA axis with consequent increased levels of glucocorticoids in diabetic 
patient’s bloodstream is a challenge for the control of several diabetic 
complications, as impaired wound healing, increased infection/sepsis 
risk, atherosclerosis, hypertension and neurological disturbs that may 
prejudice cognitive abilities [68-70]. 

Wound healing is a complex event that involves several fundamental 
steps, including inflammation, re-epithelialization, angiogenesis 
and granular tissue formation [68]. In diabetes, all stages of wound 
healing are compromised [71], in association with reactive oxygen 
species (ROS) formation, down-regulation of inflammatory response, 
inhibition of angiogenesis and extracellular matrix deposition [72]. 
The hyperactivity of HPA axis in diabetes seems to have an important 
role in impairment of wound healing, once dexamethasone impaired 
collagen synthesis by fibroblasts and reduced proliferation, migration 
and contraction of these cells both in non-diabetic and diabetic animals 
[73]. Moreover, these animals over stress conditions present increased 
glucocorticoids levels which compromise the immune system and 
inflammatory response [74-78]. Furthermore, glucocorticoids can 
increase ROS production [79,80] and inhibit angiogenesis by reducing 
VEGF expression [81,82]. All these glucocorticoids effects are 
associated with impaired wound healing observed in diabetes.

Beyond impaired wound healing, the immunosuppress and anti-
inflammatory effects of glucocorticoids are important to development 
of others diabetic complications, including less incidence of allergic 
diseases and a high risk of opportunists infection [69,83]. We showed 
that diabetic animals present a less protein leakage and accumulation 
of eosinophils in skin and pleural cavity after antigen challenge and 
a reduction in intestine hemorrhage and mortality after anaphylactic 
shock with a relationship with a decrease in mast cell numbers and 
reactivity [84-86].

The high incidence of opportunist infection in diabetic patients, 
including tuberculosis, pneumonia and sepsis, is associated with 
abnormalities in neutrophil chemotaxis, adhesion and intracellular 
killing together with defects in antibody responses and complement 
opsonisation [87]. These alterations in phagocytes and lymphocytes 
functions and consequent predisposition to infection diseases in 
diabetics are relationship with hyperglycemia and insulinopenia 
[88]. However, the high circulating glucocorticoids levels in diabetics 
could also contribute to the elevated infection incidence in these 
patients, once glucocorticoid therapy is associated with increased risk 

of opportunistic infection development, including tuberculosis and 
pneumonia [89-91]. 

Diabetic patients also present high incidence of hypertension which 
accelerates the decrease in renal function, retinopathy and cerebral 
disorders [92]. Hyperactivity of HPA axis observed in Cushing disease 
or even pharmacological administration of glucocorticoids favors 
the hypertensive state [93]. Besides, the glucocorticoid promiscuous 
activation of MR resulting in renal sodium retention, volume 
expansion and increase in blood pressure. This steroid hormone can 
also up-regulate angiotensin II type 1 receptors on smooth muscle 
cell and reduce neuronal nitric oxide release in animal arteries 
[94,95]. Hypertension is a risk factor to atherosclerosis, another risk 
factor associated with elevated morbidity and mortality in patients 
with diabetes [96]. In addition to the glucocorticoids participation 
on hypertension, the HPA axis activation also directly contributes to 
atherosclerosis development, since interactions of glucocorticoids 
with the cells of the heart and vascular wall may alter their structure, 
function and facilitate plaque development independent of alterations 
on plasmatic cholesterol [97-99].

Finally, diabetes is also a risk factor for stroke, cognitive impairment 
and nerve damage [100,101]. Neurological complications in diabetic 
patients are often associated with hyperglycemia, which induces 
polyol pathway activation, enhances oxidative stress and formation of 
advanced glycation end products (AGEs) that are important predictive 
features to nerve tissue injury [102,103]. Impaired insulin or C-peptide 
actions together with dyslipidemia are also involved in diabetic 
neuropathies development [104,105]. In this context, the HPA axis 
hyperactivity could be an important player in neurological alterations 
observed in diabetic patients, once an increase in glucocorticoids levels 
is associated with impaired hippocampus-depended memory, synaptic 
plasticity and neurogenesis in diabetic animals [106].

Moreover, other diseases associated with neurodegenerative illness, 
including Alzheimer and Cushing’s syndrome, present hyperactivity of 
HPA axis and elevated cortisol levels [107,108]. In an Alzheimer mice 
model, treatment of animals with PPAR-gamma agonist attenuates the 
mice learning and memory deficits in close relationship with reduction 
of serum glucocorticoid levels [109]. Furthermore, we reported 
that treatment of alloxan-diabetic rats with rosiglitazone induced a 
reduction in corticosterone levels by activation of PPAR-gamma [110]. 
In addition, the HPA axis hyperactivity, by causing hypercorticolism 
and increased CRF receptor genes expression may explain the 
association between diabetes and depression [111,112], since both 
CRF and cortisol stimulate catecholamines release which is implicated 
in anxiety disturbs [113,114]. In fact, the diabetic complications 
associated with hypercorticolism are related with GR activation, once 
pharmacological blockage using GR antagonist ameliorate the wound 
healing, restore the mast cell numbers and the reactivity to local and 
systemic antigenic challenge, reduce arterial pressure response to 
stress, and attenuate stroke, cognitive impairment and nerve damage 
in diabetes or other hypercorticolism associated illness [115-120].

Conclusion
The focus of this review is on the mechanisms involved with the 

hyperactivity of HPA axis and its relationship with the complications 
observed in type-1diabetic subjects. As illustrated in figure 2, we 
suggested that hyperactivity of HPA axis in diabetics is associated 
with high levels of circulating ACTH and glucocorticoids, and ACTH 
receptor in adrenal glands, beyond an impaired in glucocorticoid 
negative feedback due to a reduction in the expression of GR and 



 J Diabetes Metab 				        	    Type 1 Diabetes Mellitus 		            ISSN: 2155-6156 JDM, an open access journal

Citation: Torres RC, Prevatto JP, Silva PMR, Martinsand MA, Carvalho VF (2013) From Type-1 Diabetes HPA Axis to the Disease Complications. J 
Diabetes Metab S12: 002. doi:10.4172/2155-6156.S12-002

Page 5 of 8

MR in pituitary. Moreover, this increase in glucocorticoid levels is in 
close-relationship with diabetic complications development and/or 
aggravation. 
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