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Introduction
Diabetes mellitus is a chronic condition characterized by increased 

glucose level due to absence/insufficient insulin secretion (Figure 1). The 
old classification of diabetes divided it into juvenile- and maturity-onset 
diabetes. Now an etiology based classification devised by the American 
Diabetes Association (ADA) and the World Health Organization 
(WHO) is used that divides diabetes into: type 1 diabetes (T1DM), 
type 2 diabetes (T2DM), monogenic diabetes, gestational diabetes, 
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Abstract
Prevalence of type 2 diabetes is increasing rapidly around globe and effecting not only health of individuals but 

also socially and economically. It is a multi-factorial, polygenic metabolic disorder involving complex interaction of 
both genetic and environmental factors and it is characterized by increased glucose level in blood due to deficiency in 
insulin secretion. Recent advent of genome-wide association studies has improved the knowledge of genetic factors 
involved in disease progression, pathogenesis and paving way to better understand the complex pathways. These 
genetic variants change the drug response in patients thus making it difficult to maintain optimal glycemic levels. 
The genome-wide association studies are providing great insight into pharmacogenomics by revealing various new 
variants that effect drug response and development of personalized medication in future. 
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Figure 1: Overview of type 2 diabetes mellitus (T2DM).

a) Carbohydrates, metabolized to glucose in digestive tract, are released 
into blood stream b) stimulating the pancreas to produces insulin c). With 
insulin resistance, either the production of insulin decreases or it cannot bind 
to its receptor, d) resulting in decrease in uptake of glucose by organs likes 
muscles. This ultimately results in increased blood glucose levels increases 
and end in the development of T2DM.
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and other types of diabetes. Monogenic diabetes is a term used for the 
type of diabetes that is caused by mutation in single gene. But T1DM 
and T2DM are the major types of diabetes. T2DM, previously known 
as non–insulin-dependent diabetes mellitus (NIDDM) or adult-onset 
diabetes, is a metabolic disorder that is extremely heterogeneous multi-
factorial disease and involves complex interaction of environmental 
factors and susceptibility genes (Figure 2). Genetic factor is one of the 
important risk factor. 

Mode of inheritance of T2DM is polygenic i.e. polymorphism 
in many genes result in disease development. Type 2 diabetes may 
be maturity-onset diabetes of youth (MODY) 5-10% patients, latent 
adult-onset autoimmune diabetes (LADA) 5-10% patients, secondary 

Figure 2: Factors involved in development of T2DM.
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to rare genetic disorders 5-10% patients and remaining 70-85% patients 
are poorly defined and these 70-85% are the typical T2DM (Type 2 
diabetes mellitus) patients as previously reported [1]. It is characterized 
by defect in insulin secretion by β-cells in pancreatic islets and insulin 
resistance [2]. It affects health quality and life expectancy of the patients 
[3]. Type 2 diabetes mellitus is associated with several acute and chronic 
complications like dehydration, hyperosmotic state leading toward 
hyperosmolar coma and blood vessel disease respectively.

The escalating rate of Type 2 Diabetes (T2D) has made it the 
important global health challenge [4]. It has been estimated that 366 
million people worldwide suffered from diabetes in 2011 and this 
number will increase to 552 million till 2030 [5]. Among those people 
suffering from diabetes 95% have T2D [6]. Prevalence of diabetes is 
increasing rapidly not only in other countries but in Pakistan also. In 
Asia diabetes is most prevalent in India which is about 31.7 million. 
Pakistan is sixth among world in which prevalence of diabetes being 
5.2 million in 2000 and estimated to be 13.9 in 2030 [7]. In Pakistan, 
prevalence of newly diagnosed cases of diabetes is 15.1% in men and 
6.8% in women in urban areas while 5.0% in men and 4.8% in women 
in rural areas [8]. 

Forms of T2DM
Types of T2DM include maturity-onset diabetes of youth (MODY), 

latent adult-onset autoimmune diabetes (LADA), secondary to rare 
genetic disorders and the typical T2DM.

MODY

MODY was first described by Tattersall and Fajan in 1974 for young 
diabetic patients treated without insulin for two years after diagnosis 
[9]. It is diagnosed at age less than 25 years [10]. MODY is the old 
term based on old classification of diabetes. MODY is the monogenic 
genetic form of T2DM. It is inherited in autosomal dominant mode 
[11]. It is heterogeneous disorder characterized by impaired beta-cells 
of pancreas [12]. Till now 7 genes have been reported to be associated 
with MODY. Frequencies of association of these genes associated with 
MODY differ in different population with 2 and 3 being predominant 
over others. Identification of these genes has helped to better understand 
the molecular and clinical diagnosis of MODY. Other genes associated 
with MODY X are yet to be identified [13]. MODY is classified into 
subtypes in relation to genes involved [11] (Table 1).

LADA

Latent autoimmune diabetes in young (LADA) a special subtype 
of diabetes first characterized in early 1980s by Pittman et al. [14] is 
often misdiagnosed as T2DM is diagnosed after age 35 years. It is a 
slow progressive form of adult-onset  autoimmune  diabetes.  It is 
noninsulin-dependent at the time of clinical diagnosis and presence of 
circulating glutamic acid decarboxylase-65 (GAD65) autoantibodies 
and/or islet cell antibodies is the main diagnostic criteria [15,16]. There 
is problem with classification of LADA as it is between type 1 and type 
2 diabetes [17]. So it is usually classified as type 2 diabetes with GAD 
antibodies due to presence of autoimmunity [15]. It is initially treated 
with diet control/oral hypoglyceamics without insulin injection use for 
up to several years after diagnosis [18]. LADA could be considered as 
admixture of T1DM and T2DM as it shares genetics with both type 1 
(HLA, INS VNTR and PTPN22) and type 2 (TCF7L2) diabetes [19]. 

Diabetes: Other monogenic forms and Secondary to rare 
genetic disorders

Genes associated with other monogenic forms of T2DM have also 
been identified and T2DM is also found to be associated with other 
syndromes and rare genetic disorders that are also monogenic. These 
genetic disorders include deafness, optic atrophy, Wolfram syndrome, 
renal and urogenital system structural anomalies, neurological, renal 
disease, DEND syndrome (developmental delay, epilepsy and neonatal 
diabetes), partial lipodystrophy, congenital generalized lipodystrophy 
and skeletal lytic lesions etc [20,21]. The genes associated with these 
syndromes are shown in table 2.

Heterogeneous multi-factorial T2DM

As described earlier, that 70-85% poorly defined diabetic patients 
are typical T2DM patients. Because of the heterogeneity of T2DM 
multiple genes and factors are involved in various combinations 
[22]. Although environmental factors play an important role in T2D 
development but genetic factor also influences susceptibility [23]. 
Genes predisposing to multi-factorial T2DM had been a challenge in 
the past and despite previous strenuous efforts geneticists were unable 
to identify genuine susceptibility loci until recent advent of genome-
wide association scans (GWAS) has altered the situation and provided 
better understanding and insight into the T2DM susceptibility 
genes, increase identification of susceptibility loci and pathogenesis 

Table 1: Sub-types of MODY.

MODY Sub-
Type

Gene Affected Protein Affected Locus Gene Function Primary Defect

Type 1 HNF4 alpha Hepatocyte nuclear factor 4 
alpha

20q Transcription factor (Nuclear factor) Pancreas

Type 2 GCK Glucokinase 7p15-p13 Hexokinase IV Pancreas/Liver
Type 3 TCF1 Hepatocyte nuclear factor 1 

alpha
12q24.2 Transcription factor (Homeodomain) Pancreas/Kidney

Type 4 IPF1 insulin promoter factor-1 13q12.1 Transcription factor (Homeodomain) Pancreas
Type 5 TCF2 Hepatocyte nuclear factor 1 beta 17q12 Transcription factor (Homeodomain) Kidney/Pancreas
Type 6 Neuro D1 Neurogenic differentiation 

factor 1
2q Transcription factor (bHLH) Pancreas

Type 7 KLF11 Kruppel-like factor 11 2p25 Transforming growth factor-beta inducible-
early growth response 2

Pancreas

Type 8 CEL Bile salt dependent lipase 9q34.3 Hydrolyze cholesterol esters as well as a variety of other dietary 
esters (OMIM 114840)

Pancreas

Type 9 PAX4 Paired domain gene 4 7q32 Transcription factor (paired domain gene 4) Pancreas
Type 10 INS Insulin 11p15.5 Beta cells of the islets of Langerhans NF-kappa-B
Type 11 BLK Tyrosine kinase B-Lymphocyte 

specific
8p23-p22 Tyrosine kinase (B lymphocytes) MIN6 beta cells
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of T2DM [24]. The number of loci showing significant associations 
with T2DM has increased from 2 identified by older approaches to 
>70 new established genetic loci by GWAS that efficiently detect 
multiple small effect common variants. Many of the genes identified 
so far are involved in encoding proteins necessary for insulin secretion, 
glucose metabolism and beta-cell function [22,25]. Many of the genes 
identified so far are involved in encoding proteins necessary for insulin 
secretion, glucose metabolism and beta-cell function [22]. Many of 
the susceptibility genes identified so far include PPARG, KCNJ11, 
TCF7L2, FTO, HHEX/IDE, SLC30A8, CDKAL1, CDKN2A/2B, 
IGF2BP2, HNF1B, WFS1, JAZF1, CDC123/CAMK1D, TSPAN8/
LGR5, THADA, ADAMTS9, NOTCH2, and KCNQ1. But only the 
first two (PPARG and KCNJ11) have stood the test of time and shown 
to influence risk of T2DM in multiple studies [26]. But often there is 
limitation to detect rare variants with stronger effect. Still GWAS is 
the best method to detect and identify new additional genes in various 
populations that would provide a more elaborate genetic architecture 
of disease pathophysiology. More population wise studies will enable 
us to define function of newly identified loci and genes in pathogenesis 
of T2D. Common disease-common variant hypothesis is the common 
strategy used for illustrating inherited components of complex disease. 
It had been proven true in case of PPARG2 association with T2D and 
for some other diseases. But mostly identified T2D loci are common 
variants with small effects [27].

First GWAS for T2D was published by French scientists (Sladek 
et al.) [28] ho identified association of zinc transporter and member 

of solute carrier family SLC30A8, HHEX, TCF7L2 and KCNJ11 
with T2D [28]. Within same year three other GWAS and deCODE 
researchers confirmed the association of these genes with T2D [29-
32]. A GWAS in Japanese population was shown to be linked to 6 loci 
(IGF2BP2, CDKN2A/B, KCNJ11, HHEX, SLC30A8, and CDKAL1) 
previously reported and no novel loci were identified. Also significant 
association of the SNPs in FTO gene with BMI in the control subjects 
was reported [33]. Meta-analysis of three T2D GWAS by the Diabetes 
Genetics Replication And Meta-analysis (DIAGRAM) consortium 
using 2.2 million SNPs identified additional six novel loci with strong 
association including CDC123, JAZF1, THADA, ADAMTS9, TSPAN8, 
and NOTCH2 [34]. Association of FTO gene that was reported for 
obesity [35] previously was confirmed by this and other replication 
studies. Association of TCF7L2 gene was replicated with identification 
of novel regions on chromosome 7, 18p, 2p and 13p by GWAS in 
African American. The candidate genes in these regions are TCF7L1, 
VAMP5, VAMP8, CDK8, INSIG2, IPF1, PAX8, IL18R1, members of 
the IL1 and IL1 receptor families, and MAP4K4 [36]. GWAS showed 
that diabetes-associated variants in CDKAL1, CDKN2B, HHEX/IDE, 
IGF2BP2, KCNJ11, SLC30A8 and TCF7L2 account for 2.0-8.5% of 
variance of T2DM-related traits and have a role in disease aetiology by 
physiological alterations leading to T2DM, such as glucose intolerance, 
impaired insulin secretion or insulin resistance. These variants were 
found to account for 2.0–8.5% of the variance of T2DM-related traits 
[37].

A large scale association analysis of 8,130 T2D cases and 38,987 

Table 2: Genes associated with monogenic diabetes and secondary to rare genetic disorders.

Gene Affected Protein Affected Locus Gene Function Primary Defect
WFS1 Wolframin 4p16.1 10 transmembrane domain 

protein, function unknown
Diabetes insipidus and mellitus with optic atrophy and 

deafness (DIDMOAD); Wolfram Syndrome
ZCD2 ERIS 4q22-q24 Zinc finger protein ZCD2 Wolfram Syndrome 2
INS Insulin 11p15.5 Hormone Mutation in insulin, proinsulin, and proinsulin processing
PTF1A Pancreas transcription

factor 1
10p12 Alpha subunit of PTF1 Permanent neonatal diabetes

with cerebellar agenesis
EIF2AK3 PERK 2p12 Pancreatic eIF2-alpha kinase Wolcott-Rallison Syndrome
Mitochondrial
genome

MIDD Mutation at
3243 mtDNA

tRNA for leucine Maternally inherited diabetes
and deafness; other mitochondrial

mutation also observed
Mitochondrial 
genome

Mutation at
14709 
mtDNA

tRNA for glutamic acid Mitochondrial myopathy with diabetes

KCNJ11 Kir6.2 11p15.1 Potassium channel Permanent and transient neonatal diabetes
ABCC8 Sur1 11p15.1 Sulfonylurea receptor Permanent and transient neonatal diabetes
PLAGL1 (ZAC)/
HYMA1

Pleomorhpic adenoma
gene 1; hydatidiform

mole transcript

11p15.1 Plagl1 - Nuclear zinc finger protein Imprinted region, exact gene unclear; transient neonatal 
diabetes type 1

INSR Insulin receptor 19p13 Receptor tyrosine kinase Insulin-resistant diabetes with various phenotypes: 
leprechaunism, Rabson-Mendenhall or type A syndrome

AKT2 PKB-beta 19q1 Serine-threonine kinase Severe insulin resistance
LMNA Lamin A/C 1q21 Inner nuclear membrane

protein
Face-sparing partial lipodystrophy

with peripheral fat loss; mutations also associated with 
cardiomyopathy;

muscular dystrophy; and
Hutchinson-Gilford Progeria

LMNB2 Lamin B2 19p13 Inner nuclear membrane
protein

Partial lipodystrophy sparing legs
(Barraquer-Simons Syndrome)

PPARG Peroxisome proliferator activated 
receptor γ

3p25 Nuclear receptor for
prostaglands and

thiazolidine-diones

Rare variants in ligand binding
Domain associated with insulin resistance, hypertension, 

buttock lipodystrophy
AGPAT2 1-acyl glycerol-3-phosphophate 

O-acyltransferase 2
9q34 Enzyme of phospholipid

metabolism
Congenital generalized

lipodystrophy with skeletal lytic lesions (Berardinelli-Seip 
Syndrome)

BSCL2 Seipin 11q13 398 amino acid protein of 
unknown function

Congenital generalized lipodystrophy,
learning disabilities
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controls of European descent identified new twelve T2D loci BCL11A, 
ZBED3, KLF14, TPS53INP1, CHCHD9, KCNQ1, CENTD2, HMGA2, 
HNF1A, ZFAND6, PRC1 extending to chromosome X gene DUSP9. 
These identified loci not only affect insulin action and β cell function 
but also show evidence of association of genes involved in cell cycle to 
T2D [38].

The majority of GWAS for T2D have been performed on European 
population. The GWAS that has been carried out in non-European 
population especially those with unique cultural and demographic 
histories and biological traits, like population originating from Indian 
subcontinent (Pakistan, India and Bangladesh) so far are limited 
to provide a better insight into the ‘genetic landscape of disease’ in 
these populations. GWAS results in other population cannot be used 
to predict risk in South Asian population. Small number of studies 
carried out so far not only replicated some previously reported loci but 
also identified some new susceptibility locus that were not reported 
to be associated with T2D in other populations. Meta-analysis of 
European ancestry population including Caucasian identifies new 
locus KCNQ1 (rs 231362) and HNF1A (overlap between monogenic 
and multifactorial forms of diabetes). The new KCNQ1 locus was 
confirmed by a later study carried out in South Asian from India 
and US [38,39]. Replication of GWA validated variants in Pakistani 
population of Mirpur, Azad Kashmir region resulted in replication of 
13 variants including KCNQ1, JAZF1, IRS1, KLF14, CHCHD9 and 
DUSP9 that were not previously reported to be associated with T2D in 
South Asian population [40].

Metanalysis of 39 multiethnic population identifies SREBF1, TH/
INS (study-wide significance p<2.4 ×10-6) and GATAD2A/CILP2/
PBX4 (genome-wide significance p=5.7×10-9) as additional locus with 
one that were already known loci suggesting considerable overlap across 
various ethnic groups [41]. Meta-analysis was carried out including 
34,840 cases and 114981 controls of European Descent and Pakistan 
in order to better understand genetic architecture and pathogenesis of 
T2D. The study identified ten new unreported T2D loci along with two 
that showed sex differentiated association (ZMIZ1, ANK1, KLHDC5, 
TLE1, ANKRD55, CILP2, MC4R, BCAR1 and HMG20A, GRB14, 
repectively) [42]. A recent GWAS study in Punjabi Sikhs from India 
identified a novel locus in the SGCG gene (rs9552911) contributing to 
T2D susceptibility along with six suggestive associations at HMG1L1/
CTCFL, PLXNA4, SCAP, and chr5p11 [25]. Recent GWAS in South 
Asian have reported new variants so large scale meta-analyses and 
GWA studies that are population specific are needed to improve 
understanding genetic architecture and pathogenesis of T2D.

Metaanalysis of two Hispanic studies reported association of T2DM 
with two known genes, HNF1A and KCNQ1 and the unreported 
C14orf70 [43]. Two novel loci (PTPRD, SRR) and associated with 
T2DM susceptibility were identified in Han Chinese population in a 
two-stage GWAS. The study also showed involvement of KCNQ1 that 
showed susceptibility to T2DM in Japanese, European and Hispanic 
population [44]. Linkage to chromosome 6q21-q23 and 1q21-q24 was 
reported in Chinese and Northern European Caucasians in two separate 
studies [45,46]. In African American families susceptibility was found 
in genes VAMP5, VAMP8, TCF7L1, IPF1, PAX8, IL18R1, MAP4K4, 
CDK8 and members of IL1 and IL1R families by genome-wide linkage 
[36]. IGF2BP, CDKN2A, KCNJ11, HHEX, SLC30A8 and CDKAL1 
are associated with T2DM in Japanese population. These genes are 
strong candidates associated with T2DM susceptibility in various 
ethnicities as reported in different GWAS [33]. Hepatocyte nuclear 
factor-4 (HNF4) is a transcription factor that plays an important role 

in expression of glucose metabolism genes has been associated with 
T2DM in Ashkenazi Jewish population and Finland families [47,48]. 
Polymorphisms of TCF7L2 gene associated with T2DM susceptibility 
has been reported in diverse ethnicities like European, West African, 
Danish, Icelandic, East Asian, French Dutch, Caucasian, and Brazilian 
etc [28,49-52]. Variations in other type 2 associated genes like TFAP2B 
[53], Calpain-10 (first gene to be identified associated with T2DM 
susceptibility in 1996) [54], KCNJ11 [22], FTO, HHEX, IGF2BP2, 
SLC30A8 and PPARG discovered in GWAS are also associated with 
gestational diabetes in women of Korean ancestry [55]. The role of 
inflammation in pathogenesis of type 2 diabetes was studied by Hu et 
al. in women and his study showed that Elevated C-reactive proteins 
were strong predictor of T2DM and arbitrate TNF-R2 and IL-6 
association with T2DM [56]. Also significant association of the SNPs in 
FTO gene with BMI in the control subjects was reported [33]. GWAS 
showed that diabetes-associated variants in CDKAL1, CDKN2B, 
HHEX/IDE, IGF2BP2, KCNJ11, SLC30A8 and TCF7L2 account for 
2.0-8.5% of variance of T2DM-related traits and have a role in disease 
etiology by physiological alterations leading to T2DM, such as glucose 
intolerance, impaired insulin secretion or insulin resistance. These 
variants were found to account for 2.0–8.5% of the variance of T2DM-
related traits [37]. Meta-analysis of European population showed novel 
association of X-chromosomal locus near DUSP9 and HNF1A that is 
implicated in both monogenic and polygenic T2DM. These loci control 
and regulate insulin action and β-cell function. This study also proved 
the involvement of genes of cell cycle indicating influence of unrelated 
traits in development of T2DM [37]. These studies will help to better 
understand involvement of genes like PPARG, KCNJ11, and KCNQ1 
etc. in susceptibility to T2DM. 

Pharmacogenomics of T2DM
Pharmacogenomics is the field to study the relationship between 

effects of drug response due to individual’s genetic variation. It will 
help to create personal medicine adapted to one’s genetic content. 

Drug dosage 

Other medication Living conditions

Age

Side e
ects

History of 
disease

Drug response

Amount of drug available at target site

G
e

n
e

ti
cs

Figure 3: Various factors affecting therapeutic drug response.
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Various studies have now elaborated the effect of polymorphisms 
on drug response. Response to T2DM treatment vary depending on 
complications, disease duration and whether responder or not so the 
treatment based on pharmacogenomics will reduce the risk before 
the symptoms of T2DM appear. Most medications in practice now-a-
days for T2DM are not based on specific molecular targets and disease 
pathogenesis knowledge. Understanding of pathogenic mechanisms 
has led to discovery of new avenues of drug targets [57,58] (Figure 3).

Nine classes of drugs have been approved for treatment of 
diabetes with exercise regimens and diet control. These include 
insulins, sulfonylureas, glinides, biguanides, α-glucosidase inhibitors, 
thiazolidinediones, glucagon-like peptide 1 mimetics, amylin mimetics, 
and dipeptidyl peptidase 4 inhibitors [59] but still there is no single 
medication that can maintain optimal glycemic level. Polymorphisms 
in TCF7L2, PPARG, cytochrome P450 drug metabolizing enzymes 
etc modify drug response to metformin, sulphonylureas, DPP4 
inhibitors, thiazolidinediones and meglitinides [60]. PPARG and 
KCJN11 the first variants that were reproducible are the site of action 
for thiazolidinediones and sulfonylureas, respectively. Variation 
in TCF7L2 has been found to be associated with change in insulin 
secretory response to GLP-1 and variation in HbA1C level after the 
introduction of sulfonylureas. Similarly polymorphism in organic 
cation transporter-1 (OCT-1) decreased the response to metformin in 
a study conducted by Shu et al. [61] while another studied conducted 
by Becker et al. [62] was in contrast to prior study. Many other studies 
have also been reported but still there is a relative lack of studies in 
pharmacogenetics of T2DM and in many other diseases [61-66] (Table 
3). 

However complex factors and genetic heterogeneity makes it 
difficult to study role of genetic factors in pharmacotherapy and 
personalized medicines. Advances in GWAS and pharmacogenetics 
will reveal new genetic variants that modify drug response to diabetes 
and development of first-line therapy [67,68].

Conclusion
Findings from diverse genetic studies like candidate gene study, 

linkage analysis, GWAS and animal models will help in identification 
of disease pathogenesis, regulation and interaction of various factors 
that influence T2DM. Genetic heterogeneity makes it challenging to 

develop personalized medicines but GWAS not only will help to better 
understand the disease but to increase knowledge about complex 
diseases treatment and management. Genomic studies provided a 
great insight into pharmacogenetics and resulted in understanding of 
pharmacotherapy. In future these studies will help in development of 
personalized medication for T2DM.
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