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Abstract

Androgen Deprivation Therapy (ADT) would benefit prostate cancer patients initially but cancer cells can
eventually develop castration resistance. In this study, we compared androgen-dependent and androgen-
independent cell lines to find potential genes associated with acquired resistance to ADT. Using RNAseq, we found
4397 mutations distributed in 2579 genes, out of which, 1574 mutated genes could also be found in prostate cancer
tumor samples collected in Cosmic database (http://cancer.sanger.ac.uk/cosmic). We also discovered 157 and 549
genes which were down and up-regulated respectively in both PC3 and DU145 compared to LNCaP. Network
analysis resulted in 3 dominant connection notes: GCR/MCR (NR3C1) and PKA-cat kinase (PRKACB) and PKC
family (PRKD1). By ChimeraScan analysis, 48, 117 and 60 chimeric transcripts were discovered in DU145, LNCaP
and PC3 respectively. Among them, six predicted fusions expressed specifically in androgen-independent cell lines
(DU145 and PC3). Some of these gene mutations and transcription alterations have been reported in tumor samples
from prostate cancer patients and may have certain associations with acquired resistance to anti-hormone therapy in
prostate cancer. A proportion of mutations are enriched in genes involved in immune response pathways,
suggesting new targets to develop effective treatments to overcome castration resistance.
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Introduction
Prostate cancer is the third most common cause of death from

cancer in men in Europe [1]. Androgen deprivation therapy (ADT), as
a first-line therapy, usually leads to a response with suppression of
prostate specific antigen (PSA) levels, symptomatic palliation and
prolonged overall survival in most patients. However, all patients
would eventually become resistant to the treatment and median overall
survival after ADT is 48 to 54 months [2,3]. Metastatic castration-
resistant prostate cancer (mCRPC) is the main cause of cancer death in
prostate cancer patients.

It has been shown that prostate cancer cells can grow and proliferate
at low or even near-zero androgen levels when they become castration
resistant [4]. A hypersensitive androgen receptor (AR) pathway can be
evolved through accumulation of molecular alterations including AR
overexpression, gain of function mutations in AR gene, transcriptional
activity of the AR altered by coactivators or corepressors, intra-tumoral
testosterone synthesis, and ligand-independent activation of AR [5].
Other alterations includes a) changes in growth factor and
corresponding receptors, e.g. transforming growth factor a (TGFa),
epidermal growth factor (EGF), basic fibroblast growth factor (bFGF),
keratinocyte growth factor (KGF), insulin-like growth factor-1 (IGF-1)

[6-10], b) apoptotic signaling e.g. phosphatase and tensin homolog
(PTEN), bcl-2 and Myb [11-13], and c) Wnt/β-catenin signaling [14].

Despite vigorous efforts only a few prostate cancer cell lines have
been established. Among them, LNCaP was derived from a lymph
node metastasis. It is androgen-dependent and can represent the early
stage of metastatic prostate cancer. PC3 and DU145 were derived from
bone and brain metastases respectively. They are androgen-
independent and can represent the later and rapid progressing
metastatic prostate cancer stage. In this article, we compared
androgen-independent cell lines (PC3 and DU145) versus androgen-
dependent cell line (LNCaP) to discover which genomic changes are
possibly connected to the development of castration resistance.

Methods

RNAseq
Total RNA was extracted by TRIzol (Invitrogen, Catalog #15596018)

following by phenol/chloroform. RNA Integrity Number (RIN) was
used to control RNA quality by Agilent 2100 Bioanalyzer System.
PolyA selection from total RNA samples was done in SciLifeLab,
Stockholm, and sequencing was conducted on HiSeq 2000 according
to manufacturer’s instructions.
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Analysis of mutations, differentially expressed and fusion
genes

RNAseq fastq data was aligned to reference genome hg38 by STAR 2
pass and GATK (base quality score recalibration, indel realignment,
duplicate removal and INDEL discovery) was applied to call variants
across all 15 samples according to GATK Best Practices
recommendations [15-17]. A published TopHat and Cufflinks protocol
was used to find differentially expressed genes [18] and ChimeraScan
was employed to discover fusion transcripts [18]. Panther (http://
www.pantherdb.org) and Thomson Reuters (https://
portal.genego.com) were applied for functional enrichment analysis
[19].

PCR validation
We used cloned AMV first-strand synthesis kit (Life Technologies,

Catalog # 12328) and PCR to validate expressions and fusions.
Forward primer for fusion transcripts was designed upon fusion
sequence given by RNAseq. The forward primer located in 5’ gene and
reverse primer on the 3’ gene. PCR was done by Platinum Taq DNA
polymerase (Life Technologies, Catalog #10966018), followed by
Sanger sequencing in Eurofins Genomics.

Results

Mutations acquired in castration resistant cell lines
We used triplicates of each cell line (Du145, PC-3 and LNCaP) for

whole transcriptome RNA-sequencing and compared “hormone
resistant” (PC-3 and DU145) and “hormone sensitive” (LNCaP) cell
lines to find mutations acquired after hormone treatment. Only
mutations, which were present in PC-3 and Du145 but absent in
LNCaP triplicates were chosen as "stably acquired mutations".

We found, in 2579 genes, 4397 mutations which were consistently
mutated after cell lines acquired resistance to hormone treatment (S1).
All 2579 mutated genes distributed relatively even in all chromosomes
without preference. GO term analysis showed that binding (GO:
0005488) and catalytic activity (GO:0003824) are two most widely
distributed groups among all mutated genes (Figure 1A), and the two
most enriched pathways are 1) Immune response B cell antigen
receptor (BCR) pathway, and 2) development positive regulation of
STK3/4 (Hippo) pathway and negative regulation of YAP/TAZ
function.

Gene Full name COMIC
mutation rate

in Pca %

COSMIC
mutation rate in

all cancers %

Protein Expression in
PCa Tissue (Human

Protein ATLAS)

Possibly Involved
in immune
response

Possibly
Involved in

EMT*

K-RAS KRAS Proto-oncogene 3.0 19.2 Up-regulated Yes15 Yes16

PLCG1 Phospholipase C gamma 1 1.2 1.5 No alteration Yes17 Yes18

NOTCH1 Translocation-associated Notch protein TAN-1 1.4 5.7 No alteration Yes19 Yes20

NCOR2 Nuclear receptor corepressor 2 1.4 1.8 No alteration Yes21 Yes22

JAK1 Janus kinase 1 1.3 1.3 Up-regulated Yes23 Yes24

FASN Fatty acid synthase 1.1 1.7 Up-regulated Yes25 Yes26

PREX1 Phosphatidylinositol-3,4,5-trisphosphate
dependent rac exchange factor 1

1.1 1.6 Up-regulated Yes27 Yes28

MYLK Myosin light chain kinase 1.4 1.7 N/A - Yes29

*EMT: Epithelial-Mesenchymal Transition

Table 1: Selected mutated genes from 10 enriched pathways in Figure 1B [15-29].

Some mutations among these 10 enriched pathways had a higher
mutation rate in patient samples (COSMIC) and many of them are
involved in immune response (Figure 1B) (Table 1). Cosmic database
shows that there are 22909 genes mutated in 4763 prostate cancer
tumor samples in total, and 1574 of the 2579 genes mutated in our cell
line study showed also mutations in tumor samples from patients.

Genes with alternative expressions in castration resistant cell
lines

By comparation of “PC3 vs LNCaP” and “DU145 vs LNCaP”, we
aimed to identify down- or up-regulated genes in androgen-

independent cell lines (S2). We set a cut-off (expression fold-change
more than 3 and expression more than 3) and found 157 and 549 genes
which were down- and up-regulated respectively in both PC3 and
DU145 compared to LNCaP (S3). We selected 30 genes randomly and
28 out of them were validated by PCR (S4). The most up- or down-
regulated genes were shown in Tables 2 and 3.

All up- and down-regulated genes in androgen independent PC3
and DU145 cell lines (706 genes) were analyzed by MetaCore from
Thomson Reuters to build network which resulted in 3 dominant
connection notes (Figure 1C): GCR/MCR (NR3C1) and PKA-cat
kinase (PRKACB) and PKC family (PRKD1).
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Figure 1: GO term analysis of mutations by Panther (A), pathway enrichment of mutations by MetaCore (B) and Network analysis of up/
down-regulated genes by MetaCore from Thomson Reuters (C).
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Gene* Full name Related pathways or
function

Expression level Stably mutated in our
cell lines/Cosmic
tumor samples?

LNCaP PC-3 DU145

INPP1 inositol polyphosphate-1-phosphatase Metabolism 0.007 9.3 13.5 Yes/Yes

GSTP1 Glutathione S-transferase Pi 1 Pathways in cancer 0.6 230.1 363.3 No/Yes

CYP1B1 Cytochrome P450, Family 1, Subfamily B,
Polypeptide 1

AhR pathway 0.03 14.2 16.2 No/Yes

MYEOV Myeloma overexpressed Myeloma 0.1 45.8 35.5 Yes/Yes

KLF12 Kruppel-like factor 12 Involved in vertebrate
development and
carcinogenesis

0.01 6.8 3.3 Yes/Yes

GPRC5A G protein-coupled receptor, Class C, group 5,
member A

Cancer pathway and
neuroscience

0.2 90.6 58 No/Yes

IGFBP4 Insulin-Like growth factor binding protein 4 IGF binding 0.2 98.7 50.5 No/Yes

CAV2 Caveolin 2 Prostate cancer 0.1 66.3 27.8 Yes/Yes

B3GNT3 UDP-GlcNAc:BetaGal Beta-1,3-N-
Acetylglucosaminyltransferase 3

Metabolism 0.04 27 10.1 Yes/Yes

*all the 9 genes were among top 50 in both “PC-3 vs LNCaP” and “DU145 vs LNCaP”

Table 2: Top 9 up-regulated genes when cells acquired resistance to androgen.

Gene* Full name Related pathways or function Expression level Stably mutated in our
cell lines/Cosmic
tumor samples?

LNCaP PC-3 DU145

CSMD1 CUB and Sushi multiple domains 1 benign adult familial myoclonic
epilepsy

13.6 0.03 0.004 No/Yes

TMEFF2 Transmembrane protein with EGF-Like
and two follistatin-like domains 2

function as both an oncogene and a
tumor suppressor depending on the
cellular context

122.5 0.3 0.06 No/yes

SPON2 Spondin 2, extracellular matrix protein ERK signaling 868.4 1.0 0.5 No/yes

UGT2B17 UDP glucuronosyltransferase 2 Family,
polypeptide B17

Metabolism 156.3 0.3 0.2 No/Yes

MAGEA4 Melanoma antigen family A4 embryonal development and tumor
transformation or progression

126.3 0.2 0.2 No/Yes

UGT2B15 UDP glucuronosyltransferase 2 family,
polypeptide B15

UDP-glucuronyltransferase 146.9 0.2 0.2 No/Yes

GLYATL1 Glycine-N-acyltransferase-like 1 Metabolism and biological oxidations 86.1 0.2 0.2 No/Yes

DDC Dopa decarboxylase (Aromatic L-amino
acid decarboxylase)

Metabolism 206.7 0.5 0.7 No/Yes

*all the 8 genes were among top 30 in both “PC-3 vs LNCaP” and “DU145 vs LNCaP”

Table 3: Top 8 down-regulated genes when cells acquired resistance to androgen.

Fusions associated with castration-resistant prostate cancer
By ChimeraScan analysis, 117, 48 and 60 fusions were discovered in

LNCaP DU145 and PC3 (S5) respectively. Venn diagram showed that
only one fusion (AF086285-ATP6V1E2) was universally expressed in

all 3 cell lines. Six fusions were transcribed commonly in androgen-
independent cell lines (PC3 and DU145) but not in androgen-
dependent cell line (LNCaP) (Figure 2A) (Table 4). Three of those
fusion partners are long non-coding RNA (FLJ39739, LOC100286793
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and LOC728855), and a recent study showed that FLJ39739
(LINC01138) was directly AR-targeted lncRNAs and associated with
Gleason score and tumor stage [30].

5’ Chr 5’ full name 3’ Chr 3’ full name

CTSD 11 Cathepsin D IFITM10 11 Interferon Induced Transmembrane Protein 10

FLJ39739 1 LINC01138 long intergenic non-protein
coding RNA 1138 [ Homo sapiens

(human) ]

BC065231 1 Homo sapiens cDNA clone IMAGE:5548407,
partial cds

HMGA1 6 High mobility group AT-Hook 1 BTNL8 5 Butyrophilin Like 8

LOC100286793 1 LINC00875 long intergenic non-protein
coding RNA 875

BC065231 1 Homo sapiens cDNA clone IMAGE:5548407,
partial cds

LOC728855 1 LINC00623 long intergenic non-protein
coding RNA 623

BC065231 1 Homo sapiens cDNA clone IMAGE:5548407,
partial cds

BC110832 1 Homo sapiens cDNA clone IMAGE:
5770060

BC065231 1 Homo sapiens cDNA clone IMAGE:5548407,
partial cds

Table 4: Fusions specifically expressed in androgen-independent cell lines (DU145 and PC3) compared to androgen-dependent cell line (LNCaP).

5’ gene 5’ chr Up or down
regulation

3’ gene 3’ chr Up or down
regulation

Verified* In-frame
fusion

Previous publications

MIPOL1 14 no DGKB 7 no Yes No 31

ADCK4 19 no NUMBL 19 no Yes yes 32

GPS2 17 no MPP2# 17 down yes Yes 33

TFDP1 13 no GRK1# 13 down yes Yes 34

SAMD8# 10 up ADK 10 no Yes No --

SMAGP 12 no TFCP2# 12 up yes No --

HMGA1# 6 up BTNL8 5 no no No --

KDM5B 1 no CR936711 1 no yes No --

BTNL8 5 no HMGA1# 6 up no No --

RPS24 10 no AJAP1 1 no no No --

RERE 1 no PIK3CD# 1 down yes No 33

*Marked ‘Yes’ if PCR found predicted fusions in DU145, PC3 or LNCaP cell lines. #Dramatically up- or down- regulated genes

Table 5: Fusion transcripts selected and validated by PCR [31-33].

Using “Unique alignment positions” more than 5 as a cut-off
provided a total of 25 chimeric transcripts, out of which, 11 selected
validations were done by PCR (Table 5). PCR validation found that
eight of eleven (72.7%) suspected fusion transcripts could be found in
PC3, DU145 or LNCaP cell lines (Figure 2B). Among all the validating
fusions, four chimeric transcripts (MIPOL1-DGKB, GPS2-MPP2,
RERE-PIK3CD and TFDP1-GRK1) expressed only in androgen-
dependent cell line LNCaP, while three chimeric transcripts (SMAGP-
TFCP2, KDM5B-CR936711, SAMD8-ADK) expressed only in
androgen-resistant cell line (Figure 2C).

Discussion
The development of castration resistance can have different

molecular mechanisms as given in the introduction. They can be
generally classified into two major categories as AR-dependent and
AR-independent. The former requires a functionally normal or
hyperactive AR i.e. cancer cells have AR expression. The latter requires
no direct AR functional involvement. In line with previous published
results, this study showed that PC3 and DU145 cell lines didn’t express
AR [34-36]. Therefore, possible molecular changes found in either PC3
or DU145 cell lines may represent the AR-independent mechanisms.
In this context, the present study identified genes with mutations,
expression changes and fusion transcripts in androgen-independent
prostate cancer cells as compared to androgen-dependent cancer cells.
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Mutations are relatively common in cancer cell lines. They can be
cancer specific mutations or random mutations acquired during the
cell culture. To discriminate these random mutations, we used more

than one cell lines and each cell line with triplicates. Furthermore,
molecular changes in cell lines, despite not random, do not always
represent molecular changes in tumor samples from patients.

Figure 2: Fusion transcripts confirmed by PCR and Sanger sequencing.

To overcome this limitation, we focused on the importance of those
molecular changes that have also been identified in tumor samples
from patients in previously published results including the COSMIC
database. Our study found 2579 mutated genes which were probably
acquired when cells became resistant to hormone treatment. Among
them, 1574 (61%) could be found in mutations of Cosmic tumor
samples, for instance, SPEG (1.7%) and NCOR2 (1.6%) in tumor
samples (COSMIC).

Most interestingly, the most common pathway enriched with
mutated genes in androgen-independent cell lines is the Immune
response B cell antigen receptor (BCR) pathway, in line with a recent
proposed concept epithelial immune cell-like transition (EIT) [37,38].
These findings may indicate that cancer cells can employ cytokine and
immune pathways to suppress host’s immune activity and escape from
control and surveillance by immune system. Immunotherapy
combined with hormone therapy could probably become effective
treatments for metastatic prostate cancer.

The MetaCore analysis identified NR3C1, PRKACB, PRKD1 and
PKD1 as the up-regulated genes with potential functions in hormone
resistant cell lines. NR3C1 was significantly up-regulated in PC3
(expression level: 9.5) and DU145 (expression level: 63.8) compared
with LNCaP (expression level: 0.2). NR3C1 encodes glucocorticoid
receptor (GR), which shares several transcriptional targets with AR.

Previous researches showed that increased GR expression
contributed to acquire resistance to ADT in prostate cancer in vitro
and in vivo [39-41]. A phase II trial of enzalutamide (MDV3100) plus
the glucocorticoid receptor antagonist mifepristone for patients with
metastatic castration resistant prostate cancer (CRPC) has been
performed (https://clinicaltrials.gov/ct2/show/study/NCT02012296?
view=record).

PRKACB (protein kinase cAMP-dependent catalytic beta) is a
member of serine/threonine protein kinase family and a key effector
involved in proliferation, apoptosis metabolism and differentiation. In
our study, it was down-regulated in PC3 (expression level: 8.9) and
DU145 (expression level: 14.7), compared with LNCaP (expression
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level: 253.7). PRKD1 (protein kinase D1) is also known as protein
kinase C mu (atypical PKC), which is a serine/threonine kinase and
can be activated by PKC, involving various functions including
adhesion, cell motility, and cell proliferation. PKD1 can interact with
androgen receptor (AR) and modulated AR function in prostate cancer
[42-44]. In our project, PRKD1 was down-regulated in PC3
(expression level: 4.5) and DU145 (expression level: 5.4), compared
with LNCaP (expression level: 100), showing that mRNA level was
decreased in androgen-independent phenotype, which is similar to
PRKACB above. PKD1 or PRKACB agonists or exogenous PKD1 may
probably help to stop or slow down the progression of androgen-
independent phenotype.

We also found several fusions which probably associated with
resistance to hormone treatment. SMAGP-TFCP2, KDM5B-CR936711
and SAMD8-ADK was detected only in PC3 which were one of the
androgen-independent cell lines in this study, while some fusions were
androgen-dependent cell line (LNCaP) specific, including MIPOL1-
DGKB, GPS2-MPP2, TFDP1-GRK1, and RERE-PIK3CD. SMAGP
(Small Cell Adhesion Glycoprotein) could bind as an enhancer with
TFCP2 (Transcription Factor CP2), which activate transcription of
genes, such as alpha-globin gene.

MIPOL1-DGKB had been found in LNCaP cell lines in previous
study published in 2009 using RT-PCR and FISH [31], and the fusion
point is the same with the fusion found in our project and cannot been
read-through. GPS2-MPP2 found in our project had the same fusion
point with previous study in LNCaP cell line, and was in-frame which
could result in the expression a chimeric protein localized differently
from wild-type GPS2 and MPP2 in cells and can promoted
proliferation and protected against apoptosis [45]. TFDP1-GRK1 was
also mentioned in previous bioinformatics studies without
confirmation and function validation [46,47]. RERE-PIK3CD was
found out of frame in our project. Among all fusion gene partners,
GRK1 and PIK3CD expression were top 2 significantly down-regulated
genes and TFCP2 was the most dramatically up-regulated gene
[47-52].

Conclusion
Our study discovered mutations, fusion transcripts and genes with

altered expression levels in castration-resistant prostate cancer cell
lines, adding insights into androgen resistance in prostate cancer at
transcriptomic level.
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