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INTRODUCTION

Sri Lanka has a tropical climate with two distinct monsoons as 
Northeast (December-March) and Southwest (May-September). 
During monsoon seasons the Kelani, Kalu, Nilwala, and Gin river 
basins are subjected to severe flood inundation. Frequently this 
flooding causes a serious damage to properties and lives in the 
flood plains of aforementioned river basins.

The Kelani River is the second largest river in Sri Lanka which 
spreads across 2300 km2 and receives an annual average rainfall 
around 2400 mm. Topographically, the Kelani river basin can be 
distinctly characterized as upper and lower basins. The mountainous 
upper basin is mainly covered with vegetation types such as tea, 
rubber, grass and forest while the lower basin is heavily urbanized.  
The river discharges a peak flow of about 800-1500 m3/s during 
monsoons to the Indian Ocean [1].

Floods cause large scale social and economic losses that can be 
minimized if a proper disaster management system is implemented. 
The major reason for the poor disaster management system is the 
inability to achieve accurate flood forecasts in terms of timing 
and extent. Numerical Weather Predictions (NWP) deliver an 
extensive set of weather parameters including precipitation which 
flood forecasting simulations ingest as one of the major weather 
parameters effecting floods. Such NWPs range from short term 

(few hours to few days) to medium term (up to 10 days and more) 
which allows implementing effective action plans to minimize near 
future flood risk [2].

At present, the Department of Meteorology of Sri Lanka publishes 
precipitation forecasts which are prepared using outputs of 
numerical weather prediction models of India Meteorological 
Department and European Centre for Medium Range Weather 
Forecasting (ECMWF) as guidance [3]. Published forecasts include 
36-hour general weather forecast for main cities, 9-day daily 
precipitation forecast contour maps for Sri Lanka and weekly 
rainfall anomaly forecast maps for a part of Asia region [4]. In 
recent times, the Centre for Urban Water (CUrW) of the Metro-
Colombo Urban Development Project provides refined forecast at 
finer scale [5] and the contents given in this paper is part of the 
work carried out under that program.

Sub-daily scale time of concentrations at sub-basins and rapid 
water level rises in Metro Colombo canal system, lead to sudden 
changes in canal water levels in short time periods. Such water 
level variations would not be able to simulate with daily or coarser 
precipitation forecasts. Recent rainfall observations have shown 
trends that follow a pattern of high intense rainfalls within a short 
duration of time period (Figure 1). These produce flash floods and 
affect the businesses and productivity in cities. Also a high spatial 
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variation in rainfall magnitudes can be seen in figure 1 even within a 
spatial extent of a tenth of a degree. Therefore, a high temporal and 
spatial resolution precipitation forecast is required for flood and 
inundation modelling in the lower reaches of the Kelani river basin 
including Metro Colombo area to provide effective early warning 
as well as to estimate potential loss so that optimized investments 
on flood control interventions could be made supporting the 
sustainable development of the basin. 

Research into WRF corrections in sub-daily scale is very limited 
for the region and studies show that the performance of proposed 
corrections has high variations compared to observations at different 
stations even within the same catchment [6]. The conventional bias 
correction methods are only capable of correcting the magnitude 
of rain events but not the timing of rain which is an important 
measure of a reliable sub-daily scale rainfall prediction. Therefore, 
this study is focused on improving the temporal performance of 
rainfall prediction in sub-daily scale for the Kelani basin in the 
means of regional model selection.

The study assesses the performance of NWP models for now 
casting sub-daily scale precipitation in terms of both magnitude 
and temporal distribution for the Kelani river basin and develop 
criterion for the selection of best performing model for a given 
location.

LITERATURE REVIEW

Global NWP models are used to produce short and medium range 
weather forecasts (out to 10-15 days) of the state of the atmosphere, 
with a horizontal resolution of typically 10-25 km and a vertical 

resolution of 10-30 m near the surface increasing to 500 m-1 km in 
the stratosphere. Forecasters use these products as guidance to issue 
forecasts and ensembles provides estimate of uncertainty and global 
NWP models are used to provide boundary conditions for regional 
NWP models [7]. Downscaling global NWP model outputs to 
regions or local scales is a common practice for operational weather 
forecast in order to correct the model outputs at sub grid scale [2].

Global NWP

National Centre for Environmental Prediction (NCEP) (NCEP, 
2019) and European Centre for Medium-Range Weather Forecasts 
(ECMWF) (ECMWF, 2019) are pioneers in global NWPs. The 
global data set Global Forecasting System (GFS) produced by NCEP 
has been the most popular dataset for downscaling with WRF 
which is freely available through the NOAA National Operational 
Model Archive and Distribution System (NOMADS) [8]. Recent 
data of up to 15 days back can be accessed through NCEP Product 
Inventory [9] and archived data is available from NOAA National 
Operational Model Archive and Distribution System (NOMADS).

Downscaling

There are several ways to downscale global NWPs:    Regional 
Climate Models (RCM) or Dynamical Downscaling, Empirical 
Statistical Downscaling (ESD), Hybrid Dynamical-Statistical 
approach, Spatial Disaggregation technique, Stretched Grid and 
High-resolution global time slice approaches are some of them. 
The RCM calculates the rainfall and temperature from differential 
equations describing how pressure affects winds (geostrophic 
dynamics) and the movement of energy and mass through the 

Parameter
[13] [14] [15] [16]

Test Result Test Result Test Result Test Result

mp_physics

Goddard, WSM6, 
WDM6, Thopmson, 

Thompson A, 
Morrison G, Morrison 

H, NSSL

Goddard for rain, 
WDM6 vertical 

profile

WSM3 
Ferrier

Ferrier
WDM5 D1, 
WDM6 D2

WDM5 
WDM6 (No 

clear selection 
of one 

scheme)

Kessler 
WSM5    
WSM6

Kessler, WSM5, 
WSM6 (No clear 
selection of one 

scheme)

cu_physics New SAS Kain-Fritsch Kain-Fritsch Kain-Fritsch, BMJ

ra_lw_physics RRTMG RRTM RRTM RRTM

ra_sw_physics RRTMG Dudhia Dudhia Dudhia

sf_sfclay_physics revised MM5 Monin-Obukhov   

sf_surface_physics NOAH LSM RUC NOAH LSM NOAH LSM

bl_pbl_physics YSU YSU YSU YSU

Table 1: Parameters considered in past studies.

Figure 1: Spatial and temporal variability of observed rain events in Metro Colombo Region
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atmosphere. The ESD approach, on the other hand, captures 
dependencies between processes that are not explicitly coded 
into models, and makes use of the information embedded in the 
observational data [10]. 

According to Hamill (2004), much of the important weather 
for hydrology occurs at scales smaller than those resolved by the 
global weather forecast models and their ensembles. Therefore, 
when downscaling to sub-grid scale with RCM, the model must 
be parameterized according to the interested region. Such 
parameterizations include land surface, cloud microphysics, 
radiative transfer, orographic drag, turbulent diffusion and 
interactions with surface [11]. The ARW-WRF model solves the 
atmospheric equations and physical schemes selected, to transform 
and forecast the meteorological forcing in the domain resolution 
scale [12].

Parameterization

Physical schemes utilized in parameterization implicitly include the 
effect of physical processes in WRF [12]. Past studies done in the 
region and for tropical regions including Korea and Hawaii were 
referred to find out commonly used schemes matching the region’s 
behaviour and their performance as in Table 1 [13-16].

Evaluation

Traditional evaluation statistical measures are commonly focused 
on comparing the magnitude of rain with the Root Mean Square 
Error [17,18]. Past studies concluded that a single combination 
of schemes could not be found which perform significantly over 
others even in a single region, but better performing schemes in 
different regions have been identified [13,14].

METHODOLOGY

GFS forecast with 0.5 arc degree resolution, 18hr model cycle 
runtime, and 72-hour duration was used in the simulations. WRF-
ARW model was used to downscale GFS data into 3 km spatial 
and 15 minute temporal resolution. Downscaling was carried out 
in 3 steps with a one-way nest to define smaller domains, d03 being 
the smallest domain representing the land surface of Sri Lanka. 
Domain extent details are shown in figure 2 and table 2.

Table 2: Domain configuration.

Domain Resolution (km) WE length (km) SN length (km)

d01 27*27 3159 3159

d02 9*9 1089 1089

d03 3*3 327 525

NWP simulations were run to cover heavy rainfall events. Heavy 
rainfall events that occurred flooding conditions in the Metro 
Colombo area and high water levels in the Kelani river were 
selected as the basis for identifying events of interest. Data from 
real-time water level stations shown in at Janakala Kendraya which 
represent the water level in the Metro Colombo are and the water 
level gauging station at Kaduwela bridge over the Kelani river were 
used to identify the heavy flood events. Rainfall data for the flood 
events was gathered from real-time weather stations at Madiwela, 
Waga, Mahapallegama, Kithulgala and Maskeliya which represent 
different hydrologic regions of the Kelani river basin (Figure 3). 
These stations are under Centre for Urban Water, Sri Lanka 
(CUrW) [5]. Accordingly, heavy rainfall events from 15th to 17th, 
from 24th to 26th September, 2019 and from 29th to 30th November, 
2019 shown in figure 4 are selected for forecast simulations.

From 15th to 17th of September, 2019  

a.	72-hour session starts at 2019-09-13 18:00 UTC (2019091318) 

b.	72-hour session starts at 2019-09-14 18:00 UTC (2019091418) 

From 24th to 26th of September, 2019 

a.	72-hour session starts at 2019-09-22 18:00 UTC (2019092218) 

b.	72-hour session starts at 2019-09-23 18:00 UTC (2019092318)

From 29th to 30th November, 2019

a.	72-hour session starts at 2019-11-28 18:00 UTC (2019091318)

First four sessions were used for calibrating the models selection 
process and the last session was used for verification of forecast. 

Following the studies by Zhang et al. (2012) [17], Song & Sohn 
(2018) [13], Nandalal et al. (2012) [14], Rodrigo et al. (2018) [15] 
and Darshika & Premalal (2015) [16] and the User’s Guide for 
the Advanced Research WRF (ARW) Modelling [12], schemes for 

Figure 2: Domain layout (Illustration from WRF Domain Wizard).
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mp_physics and cu_physics parameters as in table 3 were evaluated. 
Eta operational parameterization was utilized for other parameters.

Convection can easily occur between mesoscale model grid boxes 
but not significantly in sub-grid scale. Therefore, these models were 
also evaluated without cu_physics parameterization for the highest 
resolution domain (domain 3). Accordingly, a total of 16 models 
were tested, viz: M1_On, M1_Off, M2_On, M2_Off, M3_On, 
M3_Off, M4_On, M4_Off, T4_On, T4_Off, T5_On, T5_Off, 
T6_On, T6_Off, T7_On and T7_Off, where “On” and “Off” 
represent the cu_physics scheme turning on and off for domain 3.

Station based evaluations were carried out for 5 weather station 
locations (figure 3) representing different regions of the Kelani 
river basin for four WRF 18 hour runtime cycle simulation 

Figure 3: Distribution of rain gauges and water level gauges.

 

Figure 4: (a): Simulation schedule for model selection, (b): Simulation schedule for verification.

 

 

 mp_physics cu_physics

 WSM3 WSM5 WDM5 WDM6 Eta Kessler BMJ KF GF

M1 X      X   

M2 X       X a  

M3  X       X

M4 X       Xb  

T4     X  X   

T5    `  X X   

T6   X    X   

T7    X   X   
aKfeta_trigger on; b Kfeta_trigger off

Table 3: Utilization of mp_physics and cu_physics schemes.
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sessions. WRF model performance was statistically evaluated by 
comparing monitoring stations’ observed data with the nearest 
WRF grid point’s forecast data. Precipitation forecasts of 16 models 
in 15-minute temporal resolution were evaluated for both the 
magnitude and temporal distribution aspects using, Normalized 
Root Mean Square Error (NRMSE) (equation 1), Temporal Match 
Percentage (TMP) (equation 2) and Normalized Standard Deviations 
(NSD) (equation 4,5) of NRMSE (NRMSE NSD) and TMP (TMP 
NSD). NSD allows measuring the consistency of NRMSE and TMP 
over different sessions. A Performance Score (PS) incorporating 
magnitude, temporal distribution and their variation factors was 
introduced to evaluate the model performances (equation 3,6-8).

TMP is based on the rain no-rain classification of each time step. 
Rain and no-rain condition is defined on two threshold values for 
observation and forecast. Precipitation observation stations are 

equipped with tipping bucket rain gauges of 0.2 mm resolution. 
These could record a 0.2 mm rain even in no-rain situation due to 
partial accumulated of water in the tipping bucket from previous 
rain event or due to condensation inside the gauge. To omit such 
data, a 0.4 mm threshold value was introduced in classifying an 
observed rain time step. For WRF data, a threshold of 0.04 mm 
was introduced keeping a margin for a 10 times bias. 

For evaluating a single simulation

Normalized Root Mean Square Error: 
0.5

2
mod mod / ( )   (Equation 1)obs obsNRMSE cp cp Average cp = −  

Temporal Matching Percentage:

 mod
mod

_ [( 0.04) & ( 0.4)] %  (Equation 2)
_ ( 0.4)

obs

obs

Count if ip ipTMP
Count if ip

≥ ≥
=

≥

Stations
Models from NRMSE_PS Models from TMP_PS

Model NRMSE_PS TMP_PS OPS Model NRMSE_PS TMP_PS OPS

Madiwela M3_On 64 34 49 T5_On 37 71 54

Waga M3_Off 58 52 55 M2_On 36 59 48
M'pallegama T5_Off 46 4 25 M1_On 38 53 45

Kithulgala M4_On 62 61 61 M2_On 47 76 61
Maskeliya T5_On 36 32 34 T5_Off 25 52 39

Average  53 37 45  37 62 49

Table 5: Statistics for selection of models.

Station

Without bias correction

Models from NRMSE Models from TMP

Model NRMSE TMP PS Model NRMSE TMP PS

Madiwela M3_On 76 58 41 T5_On 63 53 45

Waga M3_Off 56 65 55 M2_On 79 54 37

M'pallegama T5_Off 50 37 44 M1_On 100 42 21

Kithulgala M4_On 52 63 55 M2_On 70 91 61

Maskeliya T5_On 42 48 53 T5_Off 34 52 59

Average  55 54 50  69 58 45

Table 6: Statistics for verification without bias correction.

Station

With bias corrected

Models from NRMSE Models from TMP

 Model NRMSE TMP PS Model NRMSE TMP PS

Madiwela M3_On 56 58 51 T5_On 42 53 56

Waga M3_Off 50 65 58 M2_On 60 54 47

M'pallegama T5_Off 19 37 59 M1_On 62 42 40

Kithulgala M4_On 69 63 47 M2_On 75 91 58

Maskeliya T5_On 100 48 24 T5_Off 48 52 52

Average  59 54 48  57 58 51

Table 7: Statistics for verification with bias correction.

 Madiwela Waga M'pallegama Kithulgala Maskeliya

Areas (km2) 358.61 597.6 363.99 623.4 396.65

Factors 0.15 0.26 0.16 0.27 0.17

Table 8: Thiessen polygon factors.
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Performance Score:

mod mod mod100 [ (100 )]   (Equation 3)PS Average NRMSE TMP= − + −

For evaluating multiple simulations

Standard Deviation:

2

mod, , mod, , , ( )   (Equation 4)c l c s l lI SD I Average I = − 

Normalized Standard Deviation:

mod mod mod 100 [   ]  (Equation 6)NRMSE PS Average NRMSE AVG NRMSE NSD= − +

Performance score of Normalized Root Mean Square Error:

mod mod mod 100 [   ]  (Equation 6)NRMSE PS Average NRMSE AVG NRMSE NSD= − +

Performance score of Temporal Matching Percentage:

mod mod mod 100 [100  )  ]  (Equation 7)TMP PS Average TMP AVG TMP NSD= − − +

Overall performance score:

mod mod mod mod mod100 [   (100  )  ]  (Equation 8)OPS Average NRMSE AVG NRMSE NSD TMP AVG TMP NSD= − + + − +

Where, 

cp: stands for cumulative precipitation, 

ip: instantaneous precipitation, 

mod: model output values, 

obs: observed values, 

SD: standard deviation, 

I: NRMSE and TMP, 

Average: arithmetic mean and, 

Count_if: calculating the number of instances which the condition 
is met.

Two methods were tested for model selection process, one based on 
NRMSE and the other based on TMP.

RESULTS AND DISCUSSION

Considering a single simulation session (2019092218), table 4 
shows the statistical indices for each model at Kithulgala, where the 
best performing models for each index are highlighted. Accordingly, 
there is a difference in best performing models when compared 
based on NRMSE, TMP or PS. A bias correction was performed 
on the forecasted cumulative time series, where the difference with 
the overserved value at the end of spin-up period was subtracted 
from rest of the time series to match observed and forecasted 
cumulative rainfall value at the end of spin-up time (Figure 5b). 
The precipitation time series before and after bias-correction are 
shown in figure 5a & 5b respectively. Bias corrected time series 

  Bias corrected NRMSE TMP PS

Session
Reference 

T4_On
Selected 
Models

Improve-
ment

Reference 
T4_On

Selected 
Models

Improve-
ment

Reference 
T4_On

Selected 
Models

Improve-
ment

2019091318 95.2 70.8 24.4 46.3 85.4 39.1 25.6 57.3 31.8

2019091418 49.9 31.8 18.1 53.3 87.8 34.5 51.7 78 26.3

2019092218 22.8 16.8 6 59.3 75.6 16.3 68.3 79.4 11.2

2019092318 20.8 9.9 10.9 93.3 86.8 -6.5 86.3 88.5 2.2

2019112818 61.1 49.1 12 42.4 94.4 52 40.7 72.7 32

Table 9: Basin averaged bias corrected improvements.

Station
Regional selection Basin scale selection T4_On Improvement

Model NRMSE TMP PS NRMSE TMP PS NRMSE % TMP % PS %

Madiwela T5_On 63 53 45 84 37 27 21 16 18.5

Waga M2_On 79 54 38 77 16 20 -2 38 18

M’pallegama M1_On 100 42 21 115 10 -3 15 32 23.5

Kithulgala M2_On 70 91 61 104 0 -2 34 91 62.5

Maskeliya T5_Off 34 52 59 68 28 30 34 24 29

Average        20.4 40.2 30.3

Table 10: Improvements gained for verification session without bias correction.

Station
Regional selection Basin scale selection T4_On Improvement

Model NRMSE TMP PS NRMSE TMP PS NRMSE % TMP % PS %

Madiwela T5_On 42 53 56 33 37 52 -9 16 3.5

Waga M2_On 69 54 43 62 16 27 -7 38 15.5

M’pallegama M1_On 70 42 36 79 10 16 9 32 20.5

Kithulgala M2_On 25 91 83 76 0 12 51 91 71

Maskeliya T5_Off 41 52 56 55 28 37 14 24 19

Average        11.6 40.2 25.9

Table 11: Improvements gained for verification session with bias correction.
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result in NRMSE of 58.2, 40.8 and 52.8 respectively for M1_On, 
M2_On and M1_Off. This shows that, bias correcting the model 
selected based on TMP, lead to the best forecast both in magnitude 
(NRMSE) and temporal performance (TMP) aspects combined.

Table 4: Statistics for 22nd September, 2019 simulation session at 
Kithulgala.

 NRMSE TMP PS
Bias 

Corrected 
NRMSE

Bias 
Corrected 

PS

M1_On 48 42.6 47.3 58.2 42.2

M1_Off 45.7 16.4 35.4 52.8 31.8

M2_On 98.2 52.5 27.2 40.8 55.9

M2_Off 106.6 13.1 3.3 116.8 -1.8

M3_On 51.8 37.7 43 70.5 33.6

M3_Off 77.8 29.5 25.9 111.2 9.2

M4_On 46.9 34.4 43.8 44.1 45.2

M4_Off 117.9 3.3 -7.3 123.5 -10.1

T4_On 54.8 16.4 30.8 59.6 28.4

T4_Off 95 26.2 15.6 115.6 5.3

T5_On 58.3 23 32.4 84.1 19.5

T5_Off 61.4 21.3 30 74.8 23.3

T6_On 54.2 32.8 39.3 61.3 35.8

T6_Off 80.5 18 18.8 59 29.5

T7_On 96 14.8 9.4 101 6.9

T7_Off 146.1 11.5 -17.3 62.9 24.3

Considering all the models for calibration, the best performing 
models selected based on NRMSE_PS and TMP_PS of the forecast 
simulations are shown in table 5. In table 5, OPS indicate the 
Overall Performance Score which accounts for the combination of 

magnitude, temporal performance and their variance. Accordingly, 
models selected from TMP_PS deliver the higher OPS at most of 
the stations in contrast to the models selected from NRMSE_PS. 
Model selection process is illustrated in figure 6. It included two 
steps at the final selection where, 

Step 1: Filter to remove models with, an Average TMP less than 
the 3rd quartile and a TMP NSD greater than 1st quartile, in order 
to assure the consistency of results.

Step 2: Select the model with highest TMP PS from the filtered 
models.

Above process resulted in selecting T5_On, M2_On, M1_On, 
M2_On and T5_Off as the best performing models for Madiwela, 
Waga, Mahapallegama, Kithulgala and Maskeliya. When the results 
are averaged over the basin, T4_On performs best with 52.9% OPS.

These results were further verified with the session for verification, 
with statistics shown in table 6 and table 7, highlighting the models 
with best PS. Them proves that the models selected considering 
temporal performance result in the best overall perforance with 
bias correction. 

In order to compare the station wise model selection with basin scale 
selection, the selected models at regional scale were compared with 
the best performing model at basin scale (T4_On). Basin average 
rainfall time series for observed and forecasts were calculated with 
thiessen polygon factors as given in figure 7 and table 8.

Table 9 shows the basin averaged improvements gained in terms of 
TMP, NRMS and OS for each forecast session. Accordingly, for the 
majority of the sessions, model selection has resulted in improved 
forecast. Even though 2019092318 sessions’s TMP doesn’t show 
any improvement, it is evident that the forecasts are performing 
well with the observations figure 8.

Figure 5: (a): Cumulative precipitation time series before bias correction, (b): Cumulative precipitation time series after bias correction.
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Figure 6: Model selection process flow chart.

 

Figure 7: Thiessen polygons.
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The station wise improvements gained are shown in table 10 
without bias correction and in table 11 with bias correction.

CONCLUSIONS

Study concludes that sub-daily scale near future NWP model 
performances differ significantly in different regions within the 
Kelani river basin. Considering such variations, the study has 
shown that the station wise model selection method leads to a 
better forecast over the basin rather than selecting a basin wide 
single model. 

Incorporating temporal distribution (TMP) of rain events for model 
selection and later performing a bias correction is recommended 
for obtaining a reliable sub-daily scale precipitation forecast rather 
than bias correcting the models selected based on precipitation 
magnitudes (NRMSE).  

These gains in improved forecasts should be translated to effective 
early warning to reduce losses and damages so that disasters related 
to extreme events do not wipe out years of economic progress. 
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Figure 8: Basin mean cumulative rainfall for session 2019092318.
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