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Short Communication
Next-generation sequencing (NGS) has been revolutionary for the

clinical diagnostics field. With its high throughput sequencing power
and plummeting cost, it has been increasingly used in clinical labs.
Instead of testing the candidate genes one at a time by Sanger
sequencing, now a lab can test a group of candidate genes at the same
time using the NGS method. For example, many clinical labs now offer
epilepsy gene panel tests that usually sequence 100-500 genes that are
known to be causal or have associations with different kinds of
epilepsies. Gene panel tests are also offered for genetic heterogeneous
diseases like neurodevelopmental disease, cardiomyopathy,
immunodeficiency disease, etc. This approach dramatically increases
diagnostic efficiency and helps clinicians to zoom in on the genetic
cause for a certain disease in a timely manner. In addition, the NGS
technology is also used to diagnose patients who have been through
diagnostic odysseys. Exome sequencing is currently used for this
purpose in clinical labs. Exome test sequences an exome that contains
all the protein coding regions which comprises 1.5% of the genome but
contains 80% of recognized disease-causing mutations. Numerous
examples illustrated that the exome sequencing method can efficiently
identify genetic causes for undiagnosed diseases, which not only helps
clinicians to obtain accurate diagnoses but also guides clinicians in the
personalized care and treatment of their patients [1,2].

Although NGS technology transforms the clinical diagnostics field,
it is still not easy for routine clinical molecular labs to adopt this
technology. The hurdle is the interpretation of clinical NGS data,
which usually has gigabytes or terabytes of data. Normally, a clinical
exome sequencing test detects 20,000-30,000 variants in protein-
coding regions per patient, and identifying a disease-causing variant
from this large number of variants poses a serious challenge for routine
clinical molecular labs which usually only deal with one gene and
several variants at a time. Without a bioinformatics team, which helps
with the sequence alignment, variant calling, and variant filtration, it is
impossible for the lab directors to make sense of the huge amount of
NGS data, let alone to make clinical interpretations out of it.
Commercial software is available; however, often there is an annual
subscription fee and a fee for analysis per sample which a small clinical
lab cannot afford.

In addition, even after bioinformatics data analysis and filtration,
NGS data still needs manual interpretation of those identified genes
and variants. Big academic labs such as Baylor Genetics Lab and
UCLA Clinical Exome Sequencing Lab have an NGS data review board
which includes lab directors, physicians, and researchers in the
molecular biology and genetics fields to manually review exome
sequencing data and make a final clinical interpretation. This manual
review process makes sure that the genetic variant found can explain

the clinical presentations of the patient and inheritance pattern of the
disease if it is known. Recently bioinformatics pipelines were reported
to be able to efficiently prioritize the genetic variants according to the
phenotype information and inheritance pattern of disease causal genes
[3-5].

The clinical labs that already offer clinical exome sequencing tests
have shown the diagnostic yield of the clinical exome is just around
25% [6-9]. The remaining 75% of clinical cases still could not be
diagnosed, preventing appropriate treatment of these patients. The
explanation of this low diagnostic yield could be the following:

• Disease-causing variants are located outside of protein-coding
regions, such as gene promoter, enhancer, deep intronic region,
noncoding intergenic region, etc [10]. Not knowing much about
these non-protein-coding regions prevents the interpretation of the
functional impact of variations seen in them. For example, a gene
promoter is important for gene expression, and it is well known
that gene promoter mutations can lead to genetic diseases or
cancer [11-14]. However, the pathogenicity of a promoter variant
could not be easily inferred without doing functional analysis.

• Disease-causing genes or variants are novel or with few functional
studies and associated clinical reports; therefore, it is difficult for
clinical labs to perform clinical interpretations on those genes or
variants. Often, exome-sequencing-identified variants that were
not seen previously, the majority of which are missense mutations,
and the pathogenicity of variants remains to be tested functionally.
In addition, some novel genes are found in exomes that might be
associated with human diseases (inferred from animal studies);
however, they are not documented in the OMIM and HGMD
databases so that clinical interpretation on the variants seen in
these genes is impossible.

• Multigenic cause contributes to the disease onset. Currently the
clinical labs only analyze genomic data according to the simple
Mendelian inheritance pattern. However, the disease etiology
could be multigenic.

• Genetic cause is not enough for the disease onset; environmental
insult also plays an important role in disease manifestation. Up to
date, how the genetic and environment factors interact with each
other to initiate disease onset is not clear yet; however, active
research is being done for diseases like autism, allergy, and cancer
[15-18]. The knowledge gleaned from this research undoubtedly
helps us understand these complicated diseases.

In conclusion, with increasing adoption of genomic sequencing
technology in clinical labs, the main challenge is to interpret the
clinical genomic data accurately in a timely manner so that the lab can
give back helpful clinical reports to physicians. The main obstacle for
the interpretation of genomic data is due to the unreadiness of
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processing huge amounts of data, lack of knowledge of genetic
variation in normal populations, insufficient clinical and research
studies on important disease genes and variants, and unknown
functionalities of non-protein-coding regions in the genome.

Currently, genomic data processing is getting more efficient due to a
lot of research effort has been put in, and thus more advanced software
tools have been made available for free usage. Such software tools can
be adapted for clinical usage with the mind of patient privacy, and
automatic clinical report upload to patients’ medical record.

In addition, for clinical testing, each patient’s clinical features have
to be considered for data analysis too. With more and more
applications of whole genome sequencing, transcriptome sequencing,
and epigenomic sequencing, cutting-edge bioinformatics tools are also
being created to integrate various genomic data so that clinical lab
directors can process complete genomic profile of patients before final
clinical interpretations.

In addition, big population sequencing projects, sequencing projects
on specific patient cohorts and functional studies on non-coding
regions of the genome will allow us, in the near future, to discover the
meaning of genomic codes that we do not yet understand, and unveil
the secrets hidden in our genome. With the advancement of our tools
and knowledge in genomics, we will accumulate unprecedented
capabilities to interpret our genome, and thus unleash the full potential
of NGS technology.
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