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Introduction
Despite gigantic stride made towards understanding Cardiovascular 

Diseases (CVD), heart failure remains the number one cause of 
morbidity and mortality across the globe, and accounts for 31.9% of all 
deaths in USA [1]. Heart is a highly sophisticated, vulnerable, and unique 
organ, which has responsibility to incessantly and efficiently function 
for survival of the individual. The heart is regulated at several levels by 
tiny regulatory RNAs called miRNAs [2-8]. MiRNAs are endogenous, 
evolutionary conserved and ~ 23 nucleotide long, non-coding RNAs 
that modulate genes by post transcription repression [9]. Differential 
expression of miRNAs are documented in pathological hearts that leads 
to cardiovascular diseases [2,10]. MiRNAs are emerged as a biomarker 
and promising therapeutic target for cardiovascular disease [2,3,11]. The 
human heart expresses more than 800 miRNAs amongst which miR-
133a is the most abundant in human myocardium [12-14]. Abrogation 
of miR-133a impairs cardiac development at embryonic and postnatal 
stages [15]. The inhibition of only miR-133a can cause development 
of cardiac hypertrophy in adult mice [16]. Interestingly, transgenic 
overexpression of miR-133a does not show any phenotype but mitigates 
cardiac fibrosis in pressure overload (trans-aortic constriction) hearts 
[17]. MiR-133a is attenuated and contributes to cardiac hypertrophy in 
the diabetic hearts. Interestingly, overexpression of miR-133a mitigates 
cardiac fibrosis in diabetics [18-20].

However, whether overexpression of miR-133a can mitigate cardiac 
dysfunction in the failing heart is unclear. Here, a brief account of miR-
133a transcription and its potential role in amelioration of cardiac 
dysfunction will be discussed.

Types of Mir-133 and their Transcription
There are two types of miR-133: miR-133a and miR-133b. MiR-

133a has two alleles: miR-133a-1 and miR-133a-2. Both alleles of 
miR-133a are identical in sequence and differ from miR-133b by 
only two nucleotides. MiR-133a is expressed in the heart and in the 
skeletal muscle, whereas miR-133b is expressed only in the skeletal 
muscle and not in the heart. Both alleles of miR-133a and miR-133b 
are transcribed as biscistronic transcripts. MiR-133a-1 is encoded by 
chromosome 18 and transcribed as biscistronic cluster with miR-1-2. 
On the other hand miR-133a-2 is encoded by chromosome 2 and it 
transcribed as biscistronic transcript with miR-1-1. MiR-133b is located 
on chromosome 1 and is transcribed as a cluster with miR-206 [15]. 
The expression of miR-133a is regulated by myosin enhancer factor-2 
(Mef2) and Serum Response Factor (SRF) in the myocardium [21,22].

Multidisciplinary Role of Mir-133a in Pathological 
Cardiac Remodeling

The two common pathological remodeling in the heart is 
hypertrophy and fibrosis. It is documented that miR-133a mitigates 
both hypertrophy and fibrosis suggesting that it is cardioprotective [16-
18,20,23-25]. Recently, it is reported that miR-133a regulates several 
genes in the beta1-adrenergic receptor (β1-AR) signaling cascade. 
The cardiac specific overexpression of miR-133 attenuates β1-AR 
mediated induction of apoptosis and fibrosis in the heart, and mitigates 
cardiac dysfunction in mice with transaortic constriction [23]. This 
is corroborated by the finding that carvedilol (a β-blocker) protects 
cardiomyocytes against oxidative stress induced apoptosis by up 
regulating miR-133 [24]. In human mesenchymal stem cell, miR-133a 
is demonstrated to promote cardiogenic differentiation by targeting 
epidermal growth factor receptor [25]. The cardiogenic differentiation 
is crucial for regeneration of myocardium and replenishment of 
damaged cardiomyocytes. In pathological hearts, fibroblasts turnover 
is increased and accumulated fibroblast causes fibrosis. This fibroblast 
can be reprogrammed into cardiomyocytes by a cocktail of miR-1, -133, 
-208, and -499 in mice [26]. Since cardiomyocytes undergoes apoptosis 
and their number is less in failing hearts, the trans- differentiation of
fibroblasts that causes fibrosis into cardiomyocytes is like converting
devil into god and it can be harnessed for reverting pathological
remodeling. Further analyses using human foreskin fibroblasts revealed 
that miR-133a in concert with other transcription factors contributes to 
reprogramming of fibroblast into cardiomyocytes [27].

It is established that miRNAs inhibits gene by binding to the 3/ UTR 
of the gene. Interestingly, recent studies revealed that mature miRNA 
can reinter into nucleus and bind to promoter region to up- or down- 
regulates a gene [28-32]. The binding of miRNA to promoter region is 
facilitated by recruitment of Chromatin Modifying Proteins (CMPs). 
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Abstract
Although miR-133 mitigates cardiac hypertrophy and fibrosis, fine tunes β1-AR signaling, and protects against 

oxidative stress mediated apoptosis, it is unclear whether overexpression of miR-133a can ameliorate left ventricular 
function in failing hearts. Considering its multidisciplinary role in the heart, it is suggested that miR-133a is a master 
regulator of several networks that controls pathological cardiac remodeling. Therefore, it is a promising therapeutic 
target for heart failure.
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The binding of miRNA to promoter region can activate transcription 
(RNA activation) if CMP recruitment increases H3K4 methylation. 
On the other hand, miRNA binding at promoter can silence gene 
transcription (transcriptional gene silencing) if CMP recruitment 
increases H3K9/27 methylation [28]. We have reported that miR-133a 
controls DNA methylation by regulating DNA methyl transferases in 
diabetic cardiomyocytes [18]. These findings suggest miR-133a has 
multiple roles and could be a master regulator of several regulatory 
networks in the heart.

Potentials and Limitations of Mir-133a as Therapeutic 
Target for Heart Failure

Considering the role of miR-133a in regulation of cardiac 
hypertrophy, fibrosis, epigenetic modification, and β-AR signaling 
and our unpublished data on cardiac autophagy homeostasis, it is 
justified to suggest that miR-133a is a promising therapeutic target 
for cardiomyopathy [16-20,23,24]. However, more empirical data 
pertaining to improvement of left ventricular function and on toxicity 
in different heart failure models are required before it can be translated 
from bench to bedside.
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