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Abstract
The potential for stem cells to serve as cellular building blocks for reconstruction of complex defects has generated 

huge enthusiasm in the field of regenerative medicine. Skeletal and soft tissue defects due to trauma, tumor resection, 
and congenital anomalies present significant challenges for surgical reconstruction. The limitations of current treatment 
options have shifted attention to regenerative medicine, which has the potential to dramatically improve our ability to 
repair the human body. The possibility of regenerating lost or damaged tissues offers significant hope in the field of 
surgery. The present review article highlights recent progress in tissue-specific engineering with stem cells, and future 
directions for this rapidly evolving area of medicine.
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Introduction
Regeneration of damaged adult tissues requires the existence of 

cells capable of proliferation and differentiation that will contribute 
functionally to the reparative process of a tissue. In a wide variety of 
conditions, ranging from osteoarthritis to cerebrovascular accidents, 
the intrinsic ability of the body to repair itself is insufficient. The field 
of regenerative medicine and tissue engineering holds promise in 
treating these conditions, especially with the renewed impetus that has 
arisen from the discovery of stem cells. The addition of stem cells to our 
regenerative medicine armamentarium has opened up new avenues 
with the potential for developing stem cell-based therapies for the 
treatment of these conditions. 

Stem cells possess a distinct ability to self-renew and differentiate, 
making them a more attractive candidate cell for cell-based therapies 
when compared with other cell types like somatic cells. Stem cells 
encompass a large class of cell types, ranging from pluripotent 
embryonic stem cells (ESCs) and induced pluripotent stem cells 
(iPSCs) to fate-restricted, multipotent adult stem cells such as BM-
MSCs and ASCs. Ethical concerns have limited the use of embryonic 
stem cells in regenerative medicine, and current focus is on induced 
pluripotent stem cells (iPSCs) and adult stem cells. Different putative 
sources of adult stem cells have been identified, from sources such as 
bone marrow, adipose tissue and umbilical cord blood, each offering 
their distinct advantages and disadvantages. 

Adult stem cells are an exciting cell source for regenerative 
medicine, owing mostly to their relative ease of harvest and the 
ability to yield large quantities of cells. In addition, most of the tissues 
that require reconstruction in surgery, like bone and muscle, are 
mesenchymal in origin and are therefore a logical cell type for use in 
regenerative surgery. iPSCs are the most recent discovery which offers 
huge potential for clinical translation.

To harness the full potential of a particular cell type in regenerative 
medicine, a clear understanding of the contribution from the 
specialized microenvironment that governs stem cell behavior is key 
to manipulating these cells to generate robust, clinically relevant, 
engineered tissues. Understanding the complex interplay of the stem 

cells and their specialized microenvironment, known as the niche, will 
provide key strategies for the biomimetic stimulation of both implanted 
and native stem cells, and this avenue is being actively pursued in 
regenerative medicine. Study of niche microenvironments remains in 
their infancy and this area of study are emerging as a key field within 
stem cell biology.

Whilst a lot of study in stem cell biology has focused on finding 
the ideal cell source for tissue engineering, it is clear that in order to 
fully exploit the true potential of these cells in a clinical environment; 
we must optimize the delivery system for these cells. The cellular 
component is only one facet of the niche, and the cellular component 
which consists of the biomimetic substrate and inductive cues, is equally 
as important in dictating the regenerative process in vivo. In order to 
manipulate these signals, the field of tissue engineering has employed a 
combination of biological and material engineering approaches. Here 
we will discuss the current research surrounding the investigation of 
the core components of tissue regeneration – the cells, the biomimetic 
substrate and the inductive cues. Based on our experience we will draw 
on particular reference to surgical applications.

Skeletal Tissue
The treatment of bone degenerative diseases and congenital 

craniofacial disorders stands to benefit greatly from the development 
of reliable, efficient, and safe regenerative therapies. More than 400 
publications have investigated bone tissue engineering in rodents 
to date. However, few studies have translated this approach to 
larger animals such as sheep, goats, and dogs [1-3]. From a clinical 
perspective, bone tissue engineering holds great promise but has thus 
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far failed to deliver significant results to the bedside. Only a handful of 
studies with successful reconstructions have been published to date in 
humans [4,5].

The seed: cell source

Mesenchymal stem cells have demonstrated therapeutic value for 
the regeneration of musculoskeletal tissue due to their ability to self-
renew and differentiate along all mesenchymal lineages [6]. Indeed, 
the tri-lineage potential of MSCs to differentiate into adipocytic, 
chondrocytic, and osteocytic lineages in response to extracellular signals 
is remarkable. Perhaps most importantly for translational medicine, 
MSCs can be readily harvested from bone marrow aspirate, blood, 
and adipose tissue making them an ideal autologous cell source. MSCs 
represent a heterogeneous population of cells largely due to isolation 
techniques that rely upon cell culture adherence or density-gradient 
fractionation. A MSC surface marker profile including expression for 
CD73, CD106, CD146, and STRO-1 and absence of CD11b, CD31, 
CD34, CD45, and CD117 currently exists, but no single definitive 
marker has been identified to date [7]. This lack of a definitive marker 
has made in vivo lineage tracing and niche investigation challenging 
(Figure 1).

As the major source of osteoblasts and osteoprogenitors, MSCs 
exert significant control over the process of bone formation during 
physiologic and pathologic states. Adjusting the quantity, localization, 
and differentiation potential of MSCs thus provides a direct means 
to modulate therapeutic bone regeneration. The “trophic” action of 
MSCs as producers of a wide spectrum of growth factors with anti-
inflammatory, anti-apoptotic, proliferative, and pro-angiogenic 
properties has also been shown to enhance osteogenesis as well [8,9]. 
In the context of transplantation, MSCs are thought to act as signaling 
centers that orchestrate osteogenic differentiation along with resident 
host cells. Growth factors (Bone Morphogenetic Protein (BMP)-2, 
Fibroblast Growth Factor (FGF)-2), gene delivery (Runx2, WISP-1), 
and synthetic biomimetic scaffolds (polyglycolic acid, polylactic acid) 
have all been shown to amplify these osteogenic properties of MSCs 
[10-12]. Additionally, tissue culture conditions such as low oxygen 
tension and cell seeding density increase the osteogenic activity and 
longevity of cultured MSCs; however, much controversy remains 

regarding optimal expansion conditions [13-15]. Optimizing these 
conditions will likely depend on the therapeutic application in question 
(Figure 5).

The discovery of iPSCs by Yamanaka et al. opened another 
promising avenue of exploration for cell-based bone regeneration 
strategies [16]. Both iPSCs and ESCs are capable of differentiation into 
numerous cell types from each of the three germ layers. Adaptation of 
existing ESC differentiation protocols has allowed for the osteogenic 
differentiation of iPSCs [17,18] and more recently, generation of 
osteoblasts from iPSCs was achieved via Runx2 adenoviral transduction 
[19]. Li et al. [20] reported the derivation of MSC-like cells from mouse 
iPSCs. The MSC-like cells expressed putative MSC markers, deposited 
calcium in vitro, and differentiated into adipocytes or osteoblasts upon 
exposure to appropriate culture conditions. Furthermore, Lian et al. 
demonstrated the therapeutic potential of deriving MSCs from iPSCs 
in a mouse limb ischemia transplantation model [21].

Recent investigations have convincingly demonstrated the 
osteogenic potential of iPSCs in vivo. Many studies have either 
transplanted pre-differentiated iPSCs or iPSC-seeded scaffolds into 
ectopic sites (subcutaneous or sub-renal capsule) of immunodeficient 
mice and assessed bone formation. However, most studies have relied 
upon ex vivo iPSC differentiation prior to transplantation. Levi and 
colleagues demonstrated successful in vivo differentiation by seeding 
iPSCs overnight onto a Bone Morphogenetic Protein 2-releasing poly-
L-lactic acid scaffold to heal critical-sized mouse calvarial defects [22]. 
In addition, the utility of iPSCs for bone engineering has been shown 
across many orthotopic sites. Duan et al. highlighted the value of 
iPSCs for periodontal tissue engineering in a study showing that iPSCs 
combined with enamel matrix derivatives promoted the formation of 
new cementum, alveolar bone, and periodontal ligament [23].

The soil: skeletal stem cell niche 

Natural biomaterials such as collagen, gelatin, chitosan, hyaluronan, 
and chondroitin sulfate in combination with cell and growth factor-
based approaches have been used in the regeneration of bone, as 
well as cartilage, ligament, tendon, skin, and adipose tissue [24-28]. 
These materials offer high biocompatibility and the ability to replicate 
specific characteristics of native extracellular matrix thereby enhancing 
cell migration, proliferation, differentiation, and matrix deposition. 
However, disadvantages associated with natural biomaterial scaffolds 
include the potential for pathogen contamination during preparation 
from animal sources and laborious purification protocols.

More recently synthetic scaffolds composed of alpha-hydroxy ester 
polymers and ceramics have been used successfully for controlled in 
vivo and ex vivo bone regeneration [29,30]. Synthetic biomaterials 
offer high stability and low variation in physicochemical properties. 
Poly (alpha-hydroxy esters) such as polyglycolic acid and polylactic 
acid are biodegradable through ester bond hydrolysis into non-toxic 
glycolic and lactic acid respectively. Depending upon the application 
in question, polymer degradation rates can be modulated by altering 
co-polymer ratios, molecular weight, and crystallinity [31]. Techniques 
such as gas-foaming, sintering, and crystal leaching allow for the 
production of three-dimensional scaffolds with specific micro and 
macro-architectures, biomechanical properties, and pore sizes. More 
recently, electro spinning has come to the forefront as a highly efficient 
technique for the fabrication of polymer nano fibers. However, 
despite significant advantages, improving the biocompatibility and 
biomechanical properties of polymeric scaffolds are key obstacles. 
Ceramic scaffolds include calcium sulfates, calcium phosphates, and 
bioactive glasses. As a major component of bone, calcium phosphate 
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Figure 1: Mesenchymal stem cells—such as bone marrow-derived 
mesenchymal stem cells and adipose-derived stem cells—have the potential 
to differentiate into various lineages, making them invaluable tools in tissue 
engineering.
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based scaffolds such as hydroxyapatite and beta-tricalcium phosphate 
have been studied extensively [3,32]. These materials possess high 
compressive strength, variable degradation rates, and multi-scale 
porosity. Combinations of micro and macro-porosity produce both 
lamellar and woven bone formation while non-microporous scaffolds 
do not [33]. Recently, silica and zinc oxide doping has allowed for 
variations in the biomechanical properties of calcium phosphate 
based ceramic scaffolds [34]. Improving the reproducibility of ceramic 
scaffold manufacturing remains a challenge.

Surgical applications for bone tissue engineering

Autologous bone grafting remains the gold standard for 
reconstruction of osseous defects. However, autologous bone grafting 
is limited by donor site complications such as chronic pain, bleeding, 
and infection. Bone tissue engineering offers a means to decrease 
the amount of harvested bone required for reconstruction, and may 
thus help to minimize or eliminate donor site morbidity. Critical to 
the advancement of bone tissue engineering in the context of human 
disease is the incorporation of techniques for the induction of axial 
vascularization rather than relying—as many studies on model 
organisms have done—upon extrinsic neovascularization (Figure 2).

Optimizing cell and scaffold-based bone tissue engineering in the 
context of favorable vascular axes and vascularized flaps is essential for 
translation to the clinical setting. Some progress has been made on this 
front. Collagen type I scaffolds seeded with osteoprogenitors derived 
from cultured bone marrow stromal cells have been used to fabricate 
pedicled bone flaps via the carotid artery in mice [35]. Prefabricated 
vascularized bone grafts have also been employed in the clinical setting 
for mandibular reconstruction. Warnke and colleagues [36] used a 
custom-made titanium cage filled with bone marrow aspirate, OP-1, 
and xenogenic bone minerals to successfully repair a large mandibular 
defect. Despite these reports though, more studies on bone engineering 
with a focus on integrating clinically viable vascularization strategies 
are still needed before we see a significant impact at the bedside.

Adipose Tissue
Reconstruction of soft tissue defects resulting from injury, 

oncological resection, congenital anomalies, and aging can result in 
impaired aesthetic appearance, function, and the psychological well 
being of patients. Repair of these soft tissue defects often requires 
restoration of missing volume with a natural, synthetic, or hybrid 
material to enhance aesthetic contour. The ideal material for soft tissue 
reconstruction should look and feel natural, be stable after implantation 

or injection, and be fully integrated or replaced by host tissue over 
time. Numerous substances have been used for the reconstruction and/
or augmentation of soft tissues, but presently available filler materials 
present significant drawbacks to their use. Autologous soft-tissue grafts 
are therefore favored, as allografts, xenograft, and synthetic materials 
can be associated with immune rejection, allergic reaction, implant 
migration or resorption, and failure to integrate into host tissues [37, 
38]. 

When compared to other soft tissue fillers, autologous fat exhibits 
many qualities of the ideal filler. It is biocompatible, readily available, 
easy to harvest, and naturally integrated into the host tissues. However, 
only small defects can be corrected with injected autologous fat, and 
free fat transfer often yields varying degrees of resorption, requiring 
repeated treatments to maintain the desired volume. For larger 
volumes, autologous tissue transfer using vascularized free flaps may 
be employed, but there are high costs in terms of donor site morbidity 
and deformity. Alternatively, tissue engineering strategies have the 
potential to overcome many deficiencies associated with autologous 
fat grafting and injection of synthetic materials [39-43]. Importantly, 
development of an adipose tissue regenerative approach requires 
coordination between all key aspects of tissue engineering including 
selection of an optimal cell source, scaffold material, and cellular 
environment. 

The seed: cell source

There are two types of cellular building blocks typically employed 
for adipose tissue engineering. These include preadipocyte cell lines 
or primary cells. Preadipocytes possess high proliferative potential 
and the capacity to differentiate into adipose tissue. Although many 
adipogenic cell lines (3T3-F442a, Ob17) have been investigated, the 
classic cell type to study adipogenesis is the 3T3-L1 cell line, which 
was developed through clonal expansion of rodent-derived cells [44-
47]. While these cell lines circumvent many of the problems associated 
with primary cells, namely slower expansion and lower tolerance 
to cryopreservation, the differentiation capacity of primary cells, 
such as MSCs, may be more representative of true in vivo cellular 
behavior. Adult MSCs can self-replicate and also undergo adipogenic 
differentiation in response to appropriate signaling cues [6,48]. von 
Heimburg et al. [49] succeeded in engineering adipose tissue fusing 
collagen scaffolds combined with human ASCs. Importantly, freshly 
isolated stromal vascular fraction from adipose tissue contains a 
mixture of cells, which not only includes ASCs, but also endothelial 
cells, smooth muscle cells, pericytes, fibroblasts, and other circulating 
cells [50]. One explanation for variable success rates reported for in vivo 
adipogenic differentiation may be the different functional properties of 
these heterogeneous cell populations. Therefore, recent studies have 
sought to purify isolated subpopulations with the greatest potential for 
adipogenic differentiation using fluorescence-activated cell sorting. Li 
et al. [51] found that the “preadipocyte” population (CD31-/CD34+) 
showed the most adipogenic potential and demonstrated the highest 
expression of peroxisome proliferator-activated receptor-γ after 
exposure to adipogenic differentiation medium. As studies continue 
to refine approaches to isolate an optimal cell for adipose tissue 
engineering strategies, ultimate translation to the clinical setting 
becomes increasingly tangible.

The soil: adipose stem cell niche

Another strategy to induce in vivo formation of adipose tissue is 
based on precursor stem cells already existing in the body without 
the need for exogenous transplantation of cells. This strategy 
revolves around niche-directed regulation of stem cell differentiation 
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Figure 2: In bone tissue engineering, MSCs may be combined with growth 
factors such as BMP-2 and a pro-osteogenic scaffold microniche to promote 
enhanced healing of skeletal defects.
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into adipocytes. Kawaguchi et al. [52] demonstrated that de novo 
adipogenesis in the mouse subcutis could be achieved by simply 
injecting a mixture of FGF-2 and Matrigel. Other attempts using these 
principles have included co-injection of gelatin microspheres with 
FGF-2 or insulin and insulin-like growth factor-1 [53-55]. Several other 
factors, including dexamethasone, thyroid hormone, epidermal growth 
factor, transforming growth factor-β, and platelet-derived growth 
factor have been shown to positively influence the rate of adipogenic 
differentiation in vitro and may potentially aid in development of a 
viable engineered adipose tissue construct in vivo [56-58] (Figure 3).

To develop an effective tissue engineering strategy, it is important to 
understand the complex physiology of adipose tissue and the signaling 
cascades that regulate adipogenesis. Adipose tissue is organized into 
a 3D tissue composed or ASCs and mature adipocytes in addition to 
stromal-vascular cells (interstitial cells, endothelial cells, pericytes). A 
complex micro vascular system entwined within a highly organized 
extracellular matrix (ECM) composed of collagen types I, III, IV, V, 
and VI and other ECM proteins is also present [59]. Advances in tissue 
engineering have demonstrated the feasibility of using 3D scaffolds to 
direct adipogenic differentiation in vivo. Both synthetic and natural 
polymers have been utilized extensively for this purpose. Traditional 
cell-based adipose tissue engineering strategies have used scaffolds 
for seeding cells to increase cellular adhesion. The concept is that as 
the scaffold degrades, transplanted cells would grow, proliferate, and 
eventually mature into adipose tissue. Patrick et al. [60] demonstrated 
the differentiation of ASCs seeded on polylactic co-glycolic acid 
scaffolds into mature adipocytes using this method. 

Other cell-based adipose tissue engineering strategies have used 
hydrogels designed for restoration of tissue volume. These cell-
encapsulating hydrogels could be injected into soft tissue defects and 
would ideally restore the aesthetic contours by imparting a soft, smooth 
feel closely resembling that of natural tissue. Kim et al. demonstrated 
the feasibility of adipose tissue engineering using injectable, degradable 
alginate hydrogels with preconditioned human ASCs [61]. Newly 
generated tissues were semi-transparent and soft, grossly resembling 
adipose tissue. 

Surgical applications for adipose tissue engineering

To date, the principle of engineering adipose tissue has been 
well demonstrated. Although autologous fat grafts are currently the 
best method of soft tissue augmentation that can be performed with 
minimal scarring and without complications associated with foreign 
materials, this strategy has shown unpredictable resorption rates 

due to partial necrosis. To overcome these problems, Yoshimura et 
al. developed a novel strategy known as Cell-Assisted Lipotransfer 
(CAL), with concurrent transplantation of aspirated fat and ASCs 
[62]. Although preliminary results suggested that CAL is superior to 
conventional lipoinjection (ASC-poor aspirated fat), some degree of fat 
graft resorption and volume loss is nonetheless unavoidable [63]. Thus, 
there is still the unfulfilled need to generate de novo adipose tissue 
constructs that would be indispensable for the translation of adipose 
tissue engineering into clinical applications. 

Wound Healing
Wound healing is an intricate process that requires the interaction 

between numerous biological pathways and many different cell types. 
Repair of cutaneous wounds normally proceeds in three distinct yet 
overlapping phases: inflammation, cell proliferation, and remodeling 
[64]. Despite being an orchestrated process, results are highly 
unpredictable. Problematic and chronic wound management presents 
challenging clinical scenarios. Even under optimal conditions, and with 
current best medical and surgical practice, outcomes can be suboptimal 
with the healing process resulting in scarring and fibrosis. 

Diabetes and burns injuries have served as prototype models for 
problematic wound healing in basic science research. Attempts to 
promote healing in these challenging milieux have largely focused on 
increasing systemic or local tissue growth factor levels, with a particular 
emphasis being placed on promoting angiogenesis at the wound 
site. However, clinical translation of these approaches have been 
suboptimal, resulting in a change in the direction of research focus to 
identify alternative therapies such as bioengineered skin substitutes 
and stem cell-based therapies.

The seed: cell source

Stem cells are considered to play a key role in tissue regeneration 
during wound healing [65]. The mammalian epidermis is organized 
into Hair Follicles (HF) interspersed with Inter Follicular Epidermis 
(IFE), which consists of layers of keratinocytes. Epithelial stem cells, 
located in the HF bulge and the basal layer of the IFE, are thought 
to have a high capacity for self-renewal, as evidenced by their ability 
to produce daughter cells that undergo terminal differentiation into 
keratinocytes [66]. The regeneration of the skin and its appendages is 
thought to occur by the regulated activation of these dedicated stem 
cell populations. Stem cells resident in the HF bulge and the basal layer 
are potential targets for regulating wound healing.

MSCs are an attractive cell type for cell-based therapy to promote 
dermal regeneration. In addition to their potential to differentiate, they 
also exhibit substantial trophic support to regenerating tissues[67]. 
While these cells are not members of the epidermal niche, they can 
affect wound healing and tissue regeneration through many different 
avenues [68-70]. These cells are capable of migrating to the site of 
injury or inflammation, and they may stimulate the proliferation 
and differentiation of different resident progenitor cells, secrete 
growth factors, participate in remodeling, and modulate the immune 
and inflammatory response Preclinical studies have demonstrated 
the ability of MSCs to accelerate wound closure. Using a variety of 
methods (topical, local and systemic injection, and collagen scaffold) 
for delivery of stem cells to an excisional wound, numerous studies 
have demonstrated enhanced cutaneous wound repair with MSCs in 
both wild-type and diabetic mice [71-76]. Falanga et al. [77] showed the 
prevention of ulceration and acceleration of wound closure in mice by 
spraying autologous BM-MSCs with a mixture of fibrin and thrombin 
into wounds. The same method applied in a small human clinical trial 
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Figure 3: In adipose tissue engineering, ASCs can be delivered in an inject 
able hydrogel scaffold along with angiogenic growth factors to augment soft 
tissue transfer.
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proved to accelerate wound closure and resurfacing without adverse 
effects [77]. Additionally, there was a strong correlation between 
the number of cells and the reduction of ulcer area when applied to 
chronic wounds [77]. Another small clinical trial examined the topical 
application of culture expanded autologous BM-MSCs on chronic 
ulcers unresponsive to prior treatment and were able to achieve wound 
closure with increased cellularity and dermal rebuilding [78]. Although 
these studies show great promise, larger clinical trials as well as less 
invasive harvesting techniques are necessary before this can become a 
more practical therapy (Figure 4).

In juxtaposition, ASCs secrete nearly all the growth factors 
involved in wound healing and have been shown to remain viable at 
the wound site [79-81]. Utilizing an excisional wound healing mouse 
model, Kim et al. delivered a collagen gel solution with ASCs and 
found a significant reduction of wound size with acceleration of re-
epithelialization [81]. In another study, human a cellular dermal matrix 
seeded with ASCs also resulted in acceleration of wound closure [82]. 
In addition, differentiation of ASCs into epidermal and endothelial 
cells as well as dermal fibroblasts was observed [82]. Finally, recent 
reports have shown the application of ASCs overexpressing vascular 
endothelial growth factor to accelerate wound healing over unmodified 
ASCs [83]. These results thus attest to the promise of ASCs in cell-
based wound regeneration.

The soil: dermal stem cell niche

In wound repair, the goal is to transiently increase expression 
of specific growth factors to improve angiogenesis, increase cell 
proliferation and improve cell migration until complete wound closure 
is achieved. The interactions between the mesenchymal environments 
in which epithelial stem cells reside are currently being investigated, 
with the aim of defining specific molecular regulators that govern 
stem cell behavior and ultimately determines their fate. Current 
therapies are only partially effective because they do not inhibit the 
cell and extracellular matrix proliferation that leads to hypertrophic 
scar formation. Using matrices seeded with stem cells from the 
bone marrow, adipose tissue, or hair follicles, development of a fully 
functional skin substitute that could assure its revascularization, 
reinnervation, and replacement of skin appendages are potential 
translational opportunities for the development of novel wound-
healing therapies, some of which are already used in clinical practice.

Surgical applications for dermal wound tissue engineering

The promotion of wound healing using dermal substitutes has 
become increasingly widespread, but the outcomes of substitute-
assisted healing remain poor. Despite the wide variety of skin 
substitutes currently on the market, they are fraught with problems 
including poor integration with host tissue, relatively high infection 
rates, scar formation and wound contraction.

The most successful skin substitutes currently available a cellular 
polymer matrices which are designed to mimic the dermal extracellular 
matrix and promote a bottom-up approach to wound regeneration. 
These matrices rely upon a three-dimensional scaffold which is 
analogous to the extracellular matrix, to can guide cell adhesion, growth 
and differentiation to form skin function and structural tissue [84].

The application of scaffolds containing viable cells has proven to be 
problematic due to short shelf-life, high cost and death of transplanted 
cells as a result of immune rejection and apoptosis [85]. Efforts to 
increase the effectiveness of skin substitutes employ recent advances 
in biomaterial science, like bioactivation, which expands their role 
from being a simple structure to a delivery vehicle for growth factors, 
cytokines and genes, thus actively encouraging tissue regeneration [86].

Conclusion
Stem cells and their ability to restore multiple tissue types offer a 

potentially powerful therapeutic approach for regenerative medicine. 
While much progress has been made in developing preliminary strategies 
for clinical applications of stem cells, a deeper understanding of the 
fundamental mechanisms governing stem cell survival, proliferation, 
and tissue-directed differentiation, both in isolation and in the complex 
environments of a heterogeneous array of donor sites, will be required 
in order to optimally manipulate cells and their microenvironments 
for widespread patient use. Continued work in our own laboratory and 
others focus on understanding specific biochemical pathways crucial to 
the survival and differentiation trajectories of various stem cell classes. 
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Figure 4: BM-MSCs play a key role in dermal wound healing by either directly 
replenishing the injured tissue via differentiation, or by recruiting other cells 
to aid in repair.
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Figure 5: Freshly harvested stem cells may one day be enriched and 
combined with growth factors and biomimetic scaffolds for clinical tissue 
engineering applications.
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Simultaneously, investigations are being performed on manipulating 
external signaling cues in the form of small molecules, nanoparticles, 
proteins, or nucleic acids embedded within a variety of biologically-
derived and biomimetic synthetic scaffold environments.

Additional challenges still remain for use of stem cells in 
therapeutic strategies. These include the need for amplifying cell 
numbers and optimizing delivery into human patients while avoiding 
immunogenicity, massive cell death, or tumor formation. And with 
patient-specific therapies, hurdles must still be overcome with efficient 
reprogramming and gene modification on a clinically useful time scale. 
As stem cell therapies progress through clinical trials and into more 
widespread use, care must be taken to ensure their efficacy and safety 
in human patients, a process which will likely involve the manipulation 
of cell-intrinsic factors as well as the niche microenvironment and 
the ultimate graft site. Nonetheless, with increasing experience and 
expertise in various stem cells, expanded use of these powerful building 
blocks for tissue engineering applications in many regenerative 
medicine specialties will undoubtedly follow.
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