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Introduction
Diabetes is a chronic metabolic disorder affecting ~ 5% of the 

population in the industrialized nations as it is becoming a huge 
concern worldwide. In Canada about ~1.3 million (~4.9 ‑ 5.8% of the 
total Canadian population) aged greater than or equal to 12 years have 
diabetes [1]. In another part of the world, it is estimated that Diabetes 
Mellitus is a major emerging clinical and public problem in a country 
such as Egypt among others [2]. 

Lack of or severe reduction in insulin secretion due to autoimmune 
destruction of β‑cell is responsible for type I diabetes mellitus. However, 
the more prevalent form is type 2 diabetes; it represents more than 
90% of the cases [3]. The pathogenesis of type 2 diabetes is complex, 
involving progressive development of insulin resistance and a relative 
deficiency in insulin secretion that is the leading cause for the onset 
of hyperglycemia. This review outlines and focuses on the specific role 
of FFA that may contribute to the development of muscle and hepatic 
insulin resistance. Further knowledge and exploration of the molecular 
mechanisms involved are of substantial interest for future therapeutic 
interventions as well as in determining the high risk individuals 
through the discovery of novel diagnostic biomarkers.

Type 2 diabetes mellitus is characterized by increased hepatic 
glucose production (HGP), the inability of insulin to increase the 
uptake of glucose (peripheral insulin resistance) and suppress HGP 
(hepatic insulin resistance), and impairment of insulin secretion [4‑7].

Obesity is associated with insulin resistance as one of the key 
features of type 2 diabetes, mainly due to the release of free fatty acids 
(FFA) [8‑12] and secondary the release of inflammatory cytokines [13] 
from the expanded adipose tissue mass (8‑13). Studies conducted from 
our own and others (i.e., Drs. Defronzo and Reaven) laboratories have 
clearly shown that individuals with obesity [14‑19], type 2 diabetes (20) 
and obesity‑associated type 2 diabetes [15,17,20] have elevated plasma 
FFA levels. 

Not only are the plasma FFA levels elevated in obesity; there is also 
an increased FFA flux. The increased FFA flux is mainly due to increased 

lipolysis from the expanded adipose tissue stores, to resist the insulin’s 
antilipolytic action and increase sensitivity to lipolytic hormones [21]. 
Numerous studies have shown that FFAs are an important causative 
link between obesity, insulin resistance and type 2 diabetes mellitus [4, 
8,10,11‑13]. Elevation of plasma FFA has been shown to impair insulin 
action, and to be a risk factor for the development of type 2‑ diabetes 
[22]. 

Insulin resistance

Insulin resistance is well defined as the decreased ability of insulin 
to regulate glucose metabolism. It is an important target of medical 
research as it represents a common disorder/disease in a range of 
metabolic diseases that are termed as Metabolic Syndrome. It includes 
type 2 diabetes, glucose intolerance, dyslipidaemia, hypertension and 
cardiovascular diseases. Insulin action starts when insulin binds to its 
receptor at the cell surface to initiate its effect through signaling molecules. 
Upon insulin binding to its receptor, insulin receptor tyrosine kinase 
activity is activated, which results in receptor autophosphorylation. The 
activated insulin receptor tyrosine kinase also phosphorylates insulin 
receptor substrates, which include insulin receptor substrate (IRS) 1‑ 4 
and Shc (one of the MAPK pathway components). Phosphorylated IRS 
1‑4 mainly activate the phosphatidylinositol 3‑kinase (PI3K) pathway,
and Shc mainly activates the Grb2/Sos ( a downstream proteins in the
MAPK pathway). The skeletal muscle is responsible for about 80% of
whole body insulin stimulated glucose uptake [23]. The specific cause
of reduced insulin action in skeletal muscle cells is unclear. It is aberrant
that the disregulated lipid metabolism and the increased free fatty acids
have a strong implication.
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Abstract
Insulin Resistance occurs as a result of disturbances in lipid metabolism and increased levels of circulating fatty 

acids that accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues. Increased fatty acid 
flux has been suggested to be strongly associated with insulin resistant states such as obesity and type 2-diabetes. 
Fatty acids appear to cause this defect in glucose transport by inhibiting insulin –stimulated tyrosine phosphorylation of 
insulin receptor substrate-1 (IRS-1) and reducing IRS-1 associated phosphatidyl-inositol 3-kinase activity that implicate 
other insulin signaling components downstream of the insulin signaling cascade. A number of different metabolic 
abnormalities may increase intramyocellular or intrahepatic fatty acid metabolites that induce the disease state of 
insulin resistance through a number of different cellular mechanisms. The current review point out the link between 
enhanced FFA flux and activation of PKC and how it impacts on both the insulin signaling in muscle and liver.
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The link between increased lipid availability and insulin 
resistance: Randle et al. (1963) was the first to suggest a primary role 
for elevated FFA availability and the development of insulin resistance. 
Randel speculated that high plasma concentration of FFA is one of 
the common characteristics in patients with either diabetes or other 
carbohydrate disorders [24,25]. Randle’s hypothesis was supported by 
different studies, it manifested that insulin resistance can be induced 
within hours through lipid infusion or weeks through a high fat feeding 
regimen. In addition, studies of a number of genetic experimental 
models of insulin resistance also implicate the role of increased lipid 
availability in the pathogenesis of the disease.

The glucose fatty acid cycle: The scientific basis of Randle’s 
hypothesis is based on the increased FFA oxidation. As a result, the 
mitochondrial acetyl‑CoA/CoA ratio increases that causes a reduction 
in the supply of acetyl –CoA from pyruvate. This leads to the increase 
of citrate concentration that would cause an accumulation of glucose 
6‑phosphate that result in inhibition of hexokinase and the uptake of 
glucose by the cell [24,25]. 

Although lipid infusion results in an inhibition of glucose oxidation, 
the insulin stimulated glucose uptake appears with no effect for hours. 
Apparently, the impairment effect is implicated on the glycogen synthesis 
instead. In addition, the reduction in glycogen synthesis occurs with a 
decreased level of glucose 6‑phosphate rather than the accumulation 
and increase in its level. The current consensus has been attributed to 
the reduction of glucose transport and phosphorylation in association 
with a reduction in the activity of the insulin signaling cascade [26,27]. 
These are the main reasons that shed a light for the involvement of other 
mechanisms in the development of insulin resistance. 

Early studies have pointed out that high fat feeding result in an 
accumulation of intracellular triglyceride as a major factor involved 
in insulin resistance. This is now looked as one of most consistent 
markers of whole body insulin resistance. Other major contributors for 
causing the onset of insulin resistance are the lipid intermediates such 
as long –chain fatty acyl CoAs (LCACoAs), diacylglycerol (DAG) and 
ceramides.

LCACoAs: are to represent the activated form of intracellular FFA 
[28]. LCACoAs are seen as signaling molecules that affect a variety 
of cellular processes for example, it inhibit the hexokinase activity 
in muscle in vitro. LCACoAs were seen to interfere with the muscle 
glucose utilization through the activation of Protein Kinase C (PKC) 
[29]. In addition, LCACoAs can modulate gene transcription such as 
the hepatic nuclear factor 4α [30].

DAG: is an intermediate of both triglyceride and phospholipids 
metabolism that accumulate in the muscle insulin resistant rat 
model following high fat feeding [31]. DAG can be generated by de 
novo synthesis following the estrification of LCACoAs to glycerol‑
3‑phosphate or through the break down of phospholipids such as 
phosphatidylinositol‑4,5‑bisphosphate and phospatidylcholine by 
phospholipases C and D. DAG act as important second messenger 
involved in intracellular signaling in addition to its effect on insulin 
action by activating PKC [32].

Ceramides: is a derivative of sphingomyelin, the phosphorlipid 
component for cell membranes that is synthesized through the action 
of sphingomyelinase from the palmitoyl CoA. Ceramides act as a 
second messenger that can alter the activity of kinases, phosphatases 
and transcription factors that regulate a number of processes such as 
proliferation, differentiation and apoptosis.

Our own data and others have demonstrated that palmitate induce 
insulin resistance in muscle model through the reduction of IRS‑1 and 
PKB phosphorylation and activity as a result of activation of protein 
phosphatase 2A (PP2A) [33]. Other reports have shown that ceramides 
can mediate the inhibition of insulin signaling through the tumor 
necrosis factor α (TNFα), an activator of sphingomylinase [34].

Data from our laboratory have clearly demonstrated the effect of 
FFA induced insulin resistance in two insulin sensitive tissues muscle 
and liver. The key findings are summarized as follow: 

1‑ Free fatty acids (FFAs) – induced PKC and NFκB activation, two 
key events in two different models for insulin resistance, the skeletal 
muscle and liver [35,37].

2‑ In the C2C12 muscle insulin resistant model, different Free fatty 
acids (FFAs) – induced serine 307 phosphorylation for IRS‑1 
as a mechanism for skeletal muscle insulin resistance [35]. The 
inhibitory effects of PKC on insulin signaling may at least in part 
be explained by the serine/threonine phosphorylation of IRS‑
1. Both oleate and palmitate treatment were able to increase the 
serine 307 phosphorylation of IRS‑1 (Figure 1). IRS‑1 serine 307 
phosphorylation is inducible which causes the inhibition of IRS‑
1 tyrosine phosphorylation by either IκB‑kinase (IKK) or c‑jun 
N‑terminal kinase (JNK) [35,36].

3‑ In the fructose fed hamster model of hepatic insulin resistance, free 
fatty acids ‑ induced PKC and NFκB activation as a mechanism for 
both insulin resistance and dyslipidemia [37] (Figure 2).

Our in vitro and in vivo key findings generally support the relevance 
and the importance to the human insulin resistance scenario. Strong 
body of evidences and our own data have pointed out the involvement 
of the IKK‑beta/IKappa B/NFKappa B pathway in insulin resistance in 
the two models of muscle and liver [35,37]. 

Furthermore, we are among the first laboratory that manifested 
a direct evidence for FFA induced insulin resistance through the 
seine phosphorylation of IRS‑1 in C2C12 skeletal muscle cells that 
compromised the IRS‑1 phosphorylation as seen in our data. The 
finding requires further attention as it represents a therapeutic target 
for the disease intervention. 
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Figure 1: Hypothetical scheme to explain changes in the insulin signaling 
upon treating the C2C12 skeletal muscle cells with different species of FFAs, 
oleate and palmitate [35].
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On the other hand, we also have reported that increased fatty acid 
flux to the liver that resulted PKC activation in the fructose‑fed model 
are important events contributed to hepatic apoB100 overproduction 
commonly observed in insulin resistant states [37]. These current data 
point to FFA‑induced PKC activation and its impact on dyslipidemia as 
a potential therapeutic target in the treatment of diabetes and insulin 
resistance.

Summary
Normal cellular fatty acid homeostasis reflects a balance between 

processes that generate or deliver fatty acids and processes that utilize 
these molecules. In mammalian cells, free fatty acids are generated 
through the de-novo synthetic pathway and liberated when triglycerides 
and phospholipids are hydrolyzed by cellular lipases [38]. High plasma 
FFA and triglyceride levels lead to increased import of FFA into non‑
adipose tissues, contributing to intracellular lipid accumulation. 
Non‑adipose tissues such as liver and skeletal muscle [39] have a 
limited capacity for lipid storage leading to cellular dysfunction, the 
phenomenon that is termed lipotoxicity. Studies have documented that 
primary hyperlipidemia, serum triglycerides [40,41] and FFA [42,43] 
are elevated in  type 1 and type 2 diabetes and plasma FFA are elevated 
in obese individuals [44]. Insulin resistance is believed to be the primary 
cause of type 2 diabetes. Recent studies show that elevated plasma levels 
of free fatty acids (FFA) might increase insulin resistance in muscle and 
liver. Lowering of FFA levels is therefore postulated to be a potential 
therapeutic target for type 2 diabetes.

The aim of current review article and the studies conducted in 
our laboratory was to further elucidate the hypothesis that “Increased 
lipid availability induces perturbations in key molecules of the insulin‑
signaling pathway leading to a reduced insulin action in insulin sensitive 
tissues such as muscle and liver. Free fatty acid induced insulin resistance 
may be an important underlying factor in the development of insulin 
resistant states such as type 2 diabetes”. We focused on elucidating the 
molecular mechanisms by which FFA induce insulin resistance in two 
insulin sensitive tissues muscle and liver. Specifically, we investigated 

in details the mechanisms and the effects of two FFAs, the oleate, the 
monounsaturated FFA (18:1) and palmitate, the saturated FFA (16:00) 
as they are the most predominant two fatty acids in the circulation (45). 
We studied their effect on glucose metabolism and insulin action in two 
insulin sensitive tissues the muscle and the liver. We investigated how 
FFAs can induce the insulin resistance at the molecular level in vitro 
and in vivo in two different experimental designs for insulin resistance. 

Several mechanisms that affect insulin signal transduction have 
been identified. In our laboratory we found that oleate does not 
affect the total protein level of PKB/Akt total but partially reduces 
the phosphorylation of PKB in oleate and dramatically reduced in 
palmitate treated cells. On the other hand, our data suggest that the 
monounsaturated fatty acid; oleate muscle insulin resistance is mainly 
via PKC. In the contrary, the saturated fatty acid, palmitate induces 
insulin resistance mechanistically through the PKB inhibition that 
is well documented. In addition, the two FFAs are also to activate 
the NFκB and the stress kinases that contributed to the induction of 
serine 307 phosphorylation of IRS‑1 and the development of insulin 
resistance in the C2C12 muscle model. Recently, Wang et al. have 
reported that palmitate specifically induced insulin resistance by PKC 
theta‑dependent activation of mTOR/S6K pathway in C2C12 myotubes 
[46] However, more studies are still required to further elucidate the 
exact consequences of PKC activation following other species of FFA 
(s) treatment [47]. 

Furthermore, our second set of data is to represent the experimental 
work that was conducted in the fructose fed hamster as a liver model 
for diet induced insulin resistance. The data points FFA – induced PKC 
activation and its impact on dyslipidemia seen in the liver model. This 
model of liver insulin resistance has revealed the importance of PKC 
activation for both insulin resistance and de novo lipogenesis. 

Ragheb el al. have demonstrated that the antioxidant, Taurine was 
capable of reversing the oleate‑induced insulin resistance in myocytes 
as manifested from the glucose uptake data [35]. Han et al. have also 
reported that Taurine prevented free fatty acids‑induced hepatic insulin 
resistance in association with inhibiting JNK1 activation and improving 
insulin signalling in vivo [48]. As a result, Taurine is considered as a 
potential therapeutic target in protecting from insulin resistance caused 
by elevated FFAs through different mechanisms of oxidative stress and 
inflammatory pathways. Gao et al. have reported that oxidative stress 
acts as a link between FFA and hepatic insulin resistance. NADPH 
oxidase 3 (NOX3) ‑ derived reactive oxygen species (ROS) may mediate 
the effect of TNF‑alpha on hepatocytes in db/db mice and Hep G2 cells 
treated with palmitate. It was found that palmiate induced hepatic 
insulin resistance through JNK and p38MAPK pathways that are 
rescued by siRNA‑mediated NOX3 reduction [49]. And, Klip et al. have 
demonstrated that proinflammatory activation within adipose tissue 
of obese and high fat fed animals and humans causes muscle insulin 
resistance and is ascribed to circulating inflammatory cytokines. 
Recent evidence also shows proinflammatory macrophages infiltrating 
muscle tissue and or intermuscular adipose tissue and there is growing 
evidence that FFA trigger macrophages to secrete factors that directly 
impair insulin actions [50].

Conclusion
This short review has outlined aspects of FFA ‑ induced insulin 

resistance in insulin sensitive tissues. It is clear that the development of 
insulin resistance and metabolic disease is marked by the disturbances 
of lipids in the body. Furthermore, the data have demonstrated the 
importance of PKC activation and inflammation in FFA induced 
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Figure 2: Hypothetical scheme explaining the changes in insulin signaling 
and de novo lipogenesis following two weeks of fructose feeding as a model 
for hepatic insulin resistance [36-37].
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insulin resistance. In 1997, the WHO has recognized the importance of 
insulin resistance and its link to type 2 diabetes, this growing problem 
that has a great deal for the public health globally. Further insight to 
the field will be invaluable and of great impact on the treatment and 
the early intervention and prevention of the disease onset. In addition, 
controlling FFAs levels in plasma would benefit patients with type 
2‑ diabetes and obesity. Further, this approach of therapy and early 
prevention has a potential role in controlling the ongoing epidemic of 
type 2‑ diabetes worldwide.
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