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Abstract

The identification of molecular factors bridging gut microbiota dysbiosis to alterations of host metabolism still
remains a major goal in biomedical research. In fact, on one hand, there is a worldwide consensus about the
systemic impact, from brain to liver, from heart to adipose tissue, of gut microbiota dysbiosis. On the other hand,
beyond the microbial production of short chain fatty acids and their vast metabolic properties, little is known about
the molecular mechanisms linking a change in the activity of gut microbes to a modification of host cell metabolism.
In this context, microRNAs (also known as miRs) are promising molecules which could allow explaining how
dysbiosis is converted into metabolic outcomes since: 1- miRs are pleiotropic regulators of gene expression,
targeting multiple mRNAs at once; 2- miRs expression in specific organs such as the intestine has been
demonstrated to be under the control of gut microbiota; 3- alterations in miRs expression have been found in the
majority of tissues targeted by gut microbiota dysbiosis during metabolic diseases such as liver, adipose tissue,
pancreas, skeletal muscle, intestine, heart and also the brain. In this review publications in the growing field of miRs-
based metabolic control at a systemic level will be discussed together with a putative link with gut microbiota
dysbiosis.
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Introduction
The discovery of the active role of gut microbiota, the trillions of

microorganisms inhabiting the gastrointestinal tract of both humans
and animals, on whole host metabolism is radically pushing for a new
era in medical development, centred on personalized medicine [1].

Recently, the exponential growth of “newly rediscovered” [2]
microbial-based therapies such as fecal microbiota transplantation
(FMT) for both Clostridium difficile recurrent infections [3,4] and
metabolic syndrome [5] has demonstrated that gut microbiota
represents an effective target for the managing of multiple diseases.

The most striking evidence is related to the fact that gut microbes
exert a vast range of metabolic functions, beyond digestion. As a
consequence, the alteration, named dysbiosis, of this multifaceted
microbial system within our intestine affects host pathophysiology at a
multi-organ level [6]. Thus, the growing interest in gut microbiota
dysbiosis is based on the experimental evidence that both ecological
[7] and functional [8] alterations of gut microbes have a systemic
impact on whole host metabolism (Figure 1). Indeed, the metabolic
influence of dysbiosis is not limited to a specific period of life, but
rather it affects lifespan from childhood to adulthood [9].

Therefore, scientific community is now paying extreme attention to
identify the molecular mechanisms by which dysbiosis of gut
microbiota alters metabolic pathways of the host. In this context, a
huge literature about short chain fatty acids (SCFAs) has flourished in
the recent years. In fact, SCFAs, produced by fermentation of complex

carbohydrates from plants, have been shown effective in the regulation
of crucial functions of the host such as inflammatory response [10],
incretins-based control of glucose-tolerance [11] as well as adiposity
and energy balance [12], to cite a few. However, when descending at
the molecular level of bacteria-to-cell interaction, our knowledge of the
complex bidirectional relationship between gut microbiota and the
host still has to face its limitations.

Importantly, microRNAs (also miRs) could help deciphering the
dialogue between microbes and host cells. Since their discovery in
1993 [13], miRs have held the attention of researchers given their
pleiotropic abundance, ranging from plants to animals, and their
capacity to regulate gene expression [14]. These tiny molecules of
about 22 nucleotides in length belong to the subfamily of small non-
coding RNAs such as tRNAs, rRNAs and many others [15], which has
to be distinguished from the subfamily of long non-coding RNAs
(lncRNAs), longer than 200 nucleotides and without a protein-coding
sequence [16]. MicroRNAs are very stable, proposing them as excellent
biomarkers for cancer [17] and other diseases such as type 2 diabetes
[18]. Of note, a vast range of metabolic pathologies is characterised by
alterations in miRs expression in both central and peripheral organs
(Figure 1). In this review these alterations will be discussed in both
humans and animals and analysed in parallel with gut microbiota
dysbiosis associated to pathophysiological modifications in these
organs (Table 1).

Putative microbial miRs regulation in dysmetabolism - Focus
on: Hepatic and white adipose tissue miRs
The liver and the white adipose tissue (WAT) are crucial organs for

the regulation of glucose homeostasis at a systemic level.
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Figure 1: Systemic metabolic overlap at the organ level between gut microbiota dysbiosis and altered miRs expression. The impact of gut
microbiota dysbiosis (i.e. induced by a high-fat diet) on whole host metabolism is as inner as capable to affect host pathophysiology at a multi-
organ level. Of note, alterations in miRs expression have been found in several tissues targeted by gut microbiota dysbiosis during metabolic
diseases such as liver, white adipose tissue, pancreas, skeletal muscle, heart, intestine and brain. These evidences sustain the hypothesis that
miRs may be among the molecular factors converting dysbiosis into dysmetabolism at the level of tissue cell. Major miRs discussed in the
main text are reported (in bold are miRs found modulated in humans; the others are related to animals; arrows indicate the modulation of
miR expression associated to either a given disease and/or observed or putative gut microbiota dysbiosis and the activation of microbial
receptors; red-edged rectangles describe observed or putative gut microbiota dysbiosis associated to the related modulation of miR
expression).

Nowadays, it has been achieved that both organs are targeted by gut
microbiota dysbiosis, which can be related to the expansion of the
phylum Firmicutes [7] or the family Porphyromonadaceae [19].

As for the liver, the gut-to-liver axis plays a fundamental role with
regard to the capacity of liver to filter xenobiotics and sense microbial
products [20]. Recently, an important role of hepatic modulators has
been revealed for bile acids [21], also shown able to impact on miRs
expression in human hepatocytes [22] and to play as putative
therapeutics in non-alcoholic fatty liver disease (NAFLD) [23], a
common feature of metabolic diseases. NAFLD is associated with
increased abundance of Erysipelotrichi and lower levels of
Gammaproteobacteria in human stool [24]. In this context, Leti et al.
found 30 up-regulated and 45 down-regulated miRs by using high-
throughput sequencing to assess miRs obtained from liver biopsies of

15 individuals without NAFLD fibrosis (F0) and 15 individuals with
severe NAFLD fibrosis or cirrhosis (F3-F4) [25].

As for the human WAT, numerous miRs exist but only a few number
is altered in obesity and type 2 diabetes mellitus such as miR-193b,
whose expression correlates positively with adiponectin gene
expression and negatively with homeostasis model assessment of
insulin-resistance [26].

In mice, the up-regulation of miR-103 and miR-107 was observed in
obese mice and gain of function of both miRs in the liver and WAT
impairs glucose metabolism [27]. By contrast, silencing of miR-103
and miR-107 improves insulin-sensitivity [27]. The expression of two
other miRs, miR-143 and miR-145, is increased in the liver of both
genetic and nutritional murine models of obesity [28].
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Organ miR modulation Text reference Associated dysbiosis/microbial receptor
activation

Liver

↑miR-103, ↑miR-107 27 ↑ Firmicutes

↑ Porphyromonadaceae

↑ Erysipelotrichi

↓Gammaproteobacteria

↑miR-143, ↑miR-145 28

↑miR-21 30, 31, 32

White adipose tissue

↓miR-193b 26

↑ Firmicutes↑miR-103, ↑miR-107 27

↑miR-21 30, 31, 32

Pancreas

↓Chr 14q32 miRs cluster 40

NOD1, TLR-4, TLR-7↓miR-375 41,42

↑miR-34a, ↑miR-124a, ↑miR-383, ↓miR-130b, ↓miR-181a 43

Heart

↑miR-24, miR-125b, ↑miR-195, ↑miR-199a, ↑miR-214 54
↑ Prevotella

↑ Proteobacteria,

↓ Bifidobacteria

↑miR-100 55

↑miR-208a 62

Skeletal muscle
↓ miR-194 64

↑ Bacteroidetes
↓miR-16 65

Brain

↓miR-198 70

↑ Actinobacteria↑miR-200a, ↑miR-200b,

↑miR-429
75

Gut

↓miR-193a-3p 82 ↑ Bacteroidaceae

↑ Helicobacteraceae

↓ Prevotellaceae

↓ Porphyromonadaceae

↓ Lachnospiraceae

↓ Ruminococcaceae

↑miR-33a, ↑miR-122 83

↓miR-423-5p 85

↑miR-203, ↑miR-483-3p, ↑miR-595 86

Table 1: Organ-specific miR expression modulation and associated gut microbiota dysbiosis.

These two miRs act like a cluster, therefore, mice deficient for both
miR-143 and miR-145 are protected from obesity-related
comorbidities such as insulin-resistance. However, only the
overexpression of miR-143, but not that of miR-145, is able to impair
AKT-mediated insulin-signalling and thus glucose homeostasis.

Another important factor regulating adiposity and hepatic
metabolism is miR-21, known as a disease-linked miR [29]. The team
of Prof. Dimmeler recently showed that the long-term (18 weeks)
inhibition of miR-21 is effective to reduce body weight and adipocyte
size in aged db/db mice [30], whereas in the liver miR-21 regulates
both regeneration [31] and progression of fibrosis [32]. With regard to
the impact of miRs expression on hepatic metabolism also
contradictory results can be found. In fact, it has been shown that the
hepatocyte-specific deletion of the miR-processing enzyme Dicer1 has
either no impact on the hepatic function [33] or promotes
hepatocarcinogenesis in mice [34]. Indeed, both liver [19,35,36] and
adipose tissue [37-39] have been shown to be specifically and deeply
targeted by dysbiosis of gut microbiota, as reported above.

These evidences strongly suggest the association between a change
in miRs expression and the impact of gut microbiota dysbiosis for the
control of both hepatic and WAT metabolism.

Pancreatic miRs
Interestingly, alterations of miRs expression can also be found at the

level of the pancreas, a crucial organ exerting the maintenance of
glucose homeostasis by secreting insulin and glucagon.

In humans, Kameswaran et al. described a cluster of miRs in an
imprinted locus on human chromosome 14q32. This locus is highly
and specifically expressed in human beta-cells and is intensely
downregulated in islets from diabetic donors [40].

In mice, the high expression of miR-375 was shown important for
the normal pancreatic alpha- and beta-cells mass [41] as well as for the
regulation of insulin secretion [42]. Moreover, an ageing-associated
upregulation of miR-34a, miR-124a and miR-383, and
downregulations of miR-130b and miR-181a were found in the
pancreas of 12-month-old rats [43]. Importantly, besides the well-

Citation: Serino M (2016) MicroRNAs: Decoders of Dysbiosis into Metabolic Diseases?. J Diabetes Metab 7: 698. doi:
10.4172/2155-6156.1000698

Page 3 of 8

J Diabetes Metab, an open access journal
ISSN:2155-6156

Volume 7 • Issue 9 • 10000698



established age-induced modification of gut microbiota [44], clear
evidences between the link of pancreas health and sensing of microbial
antigens have been provided by several publications. In fact, in this
context, the NOD1-mediated experimental pancreatitis [45], the
impact of TLR-4 on the severity of acute pancreatitis and pancreatitis-
associated lung injury in mice [46] as well as the impact of TLR-7 on
pancreatic carcinogenesis both in humans and mice [47] have been
demonstrated. Thus, it appears clear that a dysbiosis-induced altered
production of multiple microbial antigens such as peptides derived
from bacterial cell wall and containing for instance D-glutamyl-meso-
diaminopimelic acid (iE-DAP) moiety (recognized by NOD1),
lipopolysaccharides (LPS, recognized by TLR-4) and single-stranded
microbial RNA (recognized by TLR-7) may drive pancreatitis.

Again, these evidences converge towards the association between
altered miRs expression and gut microbiota dysbiosis to modulate
pancreatic functions.

Cardiac miRs
Recently, the microbial activity has been shown effective in

promoting cardiovascular diseases via a mechanism based on the
metabolism of phosphatidylcholine [48]. Nevertheless, contrasting
results can be found in the literature with regard to the metabolic
impact of microbial-generated metabolites from phosphatidylcholine,
such as trimethylamine (TMA) and TMA-N-oxide (TMAO) [49]. In
detail, regarding the human enterotype classification [50], the
enterotype Prevotella is associated with higher blood levels of TMAO
than the enterotype Bacteroides in humans [51]. With regard to the
cardiac metabolism in a context of gut microbiota dysbiosis, we
showed that the severity of cardiac metabolism in a murine model of
metabolic adaptation to a high-fat diet [52] is associated to a specific
periodontal microbiota characterized by a 37% abundance of
Proteobacteria [53]. Thus, these data suggest a link between
periodontal microbial activity and heart pathophysiology.

With regard to cardiac miRs, in humans, an altered expression has
been found for mir-24, miR-125b, miR- 195, miR-199a and miR-214 in
the human left ventricle when comparing samples from control and
ischemic cardiomyopathy, dilated cardiomyopathy or aortic stenosis
groups [54]. Matkovich et al. also reported, by microarray profiling of
miRs, an upregulation for mir-100 and miR-195 in human heart
tissues (myocardial specimens) in clinical and experimental congestive
heart failure (CHF) [55]. Of note, all the above reported cardiovascular
diseases are strongly associated with metabolic diseases, as well known.

Recently, soluble ST2 (suppression of tumorigenicity 2) has emerged
as novel cardiac bio-marker, especially in heart failure and ischemic
heart diseases [56]. Soluble ST2 is a blood protein which acts as a
decoy receptor for IL-33, limiting IL-33 interaction with ST2 ligand
[57]. Notably, the induction of IL-33 by the gut microbiota has been
recently shown in a model of inflammatory bowel diseases [58],
characterized by several dysbioses such as a Bifidobacteria decrease
[59] or an increase in Proteobacteria [60]. Finally, Xiang et al.
published that miR-487b acts as a negative regulator of macrophages
activation by targeting IL-33 production [61]. Thus, these experimental
evidences show the inner link between gut microbiota and the
regulation of miRs expression for the control of pathophysiological
manifestations.

Importantly, considering that dysbiosis has been primary identified
and extensively studied in diabetes and obesity, strong risk factors for
cardiovascular diseases, and taking into account the role of gut

microbiota in the modulation of energetic metabolism [37], the work
from Grueter et al. suggests a bridge between gut microbiota dysbiosis
and cardiac metabolism via miRs expression. In fact, the authors found
that a cardiac-specific microRNA, miR-208a, is able to negatively
regulate MED13, a subunit of the Mediator complex, resulting in
diminished energy expenditure [62]. Altogether, these experimental
evidences propose that an altered miRs expression and gut microbiota
dysbiosis meet to manage the pathophysiological status of a given
organ.

Skeletal muscle and miRs
Among the main effects of gut microbiota on whole host physiology

is the up-regulation of the energetic metabolism. In fact, Backhed et al.
showed that the resistance of axenic mice to diet-induced obesity is
associated with hepatic and skeletal muscle increased levels of
phosphorylated energetic intracellular sensor AMP-activated protein
kinase (AMPK) and its downstream targets Acetyl-CoA carboxylase
and Carnitine-palmitoyltransferase, positive regulators of fatty acid
oxidation [38]. Thus, this work firstly provided the existence of a gut-
to-skeletal muscle axis. A vast body of evidences in the scientific
literature shows the relationship between metabolic diseases and
altered muscle metabolism. For instance, Kase et al. showed that
myotubes from obese/diabetic patients had lower lipolysis
(-30%/-40%) when compared to lean subjects, together with a lower
insulin-stimulated glycogen synthesis (-60%) and AKT
phosphorylation (-90%) [63]. In this context, it has been recently
shown that Type 2 Diabetes mellitus is associated with regulation of
several miRs in the skeletal muscle. Latouche et al. identified miR-194
as the sole miR whose expression was reduced across different phases
of the disease progression, from an early insulin-resistance to the
establishment of diabetes [64]. In Zucker rats, Lee et al. found almost a
50% reduction in the expression of miR-16, controlling the accretion of
skeletal muscle protein, during insulin-resistance, when compared to
lean rats [65].

Importantly, in the absence of obesity, both T2D patients [66] and
mice [52] display a dysbiosis dominated by the phylum Bacteroidetes,
which therefore is in association with the above reported miRs
profiling.

Brain and miRs
Of note, beyond peripheral organs, also the brain is affected by miRs

alterations. Moreover, gut microbiota has been shown to correlate to
and affect both cerebral structure and behaviour in humans, where the
phylum Actinobacteria was associated with functions of the thalamus,
hypothalamus and amygdala [67] and mice [68,69]. In humans, there
is a rich literature regarding the role of miRs in human glioma. For
instance, Man et al. found a significant down-regulation of miR-198
expression in 122 pairs of human gliomas compared with
corresponding non-neoplastic brain tissues. Also reduced levels of
miR-198 were associated with a higher WHO grade and lower
Karnofsky performance status (KPS) score. Finally, overexpression of
miR-198 in U87 cells reduced cell proliferation, increased cell
apoptosis and repressed both cell invasion and migration [70].
Altogether, these data suggest that miR-198 may act as a tumor
suppressor, proposing miR-198 as a new target for molecular therapies
in human glioma and opening the route towards the study of gut
microbiota dysbiosis in this disease.
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Importantly, the energetic metabolism can bridge the above
reported pathology with both metabolic effects and gut microbial
activity. In fact, Adeberg et al. reported that metformin is associated
with prolonged progression-free survival in diabetic glioblastoma
patients [71]. Notably, numerous experimental evidences link the
metabolic effects of metformin with gut microbial modulation in both
humans, where metformin increased the abundance in Escherichia
spp. and lowered Intestinibacter in T2D [72] and animals, such as
Caenorhabditis elegans, by altering folate metabolism and methionine
cycle of E. coli [73]. Finally, metformin was shown effective in
targeting miRs expression in diabetic subjects [74], closing the circle
between brain, metformin, gut microbes and miRs.

In animals, miR-200a, miR-200b and miR-429 are up-regulated in
the hypothalamus of ob/ob mice. A leptin treatment is able to down-
regulate the expression of these miRs and the silencing of miR-200a is
effective against body weight gain, restoring hepatic insulin-sensitivity
[75]. The team of Prof. Pettersson was the first to show that a normal
gut microbiota is able to modulate both brain development and
behaviour [69]. Subsequently, Hsiao et al. published an elegant work
showing that gut microbiota is able to modulate behavioural and
physiological abnormalities associated with neurodevelopmental
disorders in the field of autism [76]. Importantly, obese-type dysbiosis
is able to induce neurobehavioral changes even regardless of the driver
pathology, as observed for obesity [77]. Recently, Braniste et al.
published that gut microbiota influences the permeability of blood-
brain barrier in mice [68], showing that both intestinal [78] and central
permeability are under the control of gut microbes. Therefore, to the
light of the aforementioned evidences, it appears likely that a link may
exist between gut microbiota and miRs, two main modulators of brain
function.

Gut microbiota and miRs modulation: From association to
causality?
The work from Dalmasso et al. provided a first experimental proof

for a direct link between gut microbiota and the regulation of miRs
expression. In fact, by comparing axenic vs. conventionalized mice, the
authors showed that both in the ileum and the colon the expression of
specific miRs was under the control of gut microbiota [79]. Still
focusing on intestinal miRs, Liu et al. demonstrated that gut miRs
synthesis from the host is effective in regulating gut microbiota
dysbiosis. The authors developed a mouse model with no mature miRs
all along the intestinal tract, by using a gut-specific deletion of Dicer1,
the miR-processing enzyme, already mentioned above [33,34]. As a
consequence, these mice had no fecal miRs and developed exacerbated
dextran sulfate sodium (DSS)-induced colitis, displaying gut
microbiota dysbiosis with increased Bacteroidaceae and
Helicobacteraceae and decreased Prevotellaceae,
Porphyromonadaceae, Lachnospiraceae and Ruminococcaceae
families [80]. Thus, this work proposes intestinal miRs as important
molecules capable to exert a selection pressure on gut microbiota
ecology, limiting uncontrolled microbial overt-abundance and hence
gut microbiota dysbiosis. This latter property appears to be based on
the capacity of miRs to enter bacteria and directly impact on microbial
metabolism. In accordance with the aforementioned work, Singh and
colleagues found that caecal miRs profile depends on the presence of
the endogenous gut microbiota in mice [81].

To sustain the evidence that gut microbiota may impact on host
pathophysiology based on a change on miRs profile, Dai et al. recently
published that miR-193a-3p is able to reduce colonic inflammation in

response to gut microbiota via a down-regulation of PepT1, a di/
tripeptide transporter that uptakes bacterial product [82]. Moreover,
Baselga-Escudero et al. reported normalized liver miR-33a and
miR-122 levels in high-fat diet-induced obese rats treated with a low
dose of proanthocyanidins [83]. These compounds are the most
abundant flavonoids in the human diet, and their beneficial effect may
rely on the microbial catabolism leading to the subsequent release of
absorbable metabolites [84].

The modulation of miRs expression can also be one of the putative
mechanisms of action of probiotics, as proposed by Kreuzer-Redmer et
al. The authors analyzed the expression of both miRs and their
potential target genes in the jejunum and ileum from Enterococcus
faecium NCIMB 10415-fed piglets versus untreated controls. The main
datum reveals a 2.11-fold increase of miR 423-5p and the related
downregulation of the immune-relevant immunoglobulin lambda light
C region (IGLC) and immunoglobulin kappa constant (IGKC) target
genes [85]. On the same direction, Veltman et al. profiled miRs from
T84 monolayers before and after co-incubation with E. coli Nissle
1917. The authors revealed for the first time miRs differentially
regulated such as miR-203, miR-483-3p and miR-595 targeting tight
junction proteins [86]. Of note, inhibition of these miRs blunted the
disruption of tight junctions induced by enteropathogenic E. coli
(EPEC). Thus, the important message of this work is that the probiotic
effect of E. coli Nissle 1917 on T84 epithelial cells may be recapitulated
by the action of these specific miRs on T84 cells.

Conclusion and Future Directions
The experimental evidences underlined in this review strongly push

to join dysbiosis and modulation of miRs expression for the control of
systemic metabolism.

The discovery of the molecular basis underlying the link between
gut microbiota dysbiosis and the modulation of whole host
metabolism may have a huge impact on the management of the
pandemic of metabolic diseases. Furthermore, the microbial universe
within the intestine appears to hide a molecular microcosmos inside,
since it has been observed that also bacteria can synthesize miRs [87].
Indeed, microbial miRs seem to have broader functions than
eukaryotic ones, since they can promote both degradation and
stabilization of the targeted mRNAs, such as GadY, a small (59 to 105
nucleotides) RNA regulating acid response genes in E. coli [88].

Thus, deciphering the molecular dialogue between microbes and
host may provide innovative targets allowing new therapy developed.
To the light of this hope, miRs represent promising molecules which
may link the intricacy of gut microbial ecosystem to systemic
metabolic outcomes arising from gut microbiota dysbiosis. To shed
light into this path, more studies are needed to finally validate the
direct link between a change in gut microbial ecology and the
concomitant modulation of tissue miRs expression for the control of
host pathophysiology.
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