

Molecular Mechanisms Underlying the Nephrotoxicity of Cisplatin, Lead Acetate and Cyclosporine: Key Roles of *Myc* and *Smad4*

Hassan Askari¹, Ehsan Raeis Abdullahi¹, Vahdat Poortahmasebi², Mohammad Foad Abazari³, , Matin Asghari⁴, Solmaz Sadeghi⁵, Danya Abazari⁶, Reza Mahmoudi⁷, Amir Savardashtaki⁸ and Mansour Poorebrahim^{5°}

¹Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

²Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

³Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran

⁴Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute of Biotechnology, ACECR, Isfahan, Iran

⁵Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

⁶Department of Biology, Centre for Biomedical Research, University of Victoria, Canada

⁷Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modarres University, Tehran, Iran

⁸Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

*Corresponding author: Mansour Poorebrahim, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran, Tel: 8(4852)460935; E-mail: mpoorebrahim@razi.tums.ac.ir

Received date: Febraury 18, 2017; Accepted date: March 24, 2017; Published date: March 31, 2017

Copyright: © 2017 Askari H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

It is well documented that use of Cisplatin, Lead acetate and Cyclosporine in the chemotherapy and medical interventions is highly associated with nephrotoxicity and interrelated comorbidities. Here, we proposed the possible molecular mechanisms responsible for nephrotoxicity of these compounds. We utilized the microarray dataset GSE59913 consisting of approximately 600 different compounds profiled in up to 8 different tissues. After analysis with GEO2R, gene expression profiles of three aforementioned compounds were integrated with protein-protein interactions (PPI) networks and topological properties of the networks were measured using Cytoscape software. We found several key genes and signaling pathways that seem to be involved in nephrotoxicity through various pathways. Our results revealed the critical functions of II2, Jak-Stat, Mapk-Pi3k, TGFβ and Ca²⁺ signaling pathways as well as novel biomarkers that may mediate the nephrotoxicity of Cisplatin, Lead acetate and Cyclosporine. The significantly altered genes in the compound-treated samples were substantially correlated with regulation of cell proliferation, apoptosis, inflammatory responses and homeostatic processes. This study reveals the important hub genes, biological networks and key pathways as well as novel biomarkers involved in nephrotoxicity of Cisplatin, Lead acetate and Cyclosporine.

Keywords: Nephrotoxicity; Cisplatin; Lead acetate; Cyclosporine; PPI Networks

Introduction

The kidney is an important organ prerequisite by the body to perform several essential regulatory roles including the maintenance of homeostasis, regulation of the extracellular environment, such as detoxification, and excretion of toxic metabolites and drugs [1]. Therefore, the kidney can be considered as a vital target tissue for exogenous toxicants. Nephrotoxicity is a kidney-specific characteristic in which excretion does not go slowly owing to toxic chemicals or drugs [2,3]. Approximately 20% of nephrotoxicity in community and hospital acquired episodes is induced by drugs, among older adults, the incidence of drug-induced nephrotoxicity may rise as 66% as the average life span increases. Chemotherapy or anticancer medicine has been of limited use due to nephrotoxicity [4-7]. Cellular toxicity probably has a multifactorial etiology which is related to alterations in renal vascular cells, modifying renal hemodynamics and the relative ischemia induced by vasoconstriction potentiating sub lethal changes in renal tubular epithelial cells. Histopathological evidence of cell damage will be apparent only if the toxic injury exceeds the capacity of the cellular mechanisms to respond to the toxic insult [8]. It is widely acknowledged that patients treated with the Cyclosporine and Cisplatin are at a high risk of developing nephrotoxicity [9,10]. Studies have demonstrated that Cyclosporine causes vasoconstriction of the afferent and efferent glomerular arterioles and reductions in renal blood flow and glomerular filtration rate [11,12]. Cisplatin is an important antineoplastic drug used for the treatment of cancers. Its major dose limiting adverse effect is nephrotoxicity; 20% of patients receiving high-dose Cisplatin have intensive renal failure [10,13]. Furthermore, rat's exposure to environmental pollutants such as Lead acetate induced nephrotoxicity [14]. However, the mechanism behind these Compounds remains a matter of debate.

Since nephrotoxicity largely affects human health and has a poorly understood pathogenesis, several studies have examined this condition. Moreover, the spectrum of temporal pathway deregulation has not been studied using integrative framework. Bearing this fact in mind, understanding the toxic mechanisms for nephrotoxicity renders advantageous information on the development of drugs with both potential therapeutic benefits and reduced adverse effects. To this end, analysis of PPI and gene regulatory networks (GRNs) has emerged as a promising tool and can help to decipher in-depth biological aspects of various disorders [15,16]. However, there are no high-throughput investigation between nephrotoxicity compounds and kidney that modulate host gene expression. Therefore, our network-based study has been carried out to investigate the specific pathways and regulatory genes that are critical for renal failure and nephrotoxicity in the rats treated with Cisplatin, Lead acetate and Cyclosporine.

Materials and Methods

Preparation of microarray data

A complete drug matrix dataset for kidney (Accession number: GSE59913) consisting of approximately 600 different compounds profiled in up to 8 different tissues was obtained from Gene Expression Omnibus database (GEO; http://www.ncbi.nlm.nih.gov/geo/). The authors of this dataset collected 2862 samples, in biological triplicates, from test compound-treated and vehicle control-treated subjects for gene expression analysis in response to studied compounds. Owing to their important role in nephrotoxicity, we chose Cisplatin-, Lead acetate-and Cyclosporine-treated samples for further analyses. The differentially expressed genes (DEGs) were determined by using GEO2R tool [17]. Subsequently, DEGs were further restricted to a log 2 fold change larger than 1 and smaller than -1 (p-value <0.05).

Functional annotation of DEGs

Functional annotation of selected DEGs was conducted utilizing Gene Ontology (GO) database [18]. In parallel, the network-based Biological Networks Gene Ontology (BiNGO) tool, a popular plugin of Cytoscape software [19], was used as an alternative tool for validating the GO results. This plugin is a flexible and extendable tool which is widely used to analyze GO terms overrepresented in a given biological network [20].

Signaling pathways data

Pathway enrichment was carried out using SPEED web tool to identify the signaling pathways underlying nephrotoxicity of Cisplatin, Lead acetate and Cyclosporine [21]. This server is an intuitive approach for discovering signaling pathways responsible for regulating various biological processes. Additionally, the signaling pathways corresponding to the DEGs of each aforementioned compounds were collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [22]. The daily updated KEGG databases consist of information about genomic, cellular pathways and chemical compounds.

Determination of regulatory relationships between the degs

A protein-protein interactions (PPIs) network was constructed for each studied compound utilizing BisoGenet, a plugin of Cytoscape [23]. BisoGenet is a multi-tier tool which constructs the PPI networks based on the regulatory relationships data accumulated from several PPI databases including Database of Interacting Proteins (DIP; http:// dip.doe-mbi.ucla.edu), BioGRID, Human protein reference database (HPRD), Biomolecular Interaction Network Database (BIND), Molecular interaction database (MINT) and IntAct [24-28]. In addition, some other PPIs between the DEGs were retrieved from the most recent studies.

Topological analysis of the PPIs networks

Topological properties of each PPIs network were measured using Network Analyzer, a network analysis plug-in of Cytoscape, to identify the most important functional hub genes within the networks and simplify interpretation of the results. We employed eight common measures including, Degree, Betweenness Centrality, Clustering Coefficient, Closeness Centrality, Eccentricity, Neighborhood Connectivity, Topological Coefficient and Average Shortest Path Length for appraisal topological properties of the PPIs networks. The nodes that were repeatedly identified as hub gene in aforementioned measures were adjudged as functionally important hub genes.

Functional motifs within the PPI networks

MCODE plugin of Cytoscape was applied to discover the functional regulatory motifs embedded in constructed PPI networks. This plugin can discern the highly interconnected complexes in a given network by finding regions of significant local density. These complexes are often associated with a specific cellular process.

Overlap nephrotoxicity mechanisms between the compounds

In order to identify the common and signature genes implicated in nephrotoxicity of Cisplatin, Lead acetate and Cyclosporine, a clustering of DEGs was conducted using Venny 2.1.0, an interactive web tool for comparing lists with venn diagrams [29]. Prior to clustering, the upand down-regulated DEGs of each compound were separated. Gene overlaps were determined with a three-way Venn diagram and were further analyzed.

Results

PPI networks of cisplatin, lead acetate and cyclosporine

By integrating the regulatory relationships obtained from BisoGenet plugin as well as published data, a PPI network was constructed for each DEG list resulted from processing Cisplatin, Lead acetat and Cyclosporine gene expression profiles. The nodes and edges number of Cisplatin, Lead acetate and Cyclosporine were 367 and 292, 467 and 408 and 502 and 436, respectively. After determination of each depicted PPI sub-network, the most integrated sub-networks were extracted and illustrated in Figure 1. Furthermore, node degree distribution of each PPI network was significantly right-skewed implying that three PPI networks have a biological scale-free pattern, as majority of nodes had low numbers of edges and only a few numbers of nodes were highly connected.

By integrating the regulatory relationships obtained from BisoGenet plugin as well as published data, a PPI network was constructed for each DEG list resulted from processing Cisplatin, Lead acetat and Cyclosporine gene expression profiles. The nodes and edges number of Cisplatin, Lead acetate and Cyclosporine were 367 and 292, 467 and 408 and 502 and 436, respectively. After determination of each depicted PPI sub-network, the most integrated sub-networks were extracted and illustrated in Figure 1. Furthermore, node degree distribution of each PPI network was significantly right-skewed implying that three PPI networks have a biological scale-free pattern, as majority of nodes had low numbers of edges and only a few numbers of nodes were highly connected.

Page 3 of 11

Figure 1: The main sub-networks extracted from PPI networks of (A) Cisplatin, (B) Lead acetate and (C) Cyclosporine along with their respective degree distribution charts (below each sub-network). The nodes with higher betweeness centrality are shown in green color.

The most significant hub genes of PPI networks

Using various algorithms, we found a set of hub genes for each PPI network constructed for Cisplatin, Lead acetate and Cyclosporine DEGs (Table 1). Expectedly, several hub genes were identified with more than one algorithm, and therefore were propounded as important hub genes. The hub genes in Cisplatin PPI network including Ascc311, Bcr, Cdk9, Cdkn1a, Hnrpu, Lep, Myc, Pak1, Pcgf4, Ptpn6, Ran, Slc25a13, Slc8a1, Smad2, Smad4, Smad5, Stat5a, Tgm2, Tpm1, Ttn, Vapa, Ybx1 and Ywhae were distinguished as hub genes in more than one topological measure. Whereas, A2m, Alb, Ewsr1, Hnrpu, Iqcb1, Myc, Ncoa6, Pcgf4, Ptpn2, Smad4, Ybx1 and Ywhae were singled out as the highest-scored hub genes of Cyclosporine PPI network. The important hub genes of Lead acetate PPI network were included Adrm1, Alb, Apoa2, Apoc1, Cdk9, Cdkn1a, Hnrpu, Icam1, Myc, Pak1, Pdlim5, Prph1, Psma3, Ptpn2, Ptprr, Smad1, Smad4, Ybx1 and Ywhae. We also found several novel biomarkers that are likely involved in nephrotoxicity of each studied compound (bold genes in Table 1).

Hub Genes of Cisplatin PPI network						
Average Shortest Path Length	Closeness Centrality	Degree	Betweenness Centrality	Topological Coefficient	Clustering Coefficient	
Oprm1	Tpm1	Smad2	Tpm1	Stat5a	Stat5a	
Vapa	Lep	Мус	Lep	Smad5	Smad5	
Ryr1	Lcn2	Ywhae	Мус`	Tgm2	Tgm2	
Agtpbp1	PVR	Pak1	Smad2	Strap	Cdk9	
Arts1	Otc	Ybx1	Ywhae	Prkar1a	Ascc3l1	
Phgdhl1	Мтр9	Pcgf4	Bcr	Nr5a2	Pdgfrb	
Npy5r	Ryk	Ascc3l1	Pak1	Ngfr	Ptpn2	
112	Nrp2	Cdk9	Slc8a1	Tnfrsf1a	Psmb4	
Fdft1	Tomm20	Bcr	Ptpn6	Ttn	Gtf3c1	
Asgr1	Tnfrsf12a	Hnrpu	Ybx1	Vapa	Hnrpu	
Vgcnl1	Tnnt2	Cdk5	Pcgf4	Cct2	Ybx1	
lhpk2	Ghrl	Smad4	Slc25a13	Slc25a13	Smad4	
Adra1b	Srxn1	Cdkn1a	Ran	Cdc25b	Мус	
Ttn	Ucn	Ran	Alb	Slc8a1	Bcr	
Pc	Мус	Ptpn6	Cdkn1a	Blk	Pak1	
Hub Genes of Lead acetate PPI network						
Average Shortest Path Length	Closeness Centrality	Degree	Betweenness Centrality	Topological Coefficient	Clustering Coefficient	
Gdf15	Mc4r	Мус	Reep6	Apoc1	Apoc1	
Tpm1	Ppara	Hnrpu	Pdlim5	Apoa2	Apoa2	
Mapk14	SIn	Psma3	Hnrpu	Adrm1	Adrm1	
Clta	Npy	Ybx1	Мус	Rpl13a	Ptpn2	

Page 4 of 11

Srxn1	Wrnip1	Cdkn1a	Psma3	Ptpn2	Sfrs3	
Etv6	Gclm	Smad4	Pak1	Prph1	Ascc3l1	
Ptprr	Vps26	Smad1	Cdkn1a	Cd3z	Syncrip	
Cpb2	Nup107	Ywhae	Ybx1	Paics	Ghr	
Otc	Ryk	Pak1	Vtn	Cks2	Csda	
Efs	Prim1	lcam1	Smad4	Mme	Mrps28	
Vapa	Prim2	Alb	Lnx1	СЗ	S100a9	
Tacc3	PIn	Cdk9	Prph1	Ptprr	Ccnh	
TxInb	Pdlim5	Ewsr1	Ywhae	Bcl2l1	Cct2	
Hmmr	Fabp1	H2afx	Smad1	lfit1	Cdk9	
Мтр9	Txnl2	Plk1	Alb	Abcc2	lcam1	
	Hub Genes of Cyclosporine PPI network					
Average Shortest Path Length	Closeness Centrality	Degree	Betweenness Centrality	Topological Coefficient	Clustering Coefficient	
Pdgfrb	Sstr3	Мус	Мус	Rps5	Ste2	
Tceb1	Sstr2	lqcb1	Ybx1	Ncoa6	Znf386	
ll3ra	Cxcl9	Ybx1	lqcb1	Slc8a1	Zfx	
C1s	Stx7	Ywhae	Ewsr1	Ngfr	Zfp592	
Dusp7	Onecut1	Smad4	Pcgf4	C1qb	Zfp536	
Ptpn2	Foxa1	Pcgf4	Hnrpu	Нр	Zfp496	
Cish	Efs	Ewsr1	Ywhae	Elavl3	Zfp422	
ll2ra	Hadh2	A2m	Smad4	Zfml	Ypel4	
Npy5r	Sftpc	Hnrpu	Rara	ld3	Xpnpep1	
Atf3	Grsf1	Rbpms	Anxa2	Ttn	Wrnip1	
Nrcam	Mapk10	Map3k1	A2m	112	Vsnl1	
Oprm1	Gfra1	Alb	Vamp2	Nupr1	Vnn1	
Oprk1	Tomm20	Vapa	Ncoa6	Arpc1b	Vgcnl1	
Cln8	Gdnf	Ascc3l1	Alb	Ppp2r2c	Vash2	
Apod	Gch	Cdk9	Ghr	Ptpn2	Usp18	

Table 1: The 15 top hub genes for each constructed PPI network. The putative novel biomarkers for nephrotoxicity of each compound are shown in bold.

Myc and *II2* were found as key nodes of most significant functional motifs

In order to identify the functional motifs within constructed PPI networks, we analyzed the networks via MCODE algorithm. Prior to network analysis, the up- and down-regulated DEGs of each compound were dissected and a corresponding network was reconstructed for each DEG set. The results illustrated that a four-node complex consisting of *Myc*, *Cdk9*, *Hnrpu* and *Ascc311* genes is present in the most significant up-regulated motif of three aforementioned compounds. Furthermore, *Il2* and *Ngfr* were observed in the most

significant down-regulated motif of Cisplatin and Cyclosporine PPI networks (Figure 2).

Page 5 of 11

Figure 2: The most significant regulatory motif of (A) Cisplatin, (B) Cyclosporine and (C) Lead acetate PPI networks along with their respective most significant down-regulated motifs. Up- and down-regulated motifs are shown in red and green colors, respectively.

Functional annotation of DEGs

GO analysis unveiled that the dominant biological processes of Cisplatin, Lead acetate and Cyclosporine DEGs are obviously associated with the cell proliferation, apoptosis, inflammatory responses, homeostatic processes, response various stresses and modulation synaptic transmission responses. The overrepresented functional categories are listed in Table 2.

SPEED and KEGG results demonstrate Mapk-Pi3k as the crucial upstream signaling pathway upregulated in Cisplatin and Lead acetate nephrotoxicity. Moreover, results show that Jak-Stat signaling pathway is remarkably modulated after treatment of cells with Cisplatin and Lead acetate postulating the possible protective effect of this signaling pathway in nephrotoxicity. In contrast, Jak-Stat signaling pathway was found as the highest-scored signaling pathway upregulated in Cyclosporine-treated cells. The enriched signaling pathways are sorted by FDR score and graphical outputs aid in interpretation of the results (Figure 3).

Cisplatin							
Up-regulated DEGs			Down-regulated DEGs				
GO Term	Count	P-value	GO Term	Count	P-value		
Regulation of muscle system process	11	0.0298	Chemical synaptic transmission	15	5.67E-05		
Response to toxic substance	11	0.0475	Regulation of ion transmembrane transport	12	0.00794		
Cellular homeostasis	23	0.00404	Regulation of homeostatic process	12	0.0372		
Response to hormone	23	0.0246	Negative regulation of developmental process	15	0.0452		
Chemical homeostasis	26	0.00544	Positive regulation of protein phosphorylation	17	0.0338		
Response to organic cyclic compound	25	0.0165	Regulation of multicellular organismal process	19	0.00894		
Regulation of cell proliferation	34	0.0304	Chemical homeostasis	17	0.0433		
Cellular response to organic substance	40	0.0111	Generation of neurons	23	0.00431		
Organonitrogen compound metabolic process	38	0.0314	Regulation of cell proliferation	25	0.00248		
Response to stress	68	1.36E-06	Response to endogenous stimulus	22	0.0293		
Regulation of cellular protein metabolic process	48	0.00191	Cell surface receptor signaling pathway	31	0.00111		
Positive regulation of cellular metabolic process	51	0.0218	Regulation of intracellular signal transduction	24	0.049		
Negative regulation of cellular process	74	0.000116	Animal organ development	37	0.000415		
Cellular metabolic process	114	0.0267	Response to organic substance	34	0.00184		
Biological process	189	0.000119	Regulation of molecular function	34	0.0169		
Lead acetate							
Up-regulated DEGs			Down-regulated DEGs				
GO Term	Count	P-value	GO Term	Count	P-value		
Cardiac muscle tissue development	12	0.0148	Cellular divalent inorganic cation homeostasis	11	0.0322		
Regulation of blood pressure	14	0.00212	Blood circulation	12	0.0116		
Response to hypoxia	20	0.000117	Cellular metal ion homeostasis	12	0.0393		
Leukocyte migration	17	0.0031	Regulation of ion transport	14	0.0345		

Page 6 of 11

	40				0.000750	
Response to oxidative stress	19	0.0135	Regulation of multicellular organismal process	26	0.000753	
Positive regulation of MAPK cascade	25	0.000298	Response to organic substance	34	0.0139	
Cellular response to cytokine stimulus	29	0.000262	Single-organism cellular process	87	0.0237	
Inflammatory response	21	0.0423				
Negative regulation of apoptotic process	32	0.00268				
Response to organonitrogen compound	30	0.00858				
Regulation of proteolysis	27	0.0329				
Chemical homeostasis	33	0.00806				
Regulation of cell differentiation	47	0.00375				
Regulation of cell proliferation	47	0.00476				
Regulation of cellular component organization	67	6.03E-05				
		Cyc	osporine			
Up-regulated DEGs			Down-regulated DEGs			
GO Term	Count	P-value	GO Term	Count	P-value	
Response to temperature stimulus	11	0.0494	Regulation of cytosolic Ca ⁺² ion concentration	10	0.0154	
Regulation of muscle system process	13	0.017	Locomotory behavior	10	0.0205	
Activation of immune response	19	0.0326	Modulation of synaptic transmission	15	6.76E-05	
Cytokine-mediated signaling pathway	20	0.0245	Regulation of membrane potential	15	0.00077	
Cytokine-mediated signaling pathway Regulation of cytokine production	20 23	0.0245 0.0137	Regulation of membrane potential Regulation of homeostatic process	15 16	0.00077 0.00402	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation	20 23 25	0.0245 0.0137 0.0109	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus	15 16 15	0.00077 0.00402 0.0245	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response	20 23 25 38	0.0245 0.0137 0.0109 0.000314	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade	15 16 15 15	0.00077 0.00402 0.0245 0.0452	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death	20 23 25 38 30	0.0245 0.0137 0.0109 0.000314 0.0169	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels	15 16 15 15 15	0.00077 0.00402 0.0245 0.0452 0.0487	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death Chemical homeostasis	20 23 25 38 30 30	0.0245 0.0137 0.0109 0.000314 0.0169 0.021	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport	15 16 15 15 15 15 17	0.00077 0.00402 0.0245 0.0452 0.0487 0.015	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death Chemical homeostasis Defense response	20 23 25 38 30 30 40	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport Inorganic ion transmembrane transport	15 16 15 15 15 15 17 17	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death Chemical homeostasis Defense response Response to oxygen-containing compound	20 23 25 38 30 30 40 43	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663 0.00122	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport Inorganic ion transmembrane transport Response to nitrogen compound	15 16 15 15 15 17 17 23	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294 0.003	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death Chemical homeostasis Defense response Response to oxygen-containing compound Regulation of phosphate metabolic process	20 23 25 38 30 30 40 43 44	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663 0.00122 0.0177	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport Inorganic ion transmembrane transport Response to nitrogen compound Positive regulation of cell differentiation	15 16 15 15 15 17 17 23 22	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294 0.003 0.00555	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death Chemical homeostasis Defense response Response to oxygen-containing compound Regulation of phosphate metabolic process Regulation of protein modification process	20 23 25 38 30 30 40 43 44 44	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663 0.00122 0.0177 0.0361	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport Inorganic ion transmembrane transport Response to nitrogen compound Positive regulation of cell differentiation Response to organic cyclic compound	15 16 15 15 15 17 17 23 22 23	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294 0.003 0.00555 0.00449	
Cytokine-mediated signaling pathwayRegulation of cytokine productionNegative regulation of cell proliferationImmune responseNegative regulation of cell deathChemical homeostasisDefense responseResponse to oxygen-containing compoundRegulation of phosphate metabolic processRegulation of protein modification processOrganonitrogen compound metabolic process	20 23 25 38 30 30 40 43 44 44 44	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663 0.00122 0.0177 0.0361 0.0284	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport Inorganic ion transmembrane transport Response to nitrogen compound Positive regulation of cell differentiation Response to organic cyclic compound Response to oxygen-containing compound	15 16 15 15 17 23 22 23 36	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294 0.003 0.00555 0.00449 1.69E-06	
Cytokine-mediated signaling pathwayRegulation of cytokine productionNegative regulation of cell proliferationImmune responseNegative regulation of cell deathChemical homeostasisDefense responseResponse to oxygen-containing compoundRegulation of phosphate metabolic processOrganonitrogen compound metabolic processAnimal organ development	20 23 25 38 30 30 40 43 44 44 44 44 44	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663 0.00122 0.0177 0.0361 0.0284 0.0054	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport Inorganic ion transmembrane transport Response to nitrogen compound Positive regulation of cell differentiation Response to organic cyclic compound Response to oxygen-containing compound Response to endogenous stimulus	15 16 15 15 15 17 17 23 22 23 22 23 36 33	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294 0.003 0.00555 0.00449 1.69E-06 7.91E-05	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death Chemical homeostasis Defense response Response to oxygen-containing compound Regulation of phosphate metabolic process Regulation of protein modification process Organonitrogen compound metabolic process Animal organ development	20 23 25 38 30 30 40 43 44 44 44 44 66	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663 0.00122 0.0177 0.0361 0.0284 0.0054	Regulation of membrane potential Regulation of homeostatic process Response to extracellular stimulus Positive regulation of Mapk cascade Regulation of hormone levels Cation transmembrane transport Inorganic ion transmembrane transport Response to nitrogen compound Positive regulation of cell differentiation Response to organic cyclic compound Response to oxygen-containing compound Response to endogenous stimulus Generation of neurons	15 16 15 15 17 23 22 23 36 33 27	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294 0.003 0.00555 0.00449 1.69E-06 7.91E-05 0.0491	
Cytokine-mediated signaling pathway Regulation of cytokine production Negative regulation of cell proliferation Immune response Negative regulation of cell death Chemical homeostasis Defense response Response to oxygen-containing compound Regulation of phosphate metabolic process Regulation of protein modification process Organonitrogen compound metabolic process Animal organ development	20 23 25 38 30 30 40 43 44 44 44 47 66	0.0245 0.0137 0.0109 0.000314 0.0169 0.021 0.000663 0.00122 0.0177 0.0361 0.0284 0.0054	Regulation of membrane potentialRegulation of homeostatic processResponse to extracellular stimulusPositive regulation of Mapk cascadeRegulation of hormone levelsCation transmembrane transportInorganic ion transmembrane transportResponse to nitrogen compoundPositive regulation of cell differentiationResponse to organic cyclic compoundResponse to organic stimulusGeneration of neuronsRegulation of neurons	15 16 15 15 17 23 22 23 36 33 27 31	0.00077 0.00402 0.0245 0.0452 0.0487 0.015 0.0294 0.003 0.00555 0.00449 1.69E-06 7.91E-05 0.0491 0.0463	

 Table 2: Significant overrepresented GO terms in DEGs of Cisplatin, Lead acetate and Cyclosporine.

Figure 3: The most enriched signaling pathways for the DEGs resulted from gene expression profile of Cisplatin, Cyclosporine and Lead acetate. Up- and down-regulated signaling pathways are shown in red and green colors, respectively.

As illustrated in Figure 4, mechanism of nephrotoxicity caused by Cisplatin, Lead acetate and Cyclosporine is noticeably mediated by upregulation of TGF β signaling pathway. Several genes of this signaling pathway including *Smad1, Smad2, Smad4, Myc* and *Id1* were found to be up-regulated after treatment with Cisplatin, Lead acetate and Cyclosporine. However, up-regulation of *Rock1* was only observed in Lead acetate-treated samples.

Figure 4: Representation of TGF β signaling pathway extracted from KEGG. Common up-regulated genes in the samples treated with three studied compounds (Cisplatin, Lead acetate and Cyclosporine) are shown in red color. The node with yellow color was only up-regulated in the samples treated with Lead acetate.

Moreover, down-regulation of Ca^{+2} signaling pathway was significantly observed after treatment of rats with Cisplatin, Lead acetate and Cyclosporine. This suggests that modulation in Ca^{+2} mediated gene expression is a common event upon nephrotoxicity of three studied compounds. *Slc8a2, Chrm1, Cysltr1* and *Mylk4* were found as overlap down-regulated genes of Ca^{+2} signaling pathway, whereas *Chrna7* and *Ppp3ca* were down-regulated after treatment with Cyclosporine and Cisplatin, respectively (Figure 5).

Figure 5: Representation of Ca⁺² signaling pathway extracted from KEGG. Common down-regulated genes in the samples treated with three studied compounds (Cisplatin, Lead acetate and Cyclosporine) are shown in green color. The nodes with yellow and blue colors were only up-regulated in the samples treated with Cisplatin and Cyclosporine, respectively.

Cisplatin, cyclosporine and lead acetate share overlap nephrotoxicity mechanisms

In order to investigate the common nephrotoxicity pathways, a clustering was conducted according to each compound's DEG list. The results indicated that 142 up-regulated DEGs (28.3%) and 41 down-regulated DEGs (13.3%) are joint between three nephrotoxic compounds. The lowest number of overlap DEGs was found between Cisplatin and Lead acetate (Figure 6).

Figure 6: Clustering of (A) up-regulated and (B) down-regulated DEGs obtained from analysis of gene expression profiles of Cisplatin, Lead acetate and Cyclosporine. The numbers represent number of overlap DEGs.

DEG-GO networks revealed the most important overlap DEGs

A DEG-GO network was separately constructed for both common up-regulated and down-regulated DEGs. Common up-regulated DEGs and their respective biological processes were considered as source and target nodes, respectively. The results indicated that several overlap DEGs up-regulated in all studied compounds including *Cdkn1a*, *Myc*, *Smad4*, *Pak1*, *Hmgb1*, *Kras* and *Pdgfrb* have significant roles in activation of nephrotoxicity pathways (Figure 7). On the other hand, among common down-regulated *DEGs*, *Il2*, *Pth* and *Hcrt* showed a pivotal role in regulation of nephrotoxicity pathways (Figure 8). These DEG-GO networks of the overlap DEGs uncovered that common up-regulated DEGs are highly enriched in regulation of cell metabolism, cell proliferation and cell death pathways, whereas the common down-regulated DEGs are notably involved in homeostatic processes.

Figure 7: DEG-GO network for common up-regulated DEGs between Cisplatin, Lead acetate and Cyclosporine. Nodes (common up-regulated DEGs) with higher out-degree measure are shown in bigger circles, while nodes (biological processes) with higher indegree measure tend to have red color.

Figure 8: DEG-GO network for common up-regulated DEGs between Cisplatin, Lead acetate and Cyclosporine. Nodes (common up-regulated DEGs) with higher out-degree measure are shown in bigger circles, while nodes (biological processes) with higher in-degree measure tend to have red color.

Discussion

Nephrotoxicity is a harmful repercussion of some medications and toxic chemicals on renal function which its pathogenesis is not yet fully

understood [30]. All available data on protein/gene expression in nephrotoxicity provide an interesting opportunity to identify markers for the diagnosis and treatment of the disease. It is thought that the incidence of nephrotoxicity is closely correlated with the abnormal expression of multitudinous genes. We used bioinformatics methods and a consolidated view to explore a new strategy for understanding toxicity-derived renal dysfunction mechanisms and find phenotyperelated biomarkers.

GO annotation suggests that many of resulted DEGs in the samples treated with studied compounds are connected with multiple biological processes, including organonitrogen compound metabolic process, immune response, regulation of cell proliferation, regulation of apoptosis, response to oxidative stress, electrolyte abnormalities and regulation of blood pressure. Myc, Pak1, Pcgf4, Ptpn6, Ran, Smad4, Smad2, Smad5, Stat5a, Ywhae, Slc25a13 and Slc8a1 were identified as important hub genes in the PPI networks. Smad2 is actively participating in manifold cell processes such as cell differentiation, apoptosis, cell proliferation, cell-fate determination and morphogenesis. This gene is frequently upregulated in nephrotoxicity and activated by TGFβ receptor-type kinases [31]. *Slc25a13* belongs to super-family of SLC proteins which comprises 55 gene families, having at least 362 putatively functional gene targets. Members of this superfamily functions in transportation of various molecules and ions across cellular and organelle membranes [32]. Recently, it has been established that cell toxicity can lead to dysregulation of these transporters [33]. Our study also provides further evidences that activation of Pak1, presumably an adaptive reaction against cell death, is a signature of Cisplatin-induced nephrotoxicity. Delving further into the issue, Pak1 is a serine/threonine kinase that is targeted by small GTP binding proteins. This protein is presented as a regulator of cytoskeletal remodeling, apoptosis and cell motility. It has been recently demonstrated that nephrotoxicity increases matrix remodeling and apoptosis properties [34,35]. We also report Cdk9, Psma3, Icam1, Myc, Hnrpu, Pak1 and Alb as a consensus early signature of nephrotoxicity that induced by Lead acetate. During apoptosis Hnrpu is cleaved in a caspase-dependent way. Interestingly, Li et al. found that *Hnrpu* up-regulation is followed by cooper overload and vancomycin nephrotoxicity [36,37]. By analysis of PPI networks, we present Hnrpu as a promising biomarker for Lead acetate nephrotoxicity. Furthermore, the results indicated that Rock1 is important during Lead acetate nephrotoxicity. Interestingly, gentamicin-induced nephrotoxicity caused an increase in the activity of Rho-kinase enzyme. The activity of Rho-kinase enzyme in nephrotoxicity is highly associated with an increase in oxidative stress, leading ultimately to irreversible kidney dysfunction [38]. Moreover, a significant up-regulation of response to hypoxia, leukocyte migration and response to oxidative stresses was found in DEGs of studied compounds after GO analyses. Strikingly, these biological processes have been linked to the Lead acetate-induced nephrotoxicity [39,40]. Accordingly, we suggest the use of a specific inhibitor of Rock1 may represent a novel therapeutic approach in the prevention of nephrotoxic side effects during Lead acetate exposure. Psma3 gene was found as the most important hub gene obtained from topological analysis of Lead acetate nephrotoxicity network. The Psma3 has a key role in determination of protein's fate via ubiquitin-independent proteasomal degradation [41]. In addition, DNA damage can induce phosphorylation of Psma3 during the cell cycle transition and apoptosis [42]. Surprisingly, Lead acetate can accelerate proteasome activity and this activity is likely associated with Mapk pathway and inflammatory response [43-45]. Taken together, we suggest that

inhibition of *Psma3* should be recognized as a new anti-inflammatory strategy in Lead acetate nephrotoxicity. Our results revealed that expression of Alb, Pcgf4, Ybx1 and Myc hub genes is significantly altered in Cyclosporine nephrotoxicity. Studies have shown that these genes have a role in cell toxicity of some cytotoxic compounds. Recently, it has been determined that reduction of *Pcgf4* can lead to apoptosis, senescence in tumor cells, and increased cell susceptibility to cytotoxic agents [46]. In addition, Pcgf4 can prevent cell toxicity in vitro and in vivo by reducing oxidative stress [47]. The Ybx1 is a key regulator of cell growth, apoptosis, drug resistance, DNA repair and transcription. It has been shown that overexpression of Ybx1 via Erk/Akt pathway can monitor damage recognition and renal fibrosis of toxic agents such as Cyclosporine [48-50]. However, the role of Pcgf4 and Ybx1 in nephrotoxicity has not yet been fully evaluated. It has been shown that *II-2* is down-regulated in Cisplatin and Cyclosporine nephrotoxicity [51,52]. Consistent with these studies, we found Il-2 as a common hub gene in Cisplatin, Lead acetate and Cyclosporine nephrotoxicity. Our work further pinpointed two key genes including Myc and Smad4 that may play a pivotal role in the development of nephrotoxicity. Myc is a transcription factor and multifunctional gene that plays a role in the control various cellular functions such as cell proliferation, apoptosis, cell migration, biogenesis of macromolecules and protein degradation pathways [53]. We figured out that the Myc and Smad4 genes are the most important common hub genes procured from topological analysis of Cisplatin, Lead acetate and Cyclosporine PPI networks. Several studies have established that Myc has a crucial role in perturbation of gene expression of Mrp and SLC families which are efflux transporters and have important roles in the kidney function by regulating Ca²⁺ homeostasis and other organic, anionic conjugates [54-56]. In addition, the positive regulatory impact of Cisplatin and Cyclosporine on Myc expression in drug resistance and nephrotoxicity pathways has been previously reported [57,58]. Overall, our results suggest that Myc proto-oncogene not only regulates Cisplatin- and Cyclosporine-mediated nephrotoxicity, but also can be perceived as a key mediator of Lead acetate-induced nephrotoxicity.

Extracellular matrix proteins and tubulointerstitial fibrosis play pivotal role in nephrotoxicity [59]. Renal fibrosis is the final common result in loss of kidney function. TGFβ-Smad signaling has been determined to contribute in nephrotoxicity [60-62]. TGF^β signaling pathway plays multiple functions in cytokine-mediated signaling in many cell types, conditioning them for differentiation, survival, apoptosis and fibrosis [63]. Among the common hub genes of the present study, Smad4 is an important protein in TGFB signaling pathway. Although, it is widely accepted that TGFB signaling pathway induces cell death through Smad-mediated pathways, the distinct role of this signaling pathway has insufficiently investigated [64]. However, the synergetic cooperation Cyclosporine with TGFβ signaling pathway in the modulation of renal paracellular permeability has been confirmed by Feldman and colleagues [65]. In another study, expression of TGF β has been demonstrated to be enhanced in cisplatin-induced Acute Kidney Injury (AKI) [66]. In agreement with these studies, we propose that that Cisplatin, Lead acetate and Cyclosporine can induce nephrotoxicity, at least in part, by affecting TGF^β signaling pathway, particularly Smad4 expression. Moreover, it is well established that distinct mechanisms such as inflammation, oxidative damages, and DNA damage are associated with development of nephrotoxicity [67]. Here, we found that the studied cytotoxic agents can exacerbate inflammation responses in rats. Activation of Hmgb1 in nephrotoxicity has been shown to increase inflammatory cytokine levels and tissue damages via immunological and nonimmunological pathways [68,69]. Our data lending credence to the hypothesis that blockade of *Hmgb1*/TGFβ signaling cascade may constitute a therapeutic strategy for treatment of nephrotoxicityinduced tubulointerstitial fibrosis. The possible mechanisms of Myc and Smad4 in Cisplatin, Lead acetate and Cyclosporine nephrotoxicity are illustrated in Figure 9.

Figure 9: Schematic illustration of possible mechanisms of Myc and Smad4 in Cisplatin, Lead acetate and Cyclosporine nephrotoxicity. Gene targets of Myc and Smad4 transcription factors are illustrated in bright green octagonal.

In summary, this study indicated that characteristics of Cisplatin, Lead acetate and Cyclosporine nephrotoxicity are associated with differential expressions of several genes. We reported Myc and Smad4 as a consensus early signature of in vivo toxicity in kidney. Inhibition of TGFβ signaling intermediates Smad4 and Myc could be an attractive new approach to treatment of Cisplatin, Lead acetate and Cyclosporine nephrotoxicity.

Acknowledgement

This study has supported by Tehran University of Medical Sciences

Conflict of Interest

No conflict of interest to be declared by any of the authors.

References

- Ferguson MA, Vaidya VS, Bonventre JV (2008) Biomarkers of 1. nephrotoxic acute kidney injury. Toxicology 245: 182-193.
- Galley HF1 (2000) Can acute renal failure be prevented? J R Coll Surg 2. Edinb 45: 44-50.
- Kim SY, Moon A (2012) Drug-induced nephrotoxicity and its biomarkers. 3. Biomol Ther (Seoul) 20: 268-272.
- Kohli HS, Bhaskaran MC, Muthukumar T, Thennarasu K, Sud K, et al. 4. (2000) Treatment-related acute renal failure in the elderly: a hospitalbased prospective study. Nephrol Dial Transplant 15: 212-217.
- Kaufman J, Dhakal M, Patel B, Hamburger R (1991) Community-5. acquired acute renal failure. Am J Kidney Dis 17: 191-198.
- Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. 6. Am J Kidney Dis 39: 930-936.
- 7. Naughton CA (2008) Drug-induced nephrotoxicity. Am Fam Physician 78: 743-750.
- Kopp JB, Klotman PE (1990) Cellular and molecular mechanisms of 8. cyclosporin nephrotoxicity. J Am Soc Nephrol 1: 162-179.
- Burdmann EA, Andoh TF, Yu L, Bennett WM (2003) Cyclosporine 9. nephrotoxicity. Semin Nephrol 23: 465-476.
- Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin 10. nephrotoxicity: A review. Am J Med Sci 334: 115-124.

Page 10 of 11

- Lanese DM, Conger JD (1993) Effects of endothelin receptor antagonist on cyclosporine-induced vasoconstriction in isolated rat renal arterioles. J Clin Invest 91: 2144-2149.
- 12. Lamas S (2005) Cellular mechanisms of vascular injury mediated by calcineurin inhibitors. Kidney Int 68: 898-907.
- Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis and therapy. J Clin Invest 114: 5-14.
- Ibrahim NM, Eweis EA, El-Beltagi HS, Abdel-Mobdy YE (2012) Effect of lead acetate toxicity on experimental male albino rat. Asian Pac J Trop Biomed 2: 41-46.
- 15. Poortahmasebi V, Poorebrahim M, Najafi S, Jazayeri SM, Alavian SM,et al. (2016) How hepatitis C virus leads to hepatocellular carcinoma: A network-based study. Hepat Mon 16: e36005.
- Maryam I, Seyede SM, Seyed SA, Sadegh Azimzadeh SA, Sadegh A, et al. (2016) HOXB7 and Hsa-miR-222 as the potential Therapeutic candidates for metastatic colorectal cancer. Recent Pat Anticancer Drug Discov 11: 1-10.
- Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. (2013) NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res 41: D991-D5.
- Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, et al. (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32: D258-261.
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498-2504.
- Maere S, Heymans K, Kuiper M (2005) BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448-3449.
- 21. Parikh JR, Klinger B, Xia Y, Marto JA, Blüthgen N (2010) Discovering causal signaling pathways through gene-expression patterns. Nucleic Acids Res 38: W109-W17.
- 22. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27-30.
- 23. Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, et al. (2010) BisoGenet: A new tool for gene network building, visualization and analysis. BMC Bioinformatics 11: 91.
- 24. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, et al. (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41: D816-823.
- 25. Prasad TK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. (2009) Human protein reference database—2009 update. Nucleic Acids Res 37: D767-D72.
- 26. Bader GD, Betel D, Hogue CW (2003) BIND: The biomolecular interaction network database. Nucleic Acids Res 31: 248-250.
- Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, et al. (2002) MINT: A molecular interaction database. FEBS Lett 513: 135-140.
- Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, et al. (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40: D841-846.
- 29. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams.
- 30. Nauffal M, Gabardi S (2016) Nephrotoxicity of natural products. Blood Purif 41: 123-129.
- 31. Iwayama H, Sakamoto T, Nawa A, Ueda N (2011) Crosstalk between *Smad* and mitogen-activated protein kinases for the regulation of apoptosis in cyclosporine A induced renal tubular injury. Nephron Extra 1: 178-189.
- 32. He L, Vasiliou K, Nebert DW (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3: 195-206.
- 33. Jin J, Lao AJ, Katsura M, Caputo A, Schweizer FE, et al. (2014) Involvement of the sodium-calcium exchanger 3 (NCX3) in ziraminduced calcium dysregulation and toxicity. NeuroToxicology 45: 56-66.

- Jagadeeshan S, Subramanian A, Tentu S, Beesetti S, Singhal M, et al. (2016) P21-activated kinase 1 (Pak1) signaling influences therapeutic outcome in pancreatic cancer. Ann Oncol 27: 1546-1556.
- Jafari A, Dashti-Khavidaki S, Khalili H, Lessan-Pezeshki M (2013) Potential nephroprotective effects of l-carnitine against drug-induced nephropathy: A review of literature. Expert Opin Drug Saf 12: 523-543.
- 36. Armendariz AD, Olivares F, Pulgar R, Loguinov A, Cambiazo V, et al. (2006) Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines. Biol Res 39: 125-142.
- Li ZL, Zhou SF (2016) A SILAC-based approach elicits the proteomic responses to vancomycin-associated nephrotoxicity in human proximal tubule epithelial HK-2 cells. Molecules (Basel, Switzerland) 21:148.
- Kaplan HM (2016) Contribution of Rho/Rho-kinase signalisation pathway to gentamicin induced nephrotoxicity in mice. Int J Pharmacol 12: 617-620.
- Dkhil MA, Al-Khalifa MS, Al-Quraishy S, Zrieq R, Abdel Moneim AE (2016) *Indigofera oblongifolia* mitigates lead-acetate-induced kidney damage and apoptosis in a rat model. Drug Des Devel Ther 10: 1847-1856.
- 40. Bishayi B, Sengupta M (2006) Synergism in immunotoxicological effects due to repeated combined administration of arsenic and lead in mice. Int Immunopharmacol 6: 454-464.
- 41. Fedorova OA, Moiseeva TN, Nikiforov AA, Tsimokha AS, Livinskaya VA, et al. (2011) Proteomic analysis of the 20S proteasome (PSMA3)interacting proteins reveals a functional link between the proteasome and mRNA metabolism. Biochem Biophys Res Commun 416: 258-265.
- Moiseeva TN, Bottrill A, Melino G, Barlev NA (2013) DNA damageinduced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 4: 1338-1348.
- 43. Grunberg-Etkovitz N, Greenbaum L, Grinblat B, Malik Z (2006) Proteasomal degradation regulates expression of porphobilinogen deaminase (PBGD) mutants of acute intermittent porphyria. Biochimica et biophysica acta 1762: 819-827.
- 44. Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death and cancer. Pharmacol Rev 60: 261-310.
- 45. Elliott PJ, Zollner TM, Boehncke WH (2003) Proteasome inhibition: A new anti-inflammatory strategy. J Mol Med (Berl) 81: 235-245.
- 46. Adeyeni TA, Khatwani N, San K, Ezekiel UR (2016) BMI1 is downregulated by the natural compound curcumin, but not by bisdemethoxycurcumin and dimethoxycurcumin. Physiol Rep 4.
- Dong Q, Chen L, Lu Q, Sharma S, Li L, et al. (2014) Quercetin attenuates doxorubicin cardiotoxicity by modulating *Bmi-1* expression. Br J Pharmacol 171: 4440-4454.
- Hanssen L, Frye BC, Ostendorf T, Alidousty C, Djudjaj S, et al. (2011) Ybox binding protein-1 mediates profibrotic effects of calcineurin inhibitors in the kidney. J Immunol (Baltimore, Md: 1950) 187: 298-308.
- 49. Maciejczyk A, Szelachowska J, Ekiert M, Matkowski R, Halon A, et al. (2012) Elevated nuclear YB1 expression is associated with poor survival of patients with early breast cancer. Anticancer Res 32: 3177-3184.
- Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, et al. (2004) The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther 3: 1485-1492.
- 51. Rampino T, Ranghino A, Guidetti C, Gregorini M, Soccio G, et al. (2007) Activation of PPARgamma enhances in vitro the immunosuppressive effect of cyclosporine on T lymphocytes. Transpl Immunol 18: 32-36.
- 52. Sfikakis PP, Souliotis VL, Katsilambros N, Markakis K, Vaiopoulos G, et al. (1996) Downregulation of interleukin-2 and apha-chain interleukin-2 receptor biosynthesis by cisplatin in human peripheral lymphocytes. Clin Immunol Immunopathol 79: 43-9.
- Kress TR, Sabò A, Amati B (2015) MYC: Connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15: 593-607.

Page 11 of 11

- 54. Hoffmann EK, Lambert IH (2014) Ion channels and transporters in the development of drug resistance in cancer cells. Philosophical Transactions of the Royal Society B: Biol Sci 369: 20130109.
- 55. Okada K, Ma D, Warabi E, Morito N, Akiyama K, et al. (2013) Amelioration of cisplatin-induced nephrotoxicity in peroxiredoxin Ideficient mice. Cancer Chemother Pharmacol 71: 503-509.
- Kang KW, Im YB, Go WJ, Han HK (2009) C-myc amplification altered the gene expression of ABC- and SLC-transporters in human breast epithelial cells. Mol Pharm 6: 627-633.
- Biroccio A, Benassi B, Amodei S, Gabellini C, Del Bufalo D, et al. (2001) c-Myc down-regulation increases susceptibility to cisplatin through reactive oxygen species-mediated apoptosis in M14 human melanoma cells. Mol Pharm 60: 174-182.
- 58. Chakravarthi S, Haleagrahara N, Wen CF, Lee N, Thani P (2010) C-myc regulation and apoptosis in assessing the beneficial effect of apigenin in cyclosporine induced nephrotoxicity. Res J Pharm 4: 15-20.
- 59. Khanna A, Plummer M, Bromberek C, Bresnahan B, Hariharan S (2002) Expression of TGF-beta and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity. Kidney Int 62: 2257-2263.
- 60. Morishita Y, Yoshizawa H, Watanabe M, Ishibashi K, Muto S, et al. (2014) siRNAs targeted to Smad4 prevent renal fibrosis *in vivo*. Sci Rep 4: 6424.
- 61. Park HS, Kim EN, Kim MY, Lim JH, Kim HW, et al. (2016) The protective effect of neutralizing high-mobility group box1 against chronic cyclosporine nephrotoxicity in mice. Transpl Immunol 34: 42-49.
- Sharp CN, Doll MA, Dupre TV, Shah PP, Subathra M, et al. (2016) Repeated administration of low-dose cisplatin in mice induces fibrosis. Am J Physiol Renal Physiol 310: F560-568.

- Song YJ, Li J, Xie XF, Wang H, Li QX (2011) Effects of amlodipine on TGF-Î²-induced *Smad2*, 4 expressions in adriamycin toxicity of rat mesangial cells. Arch Toxicol 85: 663-668.
- Jang CW1, Chen CH, Chen CC, Chen JY, Su YH, et al. (2002) TGF-beta induces apoptosis through *Smad*-mediated expression of DAP-kinase. Nat Cell Biol 4: 51-58.
- 65. Feldman G, Kiely B, Martin N, Ryan G, McMorrow T, et al. (2007) Role for TGF-beta in cyclosporine-induced modulation of renal epithelial barrier function. J Am Soc Nephrol 18: 1662-1671.
- 66. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, et al. (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1ß, IL-18, IL-6 and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322: 8-15.
- 67. Pan H, Chen J, Shen K, Wang X, Wang P, et al. (2015) Mitochondrial modulation by Epigallocatechin 3-Gallate ameliorates cisplatin induced renal injury through decreasing oxidative/nitrative stress, inflammation and NF-kB in mice. PloS ONE 10: e0124775.
- 68. Park HS, Kim EN, Kim MY, Lim JH, Kim HW, et al. (2016) The protective effect of neutralizing high-mobility group box1 against chronic cyclosporine nephrotoxicity in mice. Transpl Immunol 34: 42-49.
- 69. Kim J (2016) Poly(ADP-ribose) polymerase activation induces high mobility group box 1 release from proximal tubular cells during cisplatin nephrotoxicity. Physiological Research/Academia Scientiarum Bohemoslovaca 65: 333-340.