
Review Article Open Access

Yang, J Diabetes Metab 2013, S12
DOI: 10.4172/2155-6156.S12-004

 J Diabetes Metab    Type 1 Diabetes Mellitus           ISSN: 2155-6156 JDM, an open access journal

Keywords: Autoimmune diabetes; MDSC; Immune cells; Immune
intervention; MDSC development; Soluble mediators; Cell contact; 
Mechanism and immune tolerance

Abbreviations: AID: Autoimmune Diabetes; MDSC: Myeloid-
Derived Suppressor Cells; NOD: Non-Obese Diabetic; B: Biobreeding 
LETL: Long Evans Tokushima Lean; APC: Antigen-Presenting Cells; 
Teff Cells: Effector T Cells; Treg Cells: Regulatory T Cells; MHC II: 
Histocompatibility Complex Class II; CLTA4: Cytotoxic T-Lymphocyte 
Antigen 4; IL: Interleukin; IFN: Interferon; TGF: Tumor Growth 
Factor; Inos: Inducible Nitric Oxide Synthase; NO: Nitric Oxide; 
TNF: Tumor Necrosis Factor; ROS: Reactive Oxygen Species; CCR2: 
CC Chemokine Receptor; CCL2: CC Chemokine Ligand; MMP: 
Matrix Metalloproteinase; TLR: Toll-Like Receptors; IMC: Immature 
Myeloid Cells; PIR: Paired Immunoglobulin-Like Receptors; ICAM-1: 
Intercellular Adhesion Molecule 1

Introduction

Autoimmune Diabetes (AID)

Cause, pathogenesis and current therapy of AID: In 2005, the 
US National Institutes of Health estimated that 23.5 million people, 
~ 8% of Americans, suffer from autoimmune diseases with direct 
health care costs totaling 100 billion dollars annually [1]. Among over 
100 autoimmune diseases whose causes are identified, autoimmune 
diabetes, known as type 1 diabetes, is estimated to afflict as many as 10 
million people worldwide [1].

As with other autoimmune diseases, AID is initiated and developed 
by an interaction of environment, genes and immune system 
[2]. Environmental factors such as infectious agents, commensal 
microbiota, sex hormones and diets contribute to the establishment 
and (re)shaping of the immune system [3-5]. A number of genes such 
as major histocompatibility complex class II (MHC II), cytotoxic 
T-lymphocyte antigen 4 (CLTA4), insulin and many others are
implicated in the immune response that regulates AID outcome [3].

Over-reactive immune system also occurs in AID patients [2]. As a 
result of their interplay, AID stems from a loss of insulin-producing 
pancreatic β-cells caused by infiltrating immune cells, resulting in 
hypoinsulinemia, hyperglycemia and fatal complications.

So far, there has been no cure for AID. Daily injection of insulin 
is the only medication. However, this treatment cannot match the 
naturally precise timing and dosing of insulin secretion of the pancreas 
in response to hyperglycemia, leading to severe complications, namely, 
kidney failure, retinopathy, cardiovascular disease, and chronic ulcers 
[6]. A variety of strategies has been developed, aimed at re-establishing 
physiological insulin production in diabetic patients [7]. Despite 
some progress, devising a means capable of restoring self-tolerance or 
specifically correcting autoimmunity is a crucial step toward reversing 
AID. In this respect, regulatory Treg and Myeloid-Derived Suppressor 
(MDSC) have received particular attention [8-10].

Animal models of AID: Since the access to clinical samples of 
AID patients is always limited, animal models of AID are requisite 
for pre-clinical studies. Different animal models of AID have been 
used in pre-clinical research, including chemical-induced diabetic 
mice, Non-Obese Diabetic (NOD) mice, Biobreeding (BB) rats, Long 
Evans Tokushima Lean (LETL) rats, New Zealand white rabbits, 
Chinese hamsters, Keeshond dogs and Celebes black [11]. These 
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Abstract
Autoimmune diabetes is caused by a destruction of pancreatic β-cells by autoreactive immune response, 

leading to insulin insufficiency/deficiency and hyperglycemia and fatal complications. This disease afflicts up to 
10 million people worldwide. There is no cure for autoimmune diabetes. Insulin injection is the only supportive 
medication, which always accompanies fatality. Apart from replacement therapy using insulin and/or β-cells, 
immune interventions hold the key to stopping this illness. Myeloid-derived suppressor cells have emerged as a new 
regulator in harnessing immune response. In this review, we first up-dated the advances on etiology, development 
and immune interventions of autoimmune diabetes. Next, we highlighted the origin, development, tolerogenic 
mechanisms of myeloid-derived suppressor cells with an emphasis of the signaling pathways in their development 
and action. Finally, we summarized and discussed the recent progress in exploring the potential and mechanism of 
myeloid-derived suppressor cells in autoimmune diabetes. A novel vista on MDSC-based immune intervention with 
AID development was also discussed.
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animal models have provided a rich information about the inherently 
complex development of this disease [11,12], albeit the fact that certain 
differences in AID pathogenesis between humans and animals exist 
[13]. 

Based on many similar genetic, immunological and pathological 
features with human patients, NOD mice stand out as the most 
commonly used model for AID study [14,15]. Using these animal 
models, more than 400 compounds were demonstrated effective against 
AID in pre-clinical settings and some of them are in clinical trials [16].

Development and immune intervention with AID: Similar to 
AID patients, NOD mice can spontaneously develop diabetes (Figure 1) 
[12]. At the initiation of AID, leukocytes begin to invade the pancreatic 
islets [17]. This invasion, called insulitis, gradually induces a loss of 
pancreatic β-cells and, eventually, gives rise to insulin insufficiency and 
deficiency, a hallmark of AID [17]. Overwhelming evidence shows that 
T-cells play a key role in AID development, though B cells, Dendritic 
Cells (DC), macrophages, NK cells and other immune cells are also 
implicated [18,19]. During its development, Antigen-Presenting Cells 
(APC) infiltrate into the inflamed pancreas, capture auto-antigens and 
move to pancreatic lymph nodes. Upon T-cell receptor engagement 
by MHC and auto-antigens, effector T(Teff) cells are activated and 
differentiated into different T-cell subsets. Eventually, these cells go 
to the pancreas and release interferon (IFN)-α, tumor necrosis factor 
(TNF)-α and perforin leading to the destruction of β-cells. Treg cells 
have been recognized as an inhibitory player in AID development. 
In 2007, MDSC was coined to describe suppressor cells of myeloid 
origin [20] and, later on, manifested their ability to inhibit AID [9,10]. 
Accordingly, harnessing immune cells at the aforementioned steps 
may reduce autoimmunity and β-cell destruction and, in turn, lead to 
AID alleviation and cure (Figure 1).

MDSC

Origin and development of MDSC: MDSC were found to 
accumulate in bone marrows, spleens, and tumors in tumor bearing 
hosts about three decades ago [21,22]. In the last 10 years, research 
and clinical interest in MDSC has increasingly grown [23-27]. MDSC 
represent a heterogeneous population of myeloid progenitor cells 
induced by inflammatory mediators in malignancies, infections, wounds, 
transplants, and autoimmune disorders [23]. Their composition and 
percentage vary with diverse pathological conditions [28,29]. However, 
MDSC of different origins show great suppressive activities [30-32]. 
MDSC are featured in their morphological, phenotypic, and functional 
heterogeneity [23,24,28]. Nonetheless, further characterization of 
MDSC is now limited by their heterogeneous complexity and scarcity 
of reliable markers [24].

The development of MDSC in different circumstances is not well 
understood [33]. In physiological conditions, Immature Myeloid Cells 
(IMC) differentiate from myeloid progenitors and, gradually, mature 
into dendritic cells, macrophages, and granulocytes/neutrophils upon 
migrating to the periphery (Figure 2A). In pathological conditions, 
abundant growth factors associated with diseases stimulate IMC 
expansion and subsequently, disturb their normal differentiation in 
bone marrow [34].

Moreover, inflammatory mediators of pathologies can aberrantly 
drive IMC to activate and polarize into MDSC with different 
phenotypes [35] (Figure 2B). As a consequence, MDSC emigrate from 
bone marrow and accumulate in peripheral tissues. The question as 
to whether MDSC in the periphery, spleens versus tumor sites, hold 
the same characteristics is not resolved. Based on lineage markers, 

MDSC can be classified into Gr1+CD11b+CD115+Ly6C+ monocytic 
(M)-MDSC and Gr1+CD11b+Ly6G+ granulocytic (G)-MDSC in mice 
[20,36,37]. A consensus in the markers for human MDSC is not 
apparent. Depending on cancer types, human MDSC are characterized 
as CD11b+CD14+CD33+ or Lin-HLA-DR-CD33+ myeloid cells [38,39].

Mirroring the nomenclature of type 1 classic activation-like (M1) 
and type 2 alternative activation-like (M2) macrophages, polarized 
MDSC can be defined as M1 and M2 cells based on their corresponding 
phenotypes and functions (Figure 2B). The molecular basis of MDSC 
development at the stages of expansion, activation, and functional 
polarization is largely unknown. One signal model was originally 
proposed to explain the requirement of one of tumor-associated factors 
for MDSC development.

More recently, this model was evolved into the “two signal model” 
stating that two distinct tumor-associated mediators are required 
at the stages of MDSC expansion and activation [33]. Since MDSC 
development from expansion to activation and functional polarization 
is a multiple-step process, “multiple signal model” in which multiple 
factors/signals are necessary for this process should be considered. 
However, type and mechanism of the pathology-associated factors in 
pathogenesis of MDSC from hematopoietic progenitors remain mostly 
unclear.

Functional polarization of MDSC is less studied probably due to the 
complexity and heterogeneity of MDSC subsets. Compelling evidence 
support the concept that tumor-associated MDSC predominantly 
exhibit M2-like phenotypes and immunosuppressive and pro-tumoral 
activities [28,31,32,34,36,40-42]. However, co-existence of M1 and M2 
phenotypes in MDSC was observed in few cases [43].

The M2 M-MDSC were phenotypically characterized by a number 
of enhanced signature markers such as Interleukin (IL)-10, arginase, 
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Figure 1: Cause, Development and Immune intervention of AID. 
Genes, environment and immune dysregulation drive AID development. 
During disease development, antigen-presenting cells (APC) capture auto-
antigens, move to the pancreatic lymph nodes (PLN). After activation, Teff 
cells differentiate into different subsets, enter the pancreatic islets, release 
pro-inflammatory cytokines (IFN-γ, TNF-a and perforin) and destroy b-cells. 
Eight intervention steps to prevent AID are proposed. Step 1: APC activation. 
Step 2: Activation and differentiation of T cell subsets, respectively. Step 3: 
Impairment of APC by MDSC. Step 4: Inactivation of Teff cells by MDSC. 
Step 5: Induction of Treg by MDSC. Step 6: Treg cell inhibition of Teff activation 
by IL-2 deprivation and B7 reduction. Step 7: Reduction of TNF-a and IFN-γ 
production in Teff cells by Treg cells. Step 8: Migration of immune cells into 
pancreatic islets. Arrow (thin line) and inhibitory sign (thick line) indicate 
promotion and suppression, respectively.
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Tie-2, CD36, CD206, IL-4R and CC chemokine receptor 2 (CCR2) [42]. 
Inhibitor of SHP-1/2, NSC87877, could reverse M2-like phenotypes of 
M-MDSC to M1-like phenotypes [42]. M1-polarized MDSC had an 
elevation of signature markers such as inducible Nitric Oxide Synthase 
(iNOS), nitric oxide (NO), TNF-α, IFN- γR, MHC I and CCR7 [42]. 
G-MDSC in tumors shares the same markers, CD11b+Ly6G+, and 
immunosuppressive activities as splenic G-MDSC. However, they 
sometimes may not be regarded as the same cells [44,45]. Like M1/M2 
MDSC, G2 G-MDSC is a major population found in tumor bearing 
mice. G2 cells up-regulate the expression of arginase, CC Chemokine 
Ligand 2 (CCL2), CCL5 and Matrix Metalloproteinase 9 (MMP-9). In 

contrast, G1 cells show elevated expression levels of TNF-α, Fas, and 
Intercellular Adhesion Molecule 1 (ICAM-1). [44,46].

Polarization of MDSC involves an array of signaling cascades, 
leading to their acquisition of phenotypes and functionalities. Several 
studies showed that IFN-γ could induce iNOS expression whilst IL-4 or 
IL-13 increased arginase expression in MDSC as well as macrophages 
[4-50]. Furthermore, activation from Toll-Like Receptors (TLR), IFN- 
γR, IL-4R, IL-13R could modify MDSC function [32,36,37,50-53]. 
Consistently, membrane receptors such as TLR, Interferon- γReceptor 
(IFN- γR), Interleukin-4 Receptor (IL-4R) and IL-10R have been 
reported to participate in the function and expression of inducible 
Nitric Oxide Synthase (iNOS), Tumor Necrosis Factor (TNF)-α, 
M1 hallmarks, and arginase, M2 hallmarks [42,44]. Besides, studies 
in tumor-bearing hosts using pharmacological intervention and/or 
genetic ablation revealed that paired immunoglobulin-like receptors 
(PIR) and Tumor Growth Factor Β Receptor (TGF-βR) modulate the 
polarization of M-MDSC and G-MDSC, respectively (Figures 3A and 
3B) [42,44]. Therefore, ligands, receptors, and downstream mediators of 
the PIR-B and TGF-βR pathways are potential targets for manipulation 
of functional phenotypes of MDSC that can be used for treatment of 
autoimmunity, cancer and other diseases. More information on the 
molecular basis of MDSC polarization and related functional changes 
is required for their further clinical applications.

Multiple mechanisms of MDSC in immune regulation: MDSC 
are one of the pivotal regulators of innate and adaptive immunity. They 
act as a “hub” to link and cross-talk with other immune cells in favor 
of immune tolerance in order to maintain disease progression and 
persistence. The details regarding the coordinated regulation of MDSC 
and other immune cells were summarized in Figure 4A [38,54,55]. 
MDSC exert immune suppression by cross communication with T 
cells, NK cells, DC , macrophages, and other immune cells via cell 
contact (MHC/peptide/TCR, CD28) and soluble mediators (Reactive 
Oxygen Species (ROS), NO, IL-10, TGF-β) [54,56,57]. MDSC can 
impair DC functions by decreasing maturation, antigen uptake and 
migration and skewing DC cytokine profile from inflammatory 
phenotype to anti-inflammatory one [58]. Additionally, MDSC 
interact with macrophages. MDSC diminish inflammation by down-
regulating macrophage production of IL-12, IL-6 and MHC II. This 
down-regulation appears to require IL-10 and cell contact [54]. 
MDSC also suppress development and function of NK cells and this 
suppression can be enhanced by inflammation [59,60]. As far as T cells 
are concerned, MDSC can induce Teff cell inactivation and apoptosis 
[61-65] and expand Treg cells [9,32,36,66-69]. T cell suppression and 
Treg expansion by MDSC are cell contact-, NO- and/or arginase-
dependent [36,61,70-74]. M2-like M-MDSC possess higher abilities to 
suppress Teff cell activation and proliferation than M1-like counterparts 
in the co-culture of T cells with M-MDSC and in vivo [42]. Moreover, 
M-MDSC with M2 functional phenotype possess higher potency in Treg 
expansion than those with M1 phenotype in vitro and in vivo [42]. M2 
M-MDSC-induced Treg increase seemed to be IL-10, IL-4 and IL-13-
mediated arginase-dependent [42]. GMDSC could inhibit CD8 T cell 
activity in tumor-bearing hosts [44]. However, the ability of G-MDSC 
to induce Treg expansion is not corroborated. Overall, MDSC with M2 
functional phenotype induce higher immune tolerance than those with 
M1 phenotype.

Potential and mode of action of MDSC in suppressing AID

MDSC have emerged as one of key immune regulators, raising a 
hypothesis that MDSC can treat AID and other autoimmune diseases. 
This hypothesis was first assessed in mouse models of AID as evidenced 
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Figure 2: Multiple Steps in the Development of Myeloid Cells and MDSC. 
(A) In physiological conditions, hematopoietic stem cells (HSC) undergo a 
series of expansion, differentiation, and maturation in bone marrow. Mature 
myeloid cells migrate to the periphery via blood vessels and replenish 
peripheral pool of myeloid cells. In pathological conditions, mediators of 
pathologies deter and divert normal HSC development to pathological 
development, distinguished by an increase of IMC expansion and activation. 
These immature myeloid cells, i.e., MDSC, migrate to the peripheral lymphoid 
tissues and sites of inflammation. MDSC can be categorized into two subsets, 
monocytic (M)-MDSC and granulocytic (G)-MDSC, by their markers (CD11b, 
Ly6C and Ly6G) and suppressive activities (20, 33, 36). (B) The inflammatory 
mediators of pathologies can regulate three developmental stages of MDSC 
from expansion to activation and polarization. In terms of polarization, 
these mediators dictate MDSC subsets to skew into M2 M-MDSC and G2 
G-MDSC. Polarized MDSC subsets can be distinguished by a distinct set of 
signature genes in relation to their functions. M2/G2 cells produce arginase, 
anti-inflammatory cytokines and chemokines, eventually converging to the 
establishment of immune tolerance (and pro-tumoral activities). In marked 
contrast, M1 and G1 cells produce iNOS, NO, inflammatory cytokines and 
chemokines, leading to their immunogenic effects (and tumoricidal activities). 
Whether MDSC polarization is an irreversible process or a reversible 
hyperactivation state remains elusive (34).
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by two seminal studies [9,10]. One study from our group, for the first 
time, demonstrated that MDSC isolated from tumor-bearing mice 
mediated Treg induction or Teff suppression dependently on a MHC 
II-dependent antigen presentation [9]. The mechanism of action of 
MDSCs is via secretion of anti-inflammatory cytokines (TGF-β and 

IL-10), induction of CD4+CD25+Foxp3+ Treg or suppression of Teff 
proliferation that are beneficial for creating host immune tolerance 
[9]. To understand the role of MDSCs in murine diabetes models, 
we showed that adoptive transfer of MDSCs reduced diabetes by 75% 
compared with control group in RIP-HA/Rag2-/- mice [9]. Moreover, 
the protective role of MDSCs in NOD/SCID mice was investigated [9]. 
NOD/SCID mice were injected with diabetogenic T cells from diabetic 
NOD mice in the presence of MDSCs. Consistently, protective efficacy 
of MDSCs is dose-dependent and single dose treatment of MDSCs 
showed significant long-term protection, i.e. 60% remained diabetes 
free over 14-week observation [9]. The overall data prove the concept 
that MDSCs can suppress AID via regulation of T cell-mediated 
tolerance. It is worth mentioning that the MDSC were characterized as 
M2 MDSC. Later on, the other study confirmed the function of MDSC 
in AID development. They first showed that temporary B-cell depletion 
by anti-hCD20 antibody increased CD11b+Gr1+ splenocytes by 6% in 
h-CD20/NOD transgenic mice [10]. 

Next, they found that these myeloid cells inhibited T cell 
proliferation in vitro in a NO- and cell contact dependent fashion, 
suggesting that this subset had MDSC characteristics [10]. Strikingly, 
they were able to employ one single dose of anti-Gr1 antibody (RB6-
8C5 clone) to induce a significant expansion of CD11b+Gr1+ cells in 
NOD mice whose diabetic incidence was reduced by ~40%. Besides, 
anti-TGF-β neutralizing antibody almost abolished the reduction of 
diabetic incidence in NOD mice, suggesting the implication of TGF-β 
in the function of CD11b+Gr1+ cells. The CD11b+Gr1+ cells showed 
perfect traits of MDSC as evidenced by in vitro Teff suppression and 
Treg induction assays [10]. Taken together, MDSC suppress AID via 
multiple mechanisms involving Teff inactivation, Treg induction, cell 
contact and soluble mediators (TGF-β, IL-10, NO, etc.) (Figure 4B). 
Besides, MDSC polarization could affect a potency level of MDSC in 
AID prevention and/or therapy. 

Several lines of evidence have proved the principle indicating a 
great potential of MDSC-based strategy for AID prevention in mouse 
models [9,10]. Clearly, immunotherapy with MDSC underscores 
the establishment of long-term immune tolerance before a complete 
destruction of remaining β-cells or β-cell replacement/regeneration 
in hosts, leading to the AID cure. However, such immunotherapy 
is a double-edged sword. On one hand, it can suppress aberrant 
autoimmunity. On the other hand, this therapy may increase the 
risk of infections and malignancy. Ideally, manipulating MDSC to 
establish antigen-specific immune tolerance can minimize the above 
risk, which was proven possible in the mouse model [9,10]. MDSC-
based immunotherapy for AID from bench side to bed side needs to 
overcome several hurdles, i.e., reliable source of human MDSC, in vivo 
establishment of auto-antigen-specific immune tolerance by MDSC 
and re-establishment of MDSC induced immune tolerance after loss. 
Before fully exploiting MDSC for AID, more questions remain to be 
addressed, whether or not MDSC exert their action on macrophages, 
DC, B and NK cells in AID protection, the mechanism by which MDSC 
induce Treg cells, whether MDSC are effective for AID therapy, cost-
effective way of producing enough and safe MDSC for clinical trials, 
the relationship of MDSC polarization and AID prophylaxis/therapy 
and impact of MDSC on β-cell function.

Concluding Remarks
AID is an autoimmune endocrine disorder with premature death. 

Mounting data have clearly pointed to a critical role of MDSC in 
autoimmune diabetes. Although some advances have been made in 
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Figure 3: Signaling Pathways Governing the Polarization of MDSC 
Subsets. (A) LPS (a TLR4 ligand), IFN-γ, IL-4, and IL-13 are present in 
different pathological situations. LPS and IFN-γ trigger activation of ERK, NK-
κB and STAT1, leading to M-MDSC skewing to M1 cells, characterized by an 
up-regulation of M1 hallmark genes, iNOS and TNF-b. In contrast, IL-4 and 
IL-13 induce activation of STAT3/5 and M-MDSC skewing to M2 cells, defined 
by an up-regulation of M2 related genes, arginase and IL-10 (32, 36, 37, 50-
53). PIR-A and PIR-B are highly expressed in MMDSC in a paired manner 
(72, 73). Upon ligand binding, PIR-A/Fc-γR complex is activated, resulting in 
enhanced M1 pathway. M1 pathway is thought to antagonize M2 pathway. 
The PIR-A ligands can activate PIR-B, leading to inhibition of M1 and M2 
pathways (42). (B) Similar to Figure 3A, signals from LPS/IFN-γ and IL-4/IL-13 
can dictate G-MDSC polarization into G1 and G2 cells, respectively. Both cell 
types are characterized by G1 hallmarks (TNF-a, Fas, ICAM-1, and ROS) and 
G2 hallmarks (arginase, IL-10 and CCL2/5), respectively. TGF-b is known as 
a negative regulator of G-MDSC polarization (44-46). Upon TGF-b binding in 
most cell types, TGF-bRII/RI dimer forms and activates SMAD2/3, leading 
to the increase of SMAD7 expression and NF-κB inhibition (74). Current 
data support the concept that TGF-b inhibits G1 pathway but promotes G2 
pathway. It is still unclear whether and how SAMD2/3 and SMAD7 mediated 
TGF-b-mediated G1/G2 polarization. Arrow (thin line) and inhibitory sign (thick 
line) indicate promotion and suppression, respectively. 
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understanding MDSC development from expansion, activation to 
polarization stages in recent years, relatively little is known about the 
multi-stage process. Here, we brought up an evolving concept of the 
multiple signal model in regulating MDSC development. Moreover, the 
signaling cascades involving PIR and TGF-β receptors were discussed 
for the polarization of M-MDSC and G-MDSC, respectively. Control 
over this polarization might have an impact on the clinical potential 
of MDSC in AID therapy. A special emphasis was placed on recent 
progress in understanding the therapeutic potential and mechanism of 
action of MDSC in AID. A new view on MDSC-based interference with 
AID development was also discussed.
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Figure 4: Mechanism of MDSC in Cross-talk with Immune Cells and 
AID Suppression. (A) MDSC is thought to be a central player in regulating 
immunity via interplay with macrophages (MΦ), dendritic cells (DC), NK cells, 
regulatory T cells (Treg), effector T cells (Teff), etc. MDSC regulate immune 
cells via cell contact and soluble mediators. The interaction of MDSC with 
different immune cells is indicated with thin-line arrow (activation) and thick-
line inhibitory sign (inhibition). (B) M1/M2 polarization of MDSC may affect 
disease and health. M1 and M2 MDSC show pro-inflammatory and anti-
inflammatory (tolerogenic) activities dependently on the expression of their 
respective signature genes. Therefore, manipulation of MDSC polarization 
can used to treat diseases. In this context, M2-polarized MDSC can be used 
as a novel cell-based therapy for AID. However, whether M1-polarized MDSC 
aggravate this disease is not ascertained. Arrow (thin line) and inhibitory sign 
(thick line) indicate promotion and suppression, respectively.
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