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Abstract

Ischemic heart disease is the leading cause of morbidity and mortality in diabetes. Patients with diabetes are
particularly at risk of perioperative myocardial infarction, and are less resistant to myocardial ischemia-reperfusion
injury (IRI), but the underlying mechanisms are very unclear. Opioid conditioning has been well demonstrated to be
protective against myocardial IRI like ischemic conditioning, but this effect is compromised in diabetic condition, and
little is known about the role of opioid-induced cardioprotection during diabetes. This brief review is to provide a
summary of our present understanding of the effects of diabetes on opioids induced protection against myocardial
IRI and the challenges of limiting IRI by opioids in the diabetic heart.
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Introduction
Cardiovascular disease, especially ischemic heart disease (IHD), is a

major complication in patients with diabetes and remains the leading
cause of death globally [1-3]. The standard clinical therapy for
ischemic heart disease is timely re-establishment of blood supply (i.e.,
reperfusion) in order to rescue the ischemic tissue. Paradoxically,
however, restoration of blood flow may cause additional cell death in
cardiomyocytes rather than initiate salvage the ischemic tissue, a
phenomenon termed “ischemia-reperfusion injury (IRI)”[4-6]. In
1986, Murry et al. firstly observed that myocardial IRI could be
reduced by ischemic preconditioning, which was achieved by brief
episodes of ischemia and reperfusion, given before prolonged ischemia
[7]. However, its clinical application has been limited because of the
unpredictable occurrence of ischemia in patients. In 2003, Zhao et al.
applied transient brief interruptions of reperfusion to ischemic
episodes and resulted in reduced myocardial injury, termed “ischemic
postconditioning” [8]. Subsequent studies expanded this beneficial
myocardial conditioning to remote conditioning and pharmacological
conditioning [9,10]. It is of note that myocardial conditioning such as
preconditioning mediated cardioprotection could be blocked by opioid
receptor antagonists [11] and mimicked by opioid receptor agonists,
indicating the involvement of activation of opioid receptor signaling
pathways in myocardial IRI protection . Unfortunately, this opioid-
induced cardioprotection is abolished or compromised under
pathological conditions such as diabetes [12,13]. This review intends to
help understand the role of opioid-induced cardioprotection against
IRI and the challenges of limiting myocardial IRI in the diabetic hearts.

Subtypes of Opioid Receptors
An "opioid" is any narcotic not only derived from opium, suggesting

endogenous substances such as enkephalins or endorphins that can
effect on the brain to decrease the sensation of pain are also classified
as opioids. Endogenous and exogenous opioid agonists exert their
pharmacological and physiological effects through binding to specific
opioid receptors. Opioid receptors (ORs) are classified into four major
types, including the mu (µ), delta (δ), kappa (κ) and OR-like subtype1
receptor (ORL-1). The structures and functions of these four opioid
receptor subtypes are well described by other reviews [14-16]. ORs are
G-protein-coupled receptors [17]. After opioid agonist activates the
ORs, G-protein signaling leads to a series of changes in intracellular
signaling transduction, and subsequently affects cell function. The
effects of µ, δ, and κ-receptor could be well inhibited by the non-
selective opioid antagonist naloxone [14], a drug widely used in clinic.
ORs are mainly expressed in the brain and spinal cord [14].
Interestingly, studies also found that δ and κ but not µ receptor and
ORL-1 are expressed in cardiac tissues [14,18,19]. This suggests that δ
and κ-receptor may play an important role in mediating opioid-
induced cardioprotection. Furthermore, cardiac issues are capable of
synthesizing, storing, and releasing of opioid receptor peptides [20],
such as endorphin, dynorphin, and encephalin, which have high
affinity for µ-, κ- and δ-opioid receptors, respectively, indicating that
these endogenous opioid peptides may contribute to ischemic
tolerance in heart.

Role of opioid receptor in opioid-induced cardioprotection
It is not surprising, given the presence of δ and κ-OR expressed in

the heart, that both the selective agonist of δ and δ-OR can reduce
myocardial infract size in many species [21,22]. The roles of δ-OR in
ischemic preconditioning are well documented by the review by
Dragasis S et al. [14]. Several studies also found that cardioprotection
mediated by postconditioning involved the activation of δ-OR [23,24]
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and the preservation of myocardial opioid content [24]. The use of δ-
OR antagonist naltrindole abolished methadone and morphine
induced reduction in myocardial infarct size during reperfusion [25].
Compared with the clear evidence of δ-OR in reducing myocardial IRI,
the role of κ-OR in cardioprotection is more controversial. However, a
recent study reported that administration of nor-binaltorphimin to
block κ-OR eliminated fentanyl postconditioning mediated
cardioprotection and the enhancement of cardioprotection mediated
by combined fentanyl and limb remote ischemic postconditioning [26].
Another independent study showed that remote ischemic
postconditioning requires the activation of both δ and κ-OR [27].
Interestingly, the clinically used opioid drugs, such as remifentanil,
which has high degree of μ-OR selectivity with a lower affinity with δ-
OR and κ-OR, have been reported to be beneficial to reduce
myocardial IRI [28]. However, Remifentanil post-conditioning protects
the heart from IRI involved both δ-OR and κ-OR but not μ-OR
activation [29]. All these results suggest that the stimulation of δ-OR
and κ-OR with selective or non-selective agonists may play an
important role in the cardioprotective effects of cardiac conditioning.

The challenge of opioid-induced cardioprotection in diabetes
Although the evidences of ORs (δ and κ-OR) and opioid-induced

cardioprotection are clearly described above in non-diabetic condition,
the effects of opioids induced cardioprotection under diabetic
condition are compromised. It was reported that remifentanil
effectively reduced myocardial infarction in normal rats, no matter it
was used as preconditioning or as postconditioning stimuli or used as
continuous infusion during ischemia and reperfusion [30]. However,
in diabetic condition, the cardiac protection of remifentanil
preconditioning against IRI was mitigated, which might be associated
with reduced recovery of the activities of proteins involved in anti-
apoptotic pathways including ERK1/2 [13]. Sufentanil is widely used in
clinical anaesthesia because of its protective effects against myocardial
IRI, but it was ineffective in preventing against IRI in diabetic rats,
which is associated with the activation of GSK-3β [12]. Further, the
selective κ-OR agonist significantly reduced the myocardial infarct size
and increased the expression of stress-inducible heat-shock protein 70
in normal rats, but its effects were abolished in streptozotocin-induced
diabetic rats which might be restored by insulin replacement [31].
However, the underlying mechanisms in which diabetes abolish
opioid-induced cardioprotection are not certain.

Molecular perspectives of opioid-induced cardioprotection
in diabetes

Cardioprotection by opioid conditioning and ischemic conditioning
(in particular, preconditioning) appear to share common elements in
cellular mechanisms [11]. Cardioprotection by preconditioning is
mostly initiated through stimulation of G-protein coupled receptors by
ligands, including bradykinin, opioids, acetylcholine and tumor
necrosis factor (TNF)-alpha [32,33]. Then ligand-receptor binding
activates multiple signaling cascades, especially protein kinase C (in
particular, PKCε), reperfusion injury salvage kinase (RISK), including
PI3 kinase/Akt, extracellular signal regulated kinase (ERK), p70S6
kinase and glycogen synthase kinase 3β (GSK-3β), or survival
activating factor enhancement (SAFE) pathways, including janus
activated kinase (JAK) and signal transducer and activator of
transcription (STAT)[34-36] (Figure 1). It is well demonstrated opioid-
induced cardioprotection in normal rodents involves several similar
signaling, such as protein kinase C (PKC) [37], GSK-3β [38], ERK [39],

JAK/STAT [40], and so on. However, diabetes has been shown to be
associated with impaired PI3 kinase/Akt signaling (components of
both insulin signaling and the RISK pathway), essentially all kinases
proposed to contribute to the infarct-sparing effect of ischemic
conditioning. For example, impaired phosphorylation of PKC, PI3
kinase/Akt, ERK, STAT3, and GSK-3β have been demonstrated in
diabetic hearts as reviewed by Wider J and Przyklenk K [2]. These are
potential mechanisms that rendered the diabetic hearts are more
susceptible to IRI and less sensitive to opioid conditioning (Figure 1).
However, further research should be directed at elucidating the role of
OR-induced cardioprotection in diabetic condition and developing
rational drug to reduce myocardial IRI and restore opioids induced
cardioprotection in diabetes. A most recent study [41] has showed that
selective activation of κ-opioid receptor reduced hyperglycemia in
streptozotocin-induced diabetic mice that might be relevant to
increased adiponectin, a molecule with anti-ischemic and anti-diabetic
property whose secretion is reduced in diabetes, which shed light on
exploring the mechanism and effectiveness of opioid cardioprotection
in diabetes.

Figure 1: Schematic of proposed mechanism of opioid conditioning
or ischemic conditioning induced cardioprotection. Opioids
conditioning or ischemic conditioning protects the heart against
ischemia-reperfusion injury, which initiates through stimulation of
G-protein coupled receptors by ligands, then activates multiple
signaling cascades, especially protein kinase C (PKC), survivor
activating factor enhancement (SAFE) and reperfusion injury
salvage kinase (RISK) pathways, and ultimately attenuates
ischemia-reperfusion injury, but these effects are abolished or
compromised under diabetic condition.

Conclusion
Opioid conditioning mimics ischemic conditioning induced

protection against myocardial IRI in normal condition. This effect is
produced by the activation of ORs, especially δ-OR and κ-OR.
However, the opioid-induced cardioprotection is abolished or
compromised in diabetic conditions. Gaining more insight into the
mechanism(s) by which diabetes affects opioid-induced
cardioprotection may assist in developing new therapeutic strategies to
improve cardiac function and to restore effectiveness of opioids
conditioning in cardiac operations in the setting of diabetes，
including patients with genetic predisposition to type 2 diabetes [42]
whose glucose levels might only be slightly increase but yet may
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accelerate the development of atherosclerosis and increase the risk of
coronary heart disease.
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