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Introduction 
Sepsis is the 9th leading cause of death in patients 65 to 75 years of 

age. It also accounts for ~50% of acute kidney injury (AKI) cases, and 
the onset of AKI in septic patients increases mortality to as high as 70% 
[1]. The renal epithelium is uniquely rich in mitochondria due to the 
high-energy demand of transport processes. It is well established that 
oxidative injury and mitochondrial damage are pivotal events during 
sepsis-mediated damage [2-9]. Takasu et al. analyzed renal biopsy 
samples from human nonsurvivors of sepsis and showed an increase 
in mitochondrial injury compared to kidneys of nonseptic patients 
[10]. Recently using the clinically relevant cecal ligation and puncture 
(CLP) murine model of polymicrobial sepsis, we showed that delivery 
of a mitochondrial targeted antioxidant (MitoTEMPO) reduced 
mitochondrial damage and tyrosine nitration of renal proteins (as a 
marker of oxidative stress) [9]. These data suggest that mitochondrial 
oxidants play a detrimental role in renal mitochondrial function during 
sepsis. However, the mechanism of oxidant-induced injury to the 
mitochondria during sepsis is unknown. 

Peroxidation of membrane lipids leads to fragmentation of 
polyunsaturated fatty acids resulting in the production of various 
cytotoxic and highly reactive aldehydes such as 4-hydroxy-2-nonenal 
(4-HNE) [11]. 4-HNE is a highly reactive compound, which can 
modify cysteine, histidine, and lysine residues within proteins and also 
DNA [12]. Exogenously added 4-HNE has also been shown to inhibit 
mitochondrial function [13,14]. Similar to other reactive oxygen 
species such as peroxynitrite and hydrogen peroxide, 4-HNE can lead 
to dose-dependent biological effects. Low levels have been shown to 
be involved with physiological signaling, while excessive levels can 
produce toxicity/damage [15-17]. 

The goal of this short communication is to identify whether lipid 
peroxidation within the mitochondria is increased within the kidney during 
sepsis using the CLP murine model of sepsis. To assess lipid peroxidation, 
we measured 4-HNE using a 4-HNE antibody in renal homogenates and 
mitochondrial fractions following induction of sepsis by CLP. 

Materials and Methods 
Cecal ligation and puncture (CLP) murine model of sepsis 

CLP was performed in male 40-week-old C57/BL6 mice (The 

Jackson Laboratory, Bar Harbor, ME), as described previously [6,9]. 
The cecum was ligated 1.5 cm from the tip with a 4-0 silk suture and 
punctured twice with a 21 gauge needle. The cecum was isolated but 
neither ligated nor punctured in control sham-operated mice (Sham). 
All mice received buprenorphine for analgesia at the time of surgery 
and antibiotics at 6 h. Animals were housed and handled in accordance 
to National Institute of Health Guide for the Care of Laboratory Animals 
with approval by the Institutional Animal Care and Use Committee at 
the University of Arkansas for Medical Sciences.

Western blot analysis 

Renal extracts (50 µg) from kidney homogenates were resolved 
onto SDS-PAGE gel and then transferred to PVDF membrane. Western 
blot analysis was performed using antibodies against 4-HNE (Abcam, 
#ab46545; 500) and β-actin (Sigma, #A5441; 1:1000). Densitometry 
evaluations on scanned membranes were performed using AlphaEase 
FC software.

Blue native polyacrylamide gel electrophoresis (BN-PAGE) 

Mitochondria isolation from kidneys of Sham and CLP groups 
was performed using sucrose containing buffer as described previously 
[18,19]. Mitochondrial complexes were extracted from the isolated 
mitochondria (250 µg) using 10% n-dodecyl-β-D-maltoside and 0.5 M 
aminocaproic acid (detergent/protein ratio, 2.5 g/g). The mitochondrial 
extracts (40 µg) were then resolved in a BN-PAGE gel [19,20] 
followed by western blotting with 4-HNE (Abcam, 1:500) and Core-2 
(Abcam,#ab14745;1:1000).
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Abstract
Sepsis can provoke kidney injury, which increases mortality. Human and animal studies have documented increased 

renal oxidative injury and mitochondrial damage during sepsis. However, few studies have attempted to dissect specific 
renal targets and/or types of oxidative injury using the cecal ligation and puncture (CLP) murine model of sepsis. The 
purpose of this short communication is to examine the extent of lipid peroxidation within renal mitochondria using CLP 
and blue native gel electrophoresis which separates intact mitochondrial respiratory complexes. Our results show that 
CLP induced increased 4-hydroxy-nonenal protein adduction (marker of lipid peroxidation) in renal homogenates and 
mitochondrial fractions. Blue native gel electrophoresis revealed that respiratory complex III was selectively targeted 
within mitochondrial fractions. This supports our prior report showing renal complex III inactivation following CLP. Future 
studies will identify specific renal proteins within complex III that are modified during sepsis to provide mechanistic 
insight on how mitochondrial respiration is inhibited during sepsis.
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Statistical analysis

Data presented as mean ± SEM, were analyzed using Prism 6.0 
(GraphPad Software Inc., San Diego, CA). The Student’s t-test was 
used to compare differences between the mean of two groups at a 95% 
level of confidence. P-values ≤ than 0.05 were considered statistically 
significant.

Results and Discussion 
Sepsis caused an increase in lipid peroxidation

We first sought to determine whether sepsis induces endogenous 
4-HNE production within the kidney. A representative western blot 
showing 4-HNE levels in total renal homogenates in the CLP group 
compared to the Sham group are presented in Figure 1. Densitometry 
revealed significant increases in 4-HNE protein adduction in CLP 
compared to Sham. Actin was used as a loading control. To our 
knowledge, this is the first report showing increased endogenous 
renal 4-HNE protein adduction during sepsis. Hussain et al. showed 
increased 4-HNE adduction within the diaphragm after administration 
of lipopolysaccharide, a model of endotoxemia [21]. 

Sepsis caused respiratory complex III lipid peroxidation in 
renal mitochondrial fractions 

Next, we wanted to determine whether lipid peroxidation was 
localized to the mitochondrial respiratory complexes, since our earlier 
studies showed that complex III activity was significantly declined at 
this time point (18 hr) post CLP [9]. Blue-native gel electrophoresis 
(BN-PAGE) was used to resolve different respiratory complexes without 
dissociating critical subunits [19,20]. To assess lipid peroxidation within 
renal mitochondrial respiratory complexes following CLP, solubilized 
renal mitochondrial extracts were resolved on a BN-PAGE gel followed 
by western blotting for 4-HNE. 4-HNE staining was increased within 
a single band corresponding to the molecular weight of complex III 
(~500 kD) in CLP, but not in Sham groups (Figure 2). The membrane 
was stripped and reprobed with an antibody to Core 2 (Complex III 
subunit) which showed equal loading of mitochondrial complex III 
in all samples. Densitometry revealed significant increases in 4-HNE 
protein adduction when compared to Core-2.

Given the broad staining pattern observed in Figure 1 using 
SDS-PAGE, it was surprising that complex III, which is composed of 
11 subunits, was selectively targeted. Further studies are needed to 
determine which subunit within complex III is adduced with 4-HNE 
and whether adduction directly leads to complex III inactivation. 

Interestingly, Ullrich et al. demonstrated that addition of exogenous 
4-HNE to renal mitochondria resulted in adduction to predominantly 
intermembrane space proteins, which is where the majority of complex 
III subunits are located [22]. Andrinega et al. [23] showed increased 
4-HNE adduction in liver mitochondrial proteins following chronic 
ethanol consumption using two dimensional BN-PAGE. Another 
recent report showed that doxorubicin increased 4-HNE adduction of 
key mitochondrial proteins within cardiac tissue, but these were not 
located within complex III [24]. Together, these findings along with ours 
suggest that 4-HNE adduction within mitochondria can occur under 
conditions of oxidative stress and may contribute to mitochondrial 
injury. This also supports our recent findings that the mitochondrial 
antioxidant MitoTEMPO can protect mitochondrial function in the 
kidney during sepsis [9].

In conclusion, the key finding we present here is the first 
demonstration that sepsis increases renal mitochondrial lipid 
peroxidation and 4-HNE production, which may contribute to the 
mitochondrial damage we previously reported [9]. Further studies 
will be directed at identification of the specific mitochondrial proteins 
targeted for lipid peroxidation, especially within complex III since our 
earlier studies showed a decline in complex III activity during sepsis. 
Identification of such targets could provide a molecular mechanism 
explaining how sepsis leads to renal complex III inactivation, and more 
importantly to design novel therapeutic strategies designed to block 
lipid peroxidation and preserve mitochondrial function during sepsis. 
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Figure 1: Sepsis increased renal 4-HNE protein adduction. Representative 
4-HNE western blot from mice subjected to CLP (sepsis) or sham surgery. 
Actin was used as a loading control. Densitometry showing band intensity 
4-HNE/actin. Mice subjected to CLP (18 hr) showed increased 4-HNE 
compared to sham animals. *P<0.05 vs. sham; n = 4/group.

   

Figure 2: 4-HNE adduction of respiratory complex III. A. Representative 
4-HNE western blot (WB) of blue native gel electrophoresis (BN-PAGE) of 
renal mitochondria isolated from mice subjected to CLP (sepsis) or sham 
surgery. B. Membrane from A was stripped and probed with antibody to Core-
2 (as marker of complex III), showing equal levels of respiratory complex 
III in sham and CLP samples. Densitometry of band intensity 4-HNE/Core2 
revealed increased 4-HNE adduction of complex III compared to sham 
animals *P<0.05 vs. sham; n = 4/group.
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