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Introduction
DN is a leading cause of end-stage renal failure and its morbidity 

and mortality is continuously increasing. Diabetic nephropathy is a 
clinical syndrome characterized by decreased Glomerular Filteration 
Rate (GFR), excessive deposition of extracellular matrix proteins 
[1,2] thickening of the peripheral glomerular basement membrane 
[3], glomerular hypertrophy, tubulointerstitial fibrosis [4], decreased 
excretion of albumin [5] and decreased creatinine clearance [2] .

Stages of Diabetic Nephropathy
Approximately 25% to 40% of patients with DM 1 ultimately 

develop Diabetic Nephropathy (DN), which progresses through about 
five predictable stages.

Stage 1

Hyperfiltration (Glomerular hypertrophy) (very early diabetes)-
Increased demand upon the kidneys is indicated by an above-normal 
Glomerular Filtration Rate (GFR).

Stage 2

Hyperfiltration (Mesangial expansion / basement memberane 
thicking (developing diabetes)-The GFR remains elevated or has 
returned to normal, but glomerular damage has progressed to significant 
microalbuminuria (small but above-normal level of the protein albumin 
in the urine). Patients in stage 2 excrete more than 30 mg of albumin 
in the urine over a 24-hour period. Significant microalbuminuria will 
progress to End-Stage Renal Disease (ESRD). Therefore, all diabetes 
patients should be screened for microalbuminuria on a routine (yearly) 
basis.

Stage 3
Microallbuminuria (Mesangial sclerosis) (Overt, or dipstick-

positive diabetes) — Glomerular damage has progressed to clinical 

albuminuria. The urine is “dipstick positive,” containing more than 
300 mg of albumin in a 24-hour period. Hypertension (high blood 
pressure) typically develops during stage 3.

Stage 4
(Overt-proteinuria Hypertension (Progressive sclerosis) late-stage 

diabetes)—Glomerular damage continues, with increasing amounts of 
protein albumin in the urine. The kidneys’ filtering ability has begun to 
decline steadily, and Blood Urea Nitrogen (BUN) and Creatinine (Cr) 
has begun to increase. The Glomerular Filtration Rate (GFR) decreases 
about 10% annually. Almost all patients have hypertension at stage 4.

Stage 5
ESRD (Fibrosis/sclerosis) GFR has fallen to approximately 10 

milliliters per minute (<10 mL/min) and renal replacement therapy 
(i.e., hemodialysis, peritoneal dialysis, kidney transplantation) is 
needed [6].

Pathogenesis of Diabetic Nephropathy
Various pathways like polyol pathway, formation of advanced 

glycation end products [7], hexosamine pathway [8], protein kinase 
C pathway [9], growth factors, cytokines [10] and free radicals [11]. 
MAPK activation, PARP activation have been reported to play an 
important role in diabetic nephropathy.
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Abstract
Diabetes mellitus is heterogeneous primary disorder of carbohydrate metabolism with multiple etiologic factors that 

generally involves absolute or relative insulin deficiency or insulin resistance or both, which results in hyperglycemia. 
According to WHO projection; it will be the single largest non-communicable disease worldwide by the year 2025 with 
the largest diabetic population in India. India leads the world with largest diabetic population thus, being termed the 
‘‘Diabetes Capital of the World’’. However, the prevalence of diabetes is consistently increasing, but still an effective 
treatment is lacking for the management of this epidemic. The uncontrolled and chronic diabetes mellitus often leads to 
cardiomyopathy, macrovascular complications and microvascular complications that include retinopathy, neuropathy 
and nephropathy. Diabetic Nephropathy (DN) is mainly characterized by decreased Glomerular Filteration Rate (GFR), 
excessive deposition of extracellular matrix proteins, thickening of the peripheral glomerular basement membrane, 
glomerular hypertrophy, tubulointerstitial fibrosis, increased excretion of albumin and decreased creatinine clearance. 
Formation of Advanced Glycation End-Products (AGEs), activation of Protein Kinase C (PKC), c-Jun N-terminal kinase 
(JNK), Mitogen Activated Protein Kinases (MAPKs), oxidative stress are the possible molecular mechanisms of DN. 
Despite many molecular mechanisms, the pathophysiology of DN is not clearly understood and its management is 
unsatisfactory.
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Polyol pathway

The polyol pathway consists of two enzymes. The first enzyme, 
Aldose Reductase (AR), reduces glucose to sorbitol with the aid of its 
co-factor NADPH, and the second enzyme, sorbitol dehydrogenase 
(SDH), with its co-factor NAD+, converts sorbitol to fructose, a 
process that increases the ratio of NADH/NAD and may result in 
both oxidative stress and activation of protein kinase C [12]. Fructose 
and its metabolites fructose-3-phosphate and 3-deoxyglucosone are 
more potent nonenzymatic glycation agents than glucose, Sorbitol 
may interfere with the uptake and metabolism of myo-inositol [13] . 
The physiological role of the AR pathway remains largely unknown. 
However, AR, sorbitol and myo-inositol are thought to play a role in 
the osmoregulation of the kidney [14]. Consumption of NADPH by 
AR results in the depletion of the levels of NADPH. This NADPH also 
acts as a cofactor for glutathione reductase, which reduces oxidized 
glutathione into reduced glutathione [2]. Excess sorbitol is oxidated 
to fructose. The flux of glucose through the polyol pathway would 
increase Advance Glycation End Products (AGE) formation. AGES, as 
well as binding of AGE to their receptors, are known to cause oxidative 
stress [15].

Age pathways

AGEs accumulate at site of microvascular injury in diabetes, 
including the kidney [16], the retina and within the vasculature [17]. 
Their importance as downstream mediators of tissue injury in diabetic 
kidney disease is demonstrated by animal studies using inhibitors of 
advanced glycation to retard the development of nephropathy without 
directly influencing glycemic control [18].

AGE receptors are present on various renal cell types2 including 
proximal tubular cells, mesangial cells, and podocytes [19]. AGE 
promote activation and expression of IL-6 and TGFβ1 via NF-kB-
dependent pathways [20]. The proximal tubule is the main site for 
reabsorption of filtered AGEs [21]. TGF-β1 expression is closely linked 
to accumulation of AGEs in the kidney [22]. AGEs are thought to lead 
to the transcriptional up-regulation of TGF-β1, possibly via PKC or 
oxidative stress. In experimental diabetes, oxidative stress is increased 
in proportion to the accumulation of AGEs [23]. AGEs can also lead 
to enhanced formation of free radicals both directly through catalytic 
sites in their molecular structure [24] and via stimulation of membrane 
bound NAD(P)H oxidase through the RAGE receptor and depletion 
of cellular antioxidant systems, such as glutathione peroxidase 
[25]. Mitochondrial dysfunction induced by AGEs and carbonyl 
intermediates may also contribute to the generation of superoxide 
[26]. AGE contribute to the release of proinflamatory cytokine and 
expression of growth factor and adhesion molecule such as VEGF and 
CTGF, TGF-β1, IGF-1, PDGF, TNF-α, IL-1β, and IL-6 [20,27].

Protein kinase C pathway

PKC has eleven isoforms. Nine PKCs are activated by DAG, 
which is formed from excess glyceraldehyde- 3-phosphate. Increased 
glucose concentration results in increase amount of DAG, which 
activates PKC. PKC activation leads to changes in renal blood flow 
[28], by decreasing production of NO [29], mesangial expansion, 
albuminuria and increases GFR, increases pro-inflammatory gene 
expression and vascular permeability in several models of experimental 
diabetes [30]. PKC activation may be responsible for the increased 
expression of ECM molecules both directly and through TGF- β1 
overexpression. The capacity of active PKC to induce the formation 
of the transcription factor AP-1 is believed to be the major underlying 

mechanism of this combined induction of TGF-β1 and ECM protein 
genes. In the glomeruli, DAG levels are increased and PKC is activated 
[31]. Downstream of DAG-sensitive PKC isozymes is their activation 
of mitogen activated protein kinases (ERK) 1/2, which are essential 
for mesangial cell growth and enhanced gene expression, including 
growth factors and extracellular matrix proteins [32]. ERK1/2 protein 
expression is unchanged but its activity is significantly increased 
through PKC dependent manner in mesangial cell and glomeruli. ET-1 
stimulated collagen IV expression is also dependent on the activation 
of ERK1/2 through PKC activation [33].

Hexosamine Pathway

The hexosinase converts fructose-6-phosphate into glucosamine-
6-phosphate. Glutamine: Fructose-6-Phosphateamidotransferase 
(GFAT) is the rate-limiting enzyme of this pathway. Both high glucose 
and Ang II activates the GFAT promoter in mesangial cells [34] 
and this is a further mechanism that may enhance flux through the 
hexosinase. Overexpression of GFAT in MC leads to enhanced both 
TGF- β and fibronectin expression [35]. Furthermore, high glucose-
induced TGF- β1 and ECM production appear, at least in part, 
mediated by the hexosinase because they are significantly reduced by 
the GFAT inhibitor azaserine [36]. The mechanism by which increased 
flux through the HBSP induced gene transcription is uncertain, but it 
has been proposed that N-acetylglucosamine may covalently modify 
transcription factors and signalling molecules, thus altering their 
activity. An increased flux through this path-way is associated with 
PKC activation, increased TGF-β expression and ECM production, all 
of which are associated with the development of DN [37]. In addition, 
TGF-β closely interacts with the RAS and PKC activity and their 
interplay could be central in the development of DN [38].

Activation of Janus kinase (JAK)/STAT Pathway by 
Reactive Oxygen Species

High glucose enhances ANG II induced activation of the JAK/
STAT pathway [39]. The JAK proteins are a family of cytosolic tyrosine 
kinases, which originally were thought to be coupled exclusively to 
cytokine receptors, such as those for the interleukins and interferons. 
The family contains four members (JAK1, JAK2, JAK3, and TYK2). In 
response to ligand binding to cytokine receptors, these JAK tyrosine 
kinases associate with, tyrosine-phosphorylate, and activate the cytokine 
receptor itself. Once activated, JAKs also tyrosines-phosphorylates and 
activate other signaling molecules, including the STAT family of nuclear 
transcription factors after binding of the STATs to the receptor [40]. 
Thus the JAK/STAT pathway is an important link between cell surface 
receptors and nuclear transcriptional events leading to cell growth. The 
mechanism(s) by which high glucose promotes JAK2 activation may 
be related to activation of JAK2 by ROS, and ROS are induced by high 
glucose in glomerular mesangial cells. It has shown that ROS stimulate 
the activity of JAK2 in fibroblasts. It have been shown that high glucose, 
via the polyol pathway, induces a rapid increase in intracellular ROS, 
such as H2O2, which stimulates intracellular signaling events similar 
to those activated by ANG II, including phosphorylation of growth 
promoting kinases such as JAK2 [41]. The polyol pathway generates 
ROS (H2O2 and O2_), which can then act as signaling mediators in 
the activation of downstream mitogenic pathways, such as the JAK/
STAT cascade [42]. It has been shown that high glucose, via the 
polyol pathway, induces a rapid increase in intracellular ROS, such as 
H2O2, which stimulates intracellular signaling events similar to those 
activated by ANG II, including phosphorylation of growth promoting 
kinases such as JAK2 [43]. 
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NADPH Oxidase in Diabetic Nephropathy
NADPH is formed during glycolysis or oxidative phosphorylation 

and exerts antioxidant activity by regenerating glutathione [44]. 
Glutathione act as important intracellular antioxidant by reacting with 
ROS and organic peroxides [45]. Thus antioxidant defense system will 
reduce with the reduction in the level of NADPH. In renal vessels, 
macula densa, thick ascending limb of loop of Henle, distal tubules, 
collecting ducts, interstitial fibroblasts and un glomerular podocyte 
and mesangial cells, the enzyme NADPH oxidase is a significant 
source of production of superoxide radical. For activation of NADPH 
oxidase, assembly of the subunits and translocation of p47phox to 
the membrane is necessary. NADPH oxidase generated superoxide 
radicals can react with NO forming peroxynitrite, which is a potent 
oxidant and nitrosylating agent. Furthermore, this reaction can cause 
NO deficiency. NO normally regulates tubuloglomerular feed back and 
renal blood flow, and is involved in regulation of natriuresis. The NO 
deficiency can be worsened by the fact that oxidative stress promotes 
activation of vasoconstrictors. Thus, NO deficient animal models 
develop glomerulosclerosis and proteinuria, as well as hypertension 
and renal failure [46]. Expression of p47phox is increased in podocytes, 
glomeruli, cortical distal tubules, loop of Henle and medullary 
collecting ducts in diabetic rats [47]. Further NADPH oxidase inhibitor, 
apocyanin decreases the expression of gp91phox and activation of 
p47phox in diabetic rats [48]. Furthermore, increased NADPH oxidase 
activity will decrease NADPH/NADP+ ratio, causing oxidative stress 
by the TCA cycle enzyme complex α-ketoglutarate dehydrogenase 
[49]. However, NOX 4 expression was found abundantly in distal 
tubular cells [50]. High glucose or free fatty acid [51], oxidized LDL, 
hyperlipidemia [52], AngII in mesangial cell and endothelial cells 
are the potent activators of NADOH oxidase. Further, activation of 
NADPH oxidase causes an increase in ROS production. Furthermore, 
increased superoxide produced within the glomerular microcirculation 
decreases NO bioactivity on mesangial contraction and arteriolar tone 
and may contribute to many of the renal hemodynamic and vascular 
abnormalities in diabetic nephropathy [53].

Growth Factors and Cytokines
Several growth factors, cytokines, chemokines and vasoactive 

agents have been implicated in pathogenesis of diabetic nephropathy. 
TGF-β, a fibrotic cytokine, plays a central role in the development of 
renal hypertrophy and accumulation of ECM componenets [54]. In 
addition, there is increased infilteration of monocytes and macrophages 
into glomeuli early in diabetes. The release of growth factors and 
cytokines from these monocytes and macrophages (interlukin-8, 
monocyte chemotactic peptide-1 etc.) may contribute to promotion of 
glomerular growth. 

There is increasing evidence that intrarenal renin-angiotensin 
system is activated in diabetic nephropathy [55]. There is enhanced 
expression of Ang II receptors and deceased degradation of Ang II 
thereby increasing the local effects of Ang II [56] which acts in synergy 
with hyperglycemia in stimulating free radicals, renal hypertrophy and 
synthesis of ECM proteins. Other growth factors which are involved 
in the development of diabetic nephropathy are Vascular Endothelial 
Growth Factor (VEGF), Platelet Derived Growth Factor (PDGF), 
Connective Tissue Growth Factor (CTGF), and Insulin-Like Growth 
Factor (IGF) [57]. 

VEGF in Diabetic Nephropathy
Vascular Endothelial Growth Factor (VEGF) is an attractive 

candidate to function as a mediator of endothelial dysfunction in 
diabetes. Under physiological conditions, VEGF is produced in 
kidney by glomerular epithelial cells, but mesangial and tubular 
epithelial cells do not normally produce this growth factor. It was 
demonstrated that during hyperglycemia, overexpression of VEGF 
occurs through PKC activation [58]. Further, TGF-β1 which is over 
expressed in kidney also enhances VEGF expression [59]. Moreover, 
glomerular permeabilization by VEGF might induce both albuminuria 
and increased mesangial traffic of growth factors from the circulating 
blood. Hyperglycaemia increases VEGF excretion in the mesangial cell 
and podocyte via pathways involving PKC and extracellular signal-
regulated kinase (ERK) [60]. Receptors for VEGF in the glomerulus 
are found in the endothelial cells and it is thought that this growth 
factor increases the permeability of the glomerular endothelium 
and is therefore responsible for the hyperfiltration seen in early 
diabetic nephropathy. Also mechanical stretch mimicking the shear 
stress caused by hyperfiltration and increased glomerular pressure 
increased the excretion of VEGF in the mesangial cells. In a study 
demonstrating this effect it seemed that the effects of shear stress in 
mesangial cells are mediated via a pathway dependent on PKC and 
Protein Tyrosine Kinase (PTK) since the combined inhibition of 
these enzymes completely prevented the increased VEGF excretion 
in an in vitro experiment [61]. However, MC can also produce VEGF 
[62] and express VEGF receptors both in vitro and in pathological 
conditions [63]. Furthermore, VEGF binding to its receptors on MC 
induces both cell proliferation and collagen expression, providing a 
possible mechanism by which VEGF may contribute to glomerular 
hypertrophy/sclerosis [64]. In addition, VEGF potentially stimulate 
eNOS expression and activity in endothelial cells [65].

TGF-β1 in Diabetic Nephropathy
The TGF-β seems to play a central role as a mediator in the 

pathologic changes in the glomerulus. It has been shown that the AGE 
formation, PKC activation, angiotensin II, and shear stress increase 
TGF-β expression [66]. TGF-β is a potent growth factor promoting the 
deposition of ECM components, such as collagen I, IV and fibronectin. 
This leads to, the histologically evident glomerular expansion and 
thickening of the basement membrane. The effects of TGF-β are 
mediated by the TGF-β receptor type II [67], while the Smad pathway 
is the downstream intracellular signaling pathway involved in TGF-β 
signaling [68]. This cytokine play a central role in the development of 
renal hypertrophy and accumulation of ECM components in diabetes 
[69]. During hyperglycemia, mesangial and proximal tubular cells 
synthesise more TGF-β than control [70]. In addition, it has been 
demonstrated that intracellular glucosamine production resulting 
from glucose metabolism is responsible for the increased TGF-β1 
production in mesangial cells. Several vasoactive factors such as AngII, 
thromboxane [71] & endithelin-1 [72] may exert part of their growth-
stimulating and profibrogenic action in diabetic renal diseases to the 
secondary induction of TGF-β. Furthermore non-enzymatic glycation 
reactions leading to AGE [73], as well as the early Amatori glucose 
adducts in proteins such as serum albumin have [74] been shown 
to stimulate renal expression of TGF-β. Amadori glucose adducts in 
albumin also increase expression of TGF-β type II receptors m-RNA 
and protein levels in mesangial cells [75].

PDGF in Diabetic Nephropathy
The platelet derived growth factor beta (PDGF-β) is also involved 

in the histological alterations in the glomerulus. Under high glucose 
concentrations the PDGF-β growth factor and the corresponding 
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receptor are upregulated in the mesangial cell leading to later increase 
in TGF-β expression [76]. 

Role of Oxidative Stress in Diabetic Nephropathy
Hyperglycemia-induced oxidative stress has been suggested as 

the unifying mechanism causing the cell damage seen in diabetic 
complications [2]. Oxidative stress plays an important role in 
pathological changes of the kidney [77]. Oxidative stress occurs due to 
an imbalance between Reactive Oxygen Species (ROS) and intracellular 
antioxidants [78]. Further, it has been suggested that hyperglycemia 
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induced overproduction of superoxide by mitrochondrial electron 
transfer chain is the major molecular mechanisms for diabetes. 
Furthermore, increased NADPH oxidase activity leads to production 
of ROS in diabetic nephropathy [45]. Moreover, activation of PKC 
pathway leads to the production of ROS in diabetes which is attenuated 
by PKC inhibitors. In addition, it has been reported that, ROS activates 
(PKC, MAPK, JAK/STAT) and transcription factors (NF-ĸb, AP-1 
and SP-1) and upregulates TGF-β1 and fibronectin levels leading to 
accumulation of ECM in diabetic kidney. The current understanding 
is about the nonphagocyte NADPH oxidase at both structural and 
biochemical levels and the possible role in diabetic nephropathy. It 
has been demonstrated that PKC is actively involved in high glucose 
and free fatty acid-induced activation of NADPH oxidase [45]. High 
glucose, free fatty acid and phorbol ester-induced ROS generation 
was effectively inhibited by PKC inhibitors. Evidences suggested that 
ROS-regulated signaling pathways lead to Extracellular Matrix (ECM) 
deposition in diabetic kidney. ROS generated by high glucose levels 
activate signal transduction cascade (PKC, MAPK, and JAK/STAT) and 
transcription factors (NF-kB, AP-1, and Sp1) and upregulate TGF-β1 
and fibronectin in renal cells, and antioxidants effectively inhibit high 
glucose induced activation. It has been demonstrated that, in addition 
to upregulation of ECM synthesis, ROS play an important role in 
ECM degradation and epithelial-mesenchymal transition in tubular 
epithelial cells leading to glomerular mesangial and tubulointerstitial 
expansion [79]. It has been demonstrated that dichlorofluorescein 
sensitive ROS are increased in the glomeruli isolated from 
streptozotocin-diabetic rats, providing a direct evidence of increased 
ROS in diabetic glomeruli [41]. AGE are known to have a wide range of 
chemical, cellular, and tissue effects implicated in the development and 
progression of diabetic nephropathy. AGE generate ROS directly or 
through receptor for AGE, whereas ROS, in turn, promote formation 
of AGE. It has been demonstrated that AGE play an important role 
in diabetic nephropathy [80]. It has been demonstrated that over 
expression of receptor r for AGE (RAGE) exaggerates nephropathy and 
retinopathy of diabetic mice, which are inhibited by inhibition of AGE 
formation. Antioxidant effectively inhibit high glucose induced TGF-β 
and fibronectin upregulation [81] and reduces the oxidative stress by 
increasing the levels of intracellular antioxidants such as superoxide 
dismutase, catalase etc (Figure 1).

Mitochondrial Electron Transport System (ETS)
The mitochondrial ETS has long been known to be capable of 

generating ROS upto 2% of the total mitochondrial O2 consumption 
goes towards the production of ROS [82]. The specific species generated 
appear to be O2- following its dismutation, H2O2. The production of 
ROS by mitochondria can involve NADH-coenzyme Q (complex I), 
succinate-coenzyme Q (complex II) and coenzyme Q H2-cytochrome c 
reductases (complex III). A nonheme Fe+ protein appear to be involved 
in the transfer of electrons to oxygen at each site. Most of this transfer 
is tightly coupled but a small amount of leakage occurs, primarily 
from NADH-coenzyme Q reductase complex and from autooxidation 
of coenzyme Q itself. Ubisemiquinone and ubiquinol have been 
proposed as the main sources of mitochondrial O2- by participating 
in auto-oxidation reaction [83]. When the electrochemical potential 
difference generated by the proton gradient is high (such as in high 
glucose states), the life of superoxide-generating electron transport 
intermediates, such as ubisemiquinone, is prolonged. This occurs 
because the activity of the respiratory chain complexes as proton 
pumps is inherently governed by the transmembrane proton gradient 
(ΔpH) and the membrane potential (Δ¥mt). When sufficiently high, 

ΔpH and Δ¥mt inhibit the proton pumps [84]. It is evident that each 
of the ROS-generating sites has a different redox potential, and thus 
each will respond differently to changes in ΔpH and Δ¥mt, resulting in 
a complex regulation of ROS generation by these membrane gradients. 
There appears to be a threshold value above which even a small increase 
in Δ¥mt gives rise to a large stimulation of superoxide production by 
mitochondria [85]. Overall, most bioenergetic effectors, via their effects 
on ΔpH and Δ¥mt, can modulate mitochondrial ROS generation. In 
isolated mitochondria, dissipation of membrane potential by chemical 
uncouplers, free fatty acids, or the presence of ADP decreases the rate 
of ROS generation.

Uncoupling Proteins (UCPs) are members of a family of nuclear-
encoded mitochondrial carriers, which act as proton carrier proteins in 
the mitochondrial inner membrane. Further, these proteins facilitate 
the proton leak across the membrane and able to modulate the 
coupling between the respiratory electron transport chain and ATP 
synthesis. Furthermore, UCP-induced proton leakiness causes partial 
depolarization of the mitochondrial transmembrane potential [86]. 
However, the UCP subtypes, UCP-1, UCP-2, and UCP-3, differ with 
respect to tissue distribution and probably also function. Increased 
induction of UCP-1 leads to thermogenesis. However, the functions 
of UCP-2 and UCP-3 are still unclear but are believed to cause a mild 
uncoupling of respiration that governs mitochondrial membrane 
potential and the accumulation of oxygen radicals and/or control 
of the NAD+/NADH ratio. It has been demonstrated that UCP-2 
expression is inversely correlated with the level of ROS generation by 
respiring mitochondria [87]. During diabetes, overexpression of UCPs 
in cultured neurons blocks glucose-induced programmed cell death by 
preventing mitochondrial hyperpolarization and formation of ROS. 
This suggests a central role for UCPs in the regulation of mitochondrial 
membrane hyperpolarization and ROS formation in glucose-mediated 
neuronal injury. 
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