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Abstract
Background: Heat Index is an important measure in determining the 

safety of temperature conditions for humans. Extreme heat can lead to 
dangerous, even deadly, health consequences, including heat stress and 
heatstroke. Thus, there is a need to predict the Heat Index accurately 
in order to warn individuals about such conditions so that they take 
appropriate precautions. 

Methodology: In this paper, we look at weather data in Mumbai from 
2008 to 2020 and attempt to come up with predictive models for the Heat 
Index. We carry out feature selection first in order to efficiently use a variety 
of algorithms to develop predictive models. We use various mathematical 
techniques such as: Multiple Linear Regression (MLR), Simple Exponential 
Smoothing (SES), Artificial Neural Networks (ANN), and Auto-Regressive 
Integrated Moving Average (ARIMA) models to predict the heat index. The 
experimental results are evaluated and compared using the Root Mean 
Square Error (RMSE). 

Results: On experimenting with all four models, it was discovered 
that the ARIMA model yields the best predictive model having a RMSE of 
0.354654 on testing data. This model is also concluded to be optimal as 
the residuals of this model are a gaussian white noise. Furthermore, the 
poor performance of MLR indicates that temperature cannot be accurately 
modelled through a linear function of the variables considered.

Keywords: Multiple linear regression • Simple exponential smoothing • 
Artificial neural networks • Root mean square error

Introduction

Heat Index in Celsius is often referred to as the apparent temperature 
or the feels like temperature. Thus, the Heat Index serves as a measure 
of heat risk one is exposed to. Certain precautions are necessary to be 
taken in order to remain safe from the adverse effects of excessive heat 
exposure. The Heat Index combines the temperature and the relative 
humidity of the atmosphere. The humidity is necessary because when the 
body gets hot, it begins to perspire in order to cool the body. When the 
relative humidity is high the rate of evaporation decreases and thus the 
body feels warmer and the regulatory cooling processes are unable to take 
place at the same rate. 

This paper attempts to come up with a reliable predictive model for the 
Heat Index in Mumbai. Although there is several research papers based on 
temperature predictive models in general, there weren’t any papers that 

focus on Mumbai specifically. Furthermore, the approach to predicting 
the HeatIndex instead of the temperature is unique. The models cited in 
several research papers, for temperature prediction in areas all around 
the world, were not able to improve on an RMS error of approximately 1 
in most cases. Thus, this paper aims to improve the RMS error of these 
previous models for our dataset of Mumbai. Multiple linear regression and 
neural networks have been commonly used for temperature predictions 
with artificial neural networks being the most common. This paper in 
addition to these techniques explores a variety of time series analysis 
techniques such as exponential smoothing and auto-regressive integrated 
moving average models [1].

Often temperatures in Mumbai are underestimated and necessary 
precautions are not taken while exiting one’s house. Due to the adverse 
effects that this heat can have on the health of individuals, it is necessary 
that steps be taken at an organisational level to issue warnings to citizens 
so that they can take the necessary precautions and steps before leaving 
their house. This idea was inspired by the IMD’s Heat Action Plan, which 
has been implemented in Ahmedabad. While the temperatures in Mumbai 
may not be as severe, precautions are necessary in order to protect and 
inform individuals about the adverse effects of heat. 

Methodology and Data Analysis

Feature selection
We use the Pearson Correlation Coefficient (r) as a feature selection 

mechanism (Table 1). In order to avoid overfitting of the data we will only 
be using the features that have |r|>0.5.

Table 1. Gender distribution of the study subjects (n=100).

Variable (lag 1) Pearson correlation coefficient (r)
Maxtemp C 0.6266314

Mintemp C 0.645104

Avgtemp C 0.8032574

Totalprecip MM -0.09843071

Wind speed Kmph 0.08042873

Sun hour 0.1232874

winddirdegree 0.3028105

humidity 0.1893674

Visibility Km 0.102261

Pressure MB -0.3131072

cloud cover -0.06016056

DewPoint C 0.6104005

WindChill C 0.7757908

WindGust Kmph -0.1435159

The pearson correlation co-efficient is used to measure correlation 
between different sets of data to understand how strong the correlation 
is between two variables. Above we have calculated and tabulated the 
pearson correlation co-efficients between the HeatIndexC of the day with 
a variety of variables such as total precipitation, pressure, sun hours etc. 
with a lag of 1 day. 
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By the above criteria we select the variables: maxtempC (maximum 
temperature in Celcius), mintempC (minimum temperature in Celcius), 
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avgtempC (average temperature in Celcius), DewPointC (the atmospheric 
temperature below which water droplets begin to condense and dew 
can form: it depends on both the pressure and humidity), WindChillC 
(Combination of windspeed and temperature).

( ) ( )0.16 0.1613.12 0.6215 11.37  0.3965WindChillC T V T V= + × − × +

T = Temperature in degree Celsius

V = Wind velocity in kilometres per hour

Multivariate linear regression
First, in order to perform a multiple linear regression on our data it 

is necessary to carry out feature scaling as the range for each variable 
differs significantly. If feature scaling was not done then we variables with 
maximum range will dominate in the training of the regression model. 
We  will  bound  all  our  variables  in  the  interval  (0,1). We use min-max 
normalisation technique on our data [2].
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We will use Ordinary least Squares (OLS) regression

Let’s call the temperature on the ith day some Ti: 
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We use gradient descent with simultaneous update to minimise the 
error function.
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Algorithm:

Repeat using simultaneous update

{

1
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n
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 }

We use the R programming language to run this program and obtain 
the multivariate linear regression analysis.

Code for multivariate linear regression used
#First we need to read the data from the csv file with headers

data <- read.csv("weather_data_24hr_HI.csv", header = T)

#remove null row

data <- data(-4265,)

#remove columns based on feature selection

data <- data(,c(3,4,6,8,26,28))

# we need to normalize the data (max-min normalization)

data$maxtempC<-(data$maxtempC-min(data$maxtempC))/
(max(data$maxtempC)-min(data$maxtempC))

da ta$avgtempC< - (da ta$avgtempC-min(da ta$avgtempC)) /
(max(data$avgtempC)-min(data$avgtempC))

data$mintempC<- (data$mintempC-min(data$mintempC))/
(max(data$mintempC)-min(data$mintempC))

data$WindChil lC<-(data$WindChil lC-min(data$WindChil lC))/
(max(data$WindChillC)-min(data$WindChillC))

data$DewPointC<-(data$DewPointC-min(data$DewPointC))/
(max(data$DewPointC)-min(data$DewPointC))

# Data Partition

# Partitioning the Data into testing and training data

# If we repeat the learning, we get the same result

set.seed(222)

ind <- sample(2,nrow(data), replace = T, prob =c(0.7,0.3))

training <- data(ind==1,)

testing <- data(ind==2,)

# Training the Linear regression model

MLR <- lm(maxtempC~., data = training)

summary(MLR)

# Prediction on training

output <- predict(MLR, training(,-1))

df <- data.frame(output, training(,1))

df

sum((df(,1)-df(,2))^2)/nrow(training)

# Prediction on testing

output <- predict(MLR, testing(,-1))

df <- data.frame(output, testing(,1))

df

sum((df(,1)-df(,2))^2)/nrow(testing)

Explanation of code: We first import the comma-splitted values 
containing the raw data for our analysis. We then keep only the columns 
that were deemed statistically significant by the pearson correlation test. 
We then carry out the max-min normalisation of the data as specified 
above. We then partition 70% of the data for training our regression 
model and 30% of the data to test the regression model. We create the 
multivariate ordinary least squares linear regression model using gradient 
descent as outlined above. We then calculate the sum of squared error for 
both the training and the testing data using the regression model found 
[3].

Results: The regression equation obtained by our program is:

h_β (x)=15.910+ 2.323×x_1-1.906×x_2+4.246×x_3+10.469×x_4+12.8
61×x_5

x_1:normalised maxtempC lag 1

x_2:  normalised mintempC lag 1

x_3: normalised avgtempC lag 1

x_4:normalised DewPointC lag 1

x_5:normalised WindChillC lag 1
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Metric of analysis for results: We will now be analysing the results 
produced by the multivariate linear regression model. For analysis we will 
be finding the square root of mean sum of squared errors (RMS errors) 
returned by the program. We define the function of our prediction model 
(hypothesis function) as h_β (x).The formula for the RMS error is. 

RMS error= √((∑_(i=1)^n▒(h_β (x)-T_i )^2 )/n)

For the training data the sum of squared errors was: 2.261942

For the testing data the sum of squared errors was: 2.540919

Since the behaviour of our model is similar for the training and 
testing data we can conclude that our model is not over or underfitting the 
dataset. However, the RMS error is still quite high.

Simple exponential smoothing
We will also attempt to forecast the HeatIndex using time series 

analysis techniques. We will begin with simple exponential smoothing as 
a technique because there is no clear trend or seasonality in the data 
when the time series is plotted (Figure 1). We don’t use Holt’s Exponential 
smoothing or Holt-Winter Exponential Smoothing as our data does not 
have clear increasing/decreasing trends or any visible seasonality. In 
simple exponential smoothing, we say the predicted observation is a 
weighted average of previous observations [4]. While calculating the 
weighted averages, the weights decrease exponentially as lag increases, 
that is, the smallest weights are associated with the oldest observations:

Notation: 

l0:start value

yt:actual temperature at time t

:     ty forecasted temperatureat timet

0 1≤ ≤α

Weighted average form of exponential smoothing:

( )1 1t t ty y y+ = + −α α

Let’s try to arrive at the above generalisation by considering smaller 
examples.

1 0y l=

( )2 1 0 1y y l= + −α α

( )3 2 21y y y= + −α α

( )4 3 31y y y= + −α α
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When we substitute each equation in the next we get:
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This is the weighted average form of the simple exponential smoothing 
model. We want to find the value of α that minimises the Sum Of Squared 
Errors (SSE), therefore, we use the gradient descent algorithm to minimise 
the squared error.
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t t

i i i
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SSE y y e
= =
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We use the R programming language to run gradient descent in order 

to minimise error.

Code for simple exponential smoothing used

#first read the comma splitted values containing the dataset

data <- read.csv("weather_data_24hr_master1.csv", header = T)

#filter only maxtempC out which is relevant to our timeseries

data <- data(,18)

#remove NA values

data <- data(-4265)

data

#Let's partition the data into testing and training data.

training <- data(1:2990)

testing <- data(2991:4264)

#Create a timeseries using the maxtempC data

timeseries <- ts(training, frequency = 365, start = c(2008,183))

timeseries

#plot the timeseries

plot.ts(timeseries)

install.packages("TTR")

library("TTR")

#Simple exponential Smoothing

timeseriesforecasts <- HoltWinters(timeseries, beta=FALSE, 
gamma=FALSE, l.start = 31)

timeseriesforecasts

timeseriesforecasts$fitted

plot(timeseriesforecasts)

#calculate the sum of squared errors for our forecasts

a<-(timeseriesforecasts$SSE)

#calculate the mean of the SSE

MSE<- a/length(training)

#calculate the RMS error

sqrt(MSE)

testmodel<-HoltWinters(timeseriestest, alpha = 0.7159879, beta = 
FALSE, gamma = FALSE)

#calculate the sum of squared errors for our forecasts

a<-testmodel$SSE

#calculate the mean of the SSE

MSE<-a/length(testing)

#calculate the RMS error

sqrt(MSE)

Figure 1. Time series plot.
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Explanation of code: We first import the comma-splitted values 
containing the raw data for our analysis. We then remove all columns 
except the HeatIndexC for our timeseries. We partition our dataset into 
training data and testing data. We train our simple exponential smoothing 
model on the first 70% of our data. We test this model using the remaining 
30% of the data. We then convert the vector into a timeseries. We then plot 
the timeseries and run simple exponential smoothing on our timeseries. 
This gives us the minimum value of α. We also find the RMS error of our 
model on the training data. We then use the same value of α to run our 
simple exponential smoothing model on the testing data and calculate the 
RMS error for the same.

Results: By running gradient descent we get the result that the error is 
minimised when the learning parameter α = 0.7159879

This makes out weighted average exponential smoothing equation to 
be as follows:

( )( ) ( )
1

1
0

( 0.7159879 0.2840121 ) 0.2840121 31.
t

i t
t t i

i

y y
−

+ −
=

= +∑

Metric of analysis for results: We will now be analysing the results 
produced by the simple exponential smoothing model. One of the main 
issues that arises in the use of this model is that it does not perform 
well on sudden fluctuations in the data whereas it performs very well for 
gradual increases or decreases in our data. The high alpha value indicates 
high dependence on previous day values of the max temperature. 
The high alpha also indicates that as lag increases data beyond lag=3 
( )( )30.7159879 0.2840121 0.01640273287 =  become too small to have 
relevance to our forecasted value. To determine how well our model 
fits the data we calculate the RMSE for the testing data and the training 
data [5]. We define our prediction model function for simple exponential 
smoothing to be: ( )y tα (t). The temperature on the tth day is defined as 

( )M t .

Therefore we get that the RMS error is:
( ) ( )( )2

1 
T

t
y t M t

RMS error
T

=
−

=
∑ α

For the training data the RMS error was: 1.326023

For the testing data the RMS error was: 1.423472

The model gives very similar values for the RMS training and testing 
data, thus overfitting of data is not an issue for our model.

Artificial neural networks
A neural network is inspired from the model of a human brain consisting 

of neurons. When neural networks learn they independently find a variety of 
connections in the data which helps with complicated predictions when we 
have large datasets with several variables. Each neuron receives the values 
of the variables (features) from the training set and calculates a weighted 
average of these values. The result of this calculation is passed through a 
non-linear activation function.

For the mth neuron we supply the vector x of training examples and it 
calculates the weighted average and returns a zm value. In this scenario b 
is a bias constant that is added to the outcome of each neuron.

( )
1

   ( 1, 2, 3, , )
n

i i
i

z w x b j m
=

= + ∀ =∑ 

The activation function g(z) is applied on each z value to give our 
forecast value (ŷi). Thus the output of each neuron is passed to the 
activation function.

Without an activation function, the neural network would simply return 
a linear function thus not being able to model complex data while having 
small error.

The way a neural network is trained is by the value of the loss 
function. We use the sum of squared error as our error function thus 
during the training our model minimises the error of the neural network. In 
our learning the values of the weights and the bias parameter are changed 
in order to minimise the error function. We calculate the partial derivative 
of the loss function in order to arrive at a minimum value for the error. We 

use the backpropagation algorithm in order to train our neural network [6].

For our regression problem the loss function would be Mean Squared 
Error, which squares the difference between actual (yi) and predicted value 
(y ̂ᵢ).
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Using chain rule we get the following:
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Therefore, we get: 

( ) ( )( ) ( )
1

1 2  
m

i i i
ii

C x g z g z y y
w =

∂
= × × − × × −

∂ ∑
We also calculate C

b
∂
∂  which we can get from the above formula as the 

input for the bias operator is 1.

( ) ( )( ) ( )
1

1 2  
m

i i
i

C g z g z y y
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∂
= × − × × −
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After backpropagation is carried out we focus on optimisation which 

is done through gradient descent. For this we define our learning rate as α.

Repeat until convergence with simultaneous update:

{
 i i

i

Cw w
w

 ∂
= − × ∂ 

α∶

Cb b
b

∂ = − × ∂ 
α∶

}

We now implement this algorithm using R.

Code for artificial neural networks used
#First we need to read the data from the csv file with headers

data <- read.csv("weather_data_24hr_master1.csv", header = T)

#remove null row

data <- data(-4265,)

#remove columns based on feature selection

data <- data(,c(4,7,9,17,18,20))

# we need to normalize the data (max-min normalization)

d a t a $ m a x l a g 1 < - ( d a t a $ m a x l a g 1 - m i n ( d a t a $ m a x l a g 1 ) ) /
(max(data$maxlag1)-min(data$maxlag1))
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d a t a $ a v g l a g 1 < - ( d a t a $ a v g l a g 1 - m i n ( d a t a $ a v g l a g 1 ) ) /
(max(data$avglag1)-min(data$avglag1))

data$cloudcover<-(data$cloudcover-min(data$cloudcover))/
(max(data$cloudcover)-min(data$cloudcover))

data$HeatIndexC<-(data$HeatIndexC-min(data$HeatIndexC))/
(max(data$HeatIndexC)-min(data$HeatIndexC))

data$WindChil lC<-(data$WindChil lC-min(data$WindChil lC))/
(max(data$WindChillC)-min(data$WindChillC))

#Data partition to divide our data into training anad testing data (70% 
training 30% testing)

#we set seed in order to be able to repeat the learning

set.seed(222)

ind <- sample(2,nrow(data), replace = T, prob =c(0.7,0.3))

training <- data(ind==1,)

testing <- data(ind==2,)

#install the neural network packages in R

install.packages("neuralnet")

library(neuralnet)

#We create a neural network n trained on the training data

#This neural network has the error function as the sum of squared error

#It has the activation function as the sigmoid function

#It has 2 neurons

n <- neuralnet(maxtempC~.,

data = training,

hidden = 2,

stepmax = 9999999,

err.fct ='sse',

act.fct = 'logistic',

linear.output = T)

n

#We plot our trained neural network

plot(n)

# We calculate the RMS error for our neural network on the training 
and testing dataset

output <-compute(n, training)

p1 <- output$net.result

sqrt(sum((training$maxtempC-p1)^2)/nrow(training))

max((training$maxtempC-p1))

output <- compute(n, testing)

p2 <- output$net.result

sqrt(sum((testing$maxtempC-p2)^2)/nrow(testing))

Explanation of code: We first import the csv file containing the raw 
data for our analysis. We then retain all the feature columns from our 
feature selection and remove all NA values. We first carry out feature 
scaling of our data through min-max normalisation. We then partition 
our dataset into training data (70%) and testing data (30%). We train an 
artificial neural network with 2 neurons to fit our training data. We find the 
RMS error of our model on the training data. We then run our model on the 
testing data and calculate the RMS error [7].

Results: The neural network plot has been included below with the 
weights on each “wire” connecting our input to the neurons and our neurons 
to the output layer (Figure 2). 

The value of the bias operator for the hidden layer is –1.95219 and 
–5.32014 while the bias operator for the output layer is 23.67867. 

Metric of analysis for results:  We will now analyse the results of the 
neural network model. The use of neural networks allows us to predict 
the data using a non-linear hypothesis function. The high weights on 
the WindChillC, maxtempC, and DewPointC indicate that these are the 
dominant features in our learning. A variety of number of neurons was tried 
out. 2 neurons were chosen as larger values seemed to overfit our data and 
would have an overly complicated hypothesis function. To determine how 
well our model fits the data we calculate the RMSE for the testing data and 
the training data. We define our prediction model function for our neural 
network to be:  ( )iy x . The actual temperature is represented by y_i.

Therefore we get the formula for the RMS error to be:

( )( )2

1
ˆ

 
n

i ii
y x y

RMS error
n

=
−

= ∑

For the training data the RMS error was: 1.304715

For the testing data the RMS error was: 1.379394

Since the RMS error for the training and testing data using our model 
is similar we can conclude that our model does not overfit our data. It 
also performs slightly better than the exponential smoothing model and 
significantly better than the multivariate regression model.

Auto-Regressive Integrated Moving Average (ARIMA) 

In order to apply the ARIMA technique we require our timeseries data 
to be stationary. This means that our data has a constant mean, constant 
variance (deviation from the mean), and no seasonality. It is necessary 
to confirm whether our time series is stationary using the Augmented 
Dickey-Fuller test (ADF test) and the Kwiatkowski–Phillips–Schmidt–Shin 
test (KPSS test) [8].

The ADF test is a unit root test. The mathematics and proofs related to 
the ADF test will not be described in this paper but can be found in [1]. For 
our purposes we only need to know the null and alternative hypothesis as 
defined by the test. 

H0: (Null hypothesis) The given data is non-stationary

H1: (Alternative hypothesis) The given data is stationary

On running the ADF test on our time series we get a p-value ≤ 0.01

Since the p-value is less than the significance level of 0.05, we can 
safely reject the null hypothesis and conclude that our data is stationary. 
However, for large datasets the adf test can be erroneous rejecting the 
null hypothesis a vast majority of the times. Hence, we use the KPSS 
test to confirm that our data is stationary. We use the KPSS test for level 
stationarity.

For the KPSS test the hypotheses are as follows:

H0: (Null hypothesis) The data is level stationary

Figure 2. Neural network plot.
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H1: (Alternative hypothesis) The given data is level non-stationary

On running the KPSS test we get the p-value ≥ 0.1

Since the p-value is greater than the significance level of 0.05 we 
cannot reject the null hypothesis which supports our previous conclusion 
that our data is stationary. Since our data is stationary we can proceed by 
using auto-regressive integrated moving average processes on our data to 
come up with an acc urate forecasting model for the data.

Since our data is stationary we do not require an ARIMA model and we 
can directly use an ARMA model (Auto-Regressive Moving Average).

Before we can define an ARMA model we will define white noise.

Definition 4.1: White noise: It is an identically and independently 
distributed stochastic process {X_t  ,t∈ Z} with mean zero such that there 
is no serial correlation between values of stochastic process in the present 
and past. 

A gaussian white noise is when our stochastic process Xt is:

( )2~ 0,tX σ 

White noise timeseries cannot be predicted as they are a sequence of 
random numbers. If the series of forecast errors are white noise it suggests 
that our model cannot be improved.

We used the ARIMA model on our timeseries and the residuals of our 
model were a gaussian white noise with mean 0 and variance 1 (Figure 
3). However, we want to improve our model despite this white noise. To 
do this we will attempt to smooth our timeseries in order to reduce the 
white noise in our timeseries. We will use a triangular moving average 
smoothing technique in order to minimise the error caused by this white 
noise. For this we will defined our new smooth timeseries to be ¯y and our 
original time series to be y [9].

Mathematically our smoothed moving average time series of order 2 
will be defined as:

1

2
t t

t
y yy −+

=

To get the triangular moving average ( )ty  to smooth our time series 
we apply the moving average of order 2 again.

1

2
t t

t
y yy −+

=

An auto-regressive model is one in which we assume that the values 
of the time series in the future depends on past values of the time series 
(Figure 4). Essentially, it is a linear model relating values of the time series 
to past values of the time series. Let this time series be yt. Then, for this 
timeseries the kth order auto-regression model (AR(k)) is:

0 1 1 2 2t t t k t k ty y y y− − −= + + +…+ +β β β β ò
0

1

k

t t i t i
i

y y −
=

= + +∑β βò

A moving average model is one in which we assume that the values of 
the time series in the future depend on the previous residual terms of the 
time series. It is a linear model relating the value of the time series to past 
values of the error. Therefore, the kth order moving average model (MA(k)) 
is:

0 1 1 2 2 3 3  t t t t t k t ky − − − −= + + + + +…+θ θ θ θ θò ò ò ò ò

0
1

k

t t i t i
i

y −
=

= + +∑θ θò ò

An ARMA model simply combines an auto-regressive model and a 
moving average model. Thus, an ARMA model is such that a value of the 
time series can be predicted based on previous values of the time series. 
Thus an ARMA (p,q) model is:

0 1 1 2 2 0 1 1 2 2  t t t t k t p t t k t qy y y y− − − − − −= + + + +…+ + + + +…+β β β β θ θ θ θò ò ò ò

0 0
1 1

 
p q

t t i t i i t i
i i

y y − −
= =

= + + + +∑ ∑β β θ θò ò

The algorithm for choosing the best ARMA (p,q) model is not outlined 
in this paper. However, we use maximum likelihood estimation to arrive 
at the best ARMA model. We use the R programming language along with 
the Hyndman-Khandakar algorithm [2] to minimise Akaike’s Information 
Criterion (AIC) [10].

( ) ( ) 2 log 2 1AIC L p q k=− + + + +

:    L Likelihood of thedata

0 01  0k if= + ≠β θ

0 00  0k if= + =β θ

Code for ARIMA used
#first read the comma splitted values containing the dataset

data <- read.csv("weather_data_24hr_HI.csv", header = T)

#filter only maxtempC out which is relevant to our timeseries

data <- data(,3)

#remove NA values

data <- data[-4265]

#looking at the first few values of our vector

head(data)

#sequential data partition into training (70%) and testing data (30%)

training <- data(1:2990)

testing <- data(2991:4264)

#convert the data into a time series

ts <- ts(data, frequency = 365, start = c(2008,183))

#smooth the time series using the triangular moving average

tst2 <- ts(rollmean(rollmean(ts,2),2),frequency = 365, start = 
c(2008,183))

#plotting the original time series and the smoothed time series

plot(ts, col = 'green')

lines(tst2, col = 'blue')

#carrying out the augmented dickey-fuller test on our time series for 
stationarity

adf.test(ts)

#carrying out the kpss test to further confirm level stationarity of the 
data

kpss.test(ts, null = "Level")

Figure 3. Plotting the residuals of our ARIMA (2,0,1) model.

Figure 3. Plotting the residuals of our ARIMA (2,0,1) model.
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#converting the training data into a time series

tstrain <- ts(training, frequency = 365, start = c(2008,183))

#smoothing the training time series using triangular moving average

ts1 <- ts(rollmean(rollmean(tstrain,2),2))

#converting the testing data into a time series

tstest <- ts(testing, frequency = 365, start = c(2016,252))

#smoothing the testing time series using triangular moving average

ts2 <- ts(rollmean(rollmean(tstest,2),2))

#we fit the training data to the arma(2,2) model

fit<-arima(ts1, c(2,0,2))

#finding out the RMS error of the arma(2,2) model

accuracy(fit)

fitted(fit)

#applying our previously derived model on the testing data

refit<-Arima(ts2, model = fit)

#calculating the accuracy of our model on the testing data

accuracy(refit)

#plotting the residuals of our model

plot(residuals(fit))

Explanation of code: We first import the comma splitted values and 
filter only the relevant HeatIndexC data from the dataset. We then create 
multiple time series: one containing the entire dataset, one containing the 
training data, and one containing the testing data. We then use triangular 
moving averages to smooth these time series. We also run the ADF test 
and KPSS test on the data to test for stationarity. We then fit the ARMA 
(2,2) model to our data and calculate the RMS error on the training and 
testing data. We plot our residuals to observe whether it is a white noise 
time series to ensure optimality of our time series.

Results: According to the ADF and KPSS test we get that our time 
series is stationary. We get that an ARMA (2,2) model best fits our data. 
Our model is as follows:

1 2 1 232.6958 0.8550 0.1253 1.9714 0.9715t t t t t ty y y− − − −= + + + + +ò ò ò

Metric of analysis for results: We will now analyse the results of 
the ARMA (2,2) model. To determine how well our model fits the data 
we calculate the RMS error for the testing data and the training data. We 
define our prediction model function for our ARMA model to be: (yi) ̂(x). 
The actual temperature is represented by yi.

( )( )2

1
ˆ

 
n

i ii
y x y

RMS error
n

=
−

= ∑

The plot of our residuals is also a white noise time series. Thus, we 
can conclude that our ARMA model is optimal as white noise cannot be 
predicted [11].

For the training data the RMS error was: 0.335002

For the testing data the RMS error was: 0.354654

Conclusion

Since the RMS error for the training and testing data using our model 
is similar we can conclude that our model does not overfit our data and is a 
reliable predictor even on unseen testing data. It also performs significantly 
better than the exponential smoothing model, multivariate regression 
model as well as the neural network model.
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