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Abstract

We report the creation of variant maps based on bat echolocation call recordings. The maps show regular
patterns while characteristic features change when bat call recording properties change. By focusing on specific
visual features, we found a set of projection parameters which allowed us to classify the variant maps into two
distinct groups. These results are promising indicators that variant maps can be used as basis for new echolocation
call classification algorithms.

Keywords: Echolocation; Algorithms; Morphometry; Fourier
analysis; Quaternions

Introduction
The identification of echolocation calls is essential to the research

and conservation of bat species [1]. However, automatic classification
algorithms have not yet been proven capable of providing 100% correct
classifications or getting closes enough to this ideal performance [2].
Since our approach of using variant maps [3] shows already promising
results, we are confident it will continue adding valuable contributions
to the field of automatic bat call identification.

Automated bat echolocation call identification algorithms were
developed since the late 1990s [4-7]. At that time, multivariate
discriminant function analysis or neural networks were used for the
classification of the calls. Since then, other methods have been applied,
e.g. algorithms of pattern recognition [8], support vector machines [9],
hierarchical ensembles of neural networks [9,10], geometric
morphometry [11], machine learning [12], CART [13] and random
forest classification [14]. For a critical analysis of the performance of
the applied methods we refer to Russo and Voigt [2] and the references
therein.

Using variant maps for the classification of bat echolocation calls
differs completely from these conventional techniques.

The main difference is the pre-processing step, where the recordings
are transformed into variant maps. This step offers the possibility to
analyse the bat call recordings from a completely different point of
view. It provides additional degrees of freedom which allow a further
optimization of the identification process, e.g. by supplementing the
information obtained from a Fourier analysis of the bat calls.

Our method to transform the bat call recordings is based on
measures proposed by Zheng and Maeder [15] and Zheng [16] in the
1990s to partition special phase spaces in binary image analysis. These
methods were extended in the 2010s [3,17] and successfully used to

classify quantum interactions [18,19], differently encrypted messages
[20] and non-coding DNA [21-23].

Similar to these works, we transform the bat call recordings using
variant measures to obtain variant maps. Each recording contains
several calls of one bat species.  We used calls of four aerial-hawking 
bat  species in  this study. Recordings  were  made on  fields  with three 
different  crop  types  far  away  from  woody  vegetation. The

with each recording.
to extract usable information from bat echolocation recordings created.

Transformation
The processed bat echolocation calls were recorded with a sampling

rate of 500 kHz and saved as “raw” 16 bit audio files. In the following,
we describe in four steps (A-D) how we transformed these files into
variant maps.

Step A: From analogue to digital audio

In a recording of data length N, the amplitude of the bat
echolocation calls is stored in N samples. Each sample corresponds to a
floating point number of 16 bits. For simplicity, we transformed the
floating point numbers to integer numbers of 16 bits.

Step B: From digital audio to quaternions

Next, we transform the integer sequence into a sequence of four
meta states {┴ , +, −,   } which resemble the quaternions {Bottom, Plus,
Minus, Top}. For this step we select the i-th sample Ai and its next
neighbor Ai+1 and define the difference ΔA=Ai+1–Ai and local average
L=(Ai+Ai+1)/2. Additionally we require the maximum Amax and
minimum Amin of the current sequence to define a middle value
V=(Amin+Amax)/2 and we define a tolerance T. Using these values we
transform the integer sequence A1...AN into a sequence of quaternions
B1...BN by using the rules:

if ∆A<T and L>V:  Bi=
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if ∆A<T and L ≤ V:  Bi= ┴

if     ∆A ≥ T     and     Ai>Ai+1:    Bi=−

if     ∆A ≥ T     and    Ai<Ai+1 :     Bi=+

As an example, the values T=4 and V=10 lead to the sequence:

Ai 0 3 3 2 0 8 20 20 11

Ai+1 3 0 8 6 4 3 15 18 13

Bi ┴ ┴ + + + - - T T

Step C: From quaternions to meta measures

We subdivide the quaternion sequence into segments of length M
and obtain in this way S=N/M segments. For each segment, we define
four meta measures {M┴ , M+, M−, M }. One measure represents the
number of associated quaternions in one segment. These meta
measures satisfy the relations 0 ≤ M┴ , M+, M−, M  ≤ M and M┴+M++M
+M  = M. The quaternion sequence with N units is now represented by
S segments where each segment contains four meta measures.

Step D: From meta measures to variant maps

There are many possibilities to combine meta measures for the
creation of variant maps [3-23]. To transform the bat echolocation
calls into 2D color maps we defined for each segment of meta measures
the axis values X=M++M┴  and Y=M┴ +M−+M . One Z value is
obtained by counting the number of segments where one specific X-Y
combination was found. Each Z value is represented by a color in an
(M+1) × (M+1) matrix.

As an example, we depicted in Figure 1 the variant map of an
echolocation call recording from the bat species Nyctalus noctula. It
has a data length N=967139 and we chose a segment length M=237. At
the position X=80 and Y=200 marked by a white circle, the color
indicates a value Z=10. That is, we found 10 segments where the
conditions M++M┴ =80 and M┴ +M−+M =200 apply. White areas
indicate regions without any projection point on this sequence. For a
discussion of further visual features which appear in this figure we refer 

These type of maps offer the possibility to visualize long data
sequences with >106 samples on compact matrices. We use this scheme
to transform each bat call recording into a 2D color figure. It can be
optimized for the identification of bat species, recording locations or
times.

Figure 1: The variant map of an echolocation call recording from
the species Nyctalus noctula created by following the processing
steps A-D as described in section 2. We highlighted the position
X=80 and Y=200 by a white circle to illustrate the processing step D.
At this position the conditions M++M┴ =80 and M┴ +M−+M =200
apply. Further visual features are as discussed in more detail in
section 3.

Variant maps
Our main result is that all variant maps created from bat

echolocation calls show regular patterns while characteristic visual
features vary with each recording. In the following, we describe the
data we processed in detail and discuss the visual features we observed.

Data description
We processed 44 files which were recorded in August 2012 in the

Uckermark region (Brandenburg, Germany) [24]. Each recording
contains only calls of one of the four European bat species Nyctalus
noctula, Pipistrellus nathusii, Pipistrellus pipistrellus or Pipistrellus
pygmaeus. These files were recorded on arable fields cultivated with the
three  different  crop  types:  corn (C), rapeseed (R) or  wheat (W). The
record length varies between 30 s to 2 min.
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Figure 2: Variant maps of (a) Pipistrellus nathusii and (b) Nyctalus noctula, both recorded on a rapeseed field. The figures were created by
applying the transformation process described in section 2. Figure (a) shows a typical double-maxima map with two significant maxima, while
Figure (b) belongs to the group of non-double-maxima maps.

Visual features
We transformed all 44 files of bat calls into variant maps by steps A

to D as described in section 2. That is, we used the axis values X=M+
+M┴  and Y=M┴ +M−+M    and a segment length M=237. By focusing on
the visual features we clustered the resulting maps into two groups. A
typical member of each group is shown in Figure 2.

One group consists only of maps showing patterns which have two
significant maxima with values >105. We call members of this group
double-maxima maps. The example shown in Figure 2(a) has maxima
at the positions X=0, Y=237 and X=120, Y=200. Besides these two
maxima, there are distinct positions on diagonal areas with values of
the orders 1 to 103.

All other maps belong to the group of non-double-maxima maps.
As an example, the map in Figure 2(b) has its significant maximum at
the position X=0, Y=237, while other projection regions have values of
the orders 1 to 103. In addition, most values of interest are located
around a diagonal region and form a slat band on the map.

All 44 resulting maps are shown in Figures 3 and 4. They are
separated into double-maxima maps (Figure 3) and non-double-
maxima maps (Figure 4). In principle, it is possible to further
subdivide the variant maps by identifying additional visual features.
However, since we did not yet find a direct connection between visual
features and bat call properties, a further subdivision goes beyond the
scope of this manuscript and will be the topic of a future publication.
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Figure 3: These variant maps show double-maxima patterns. They have two significant maxima with values >105. The axis ranges are the same
as in Figure 2. Each map originates from a bat echolocation recording on a corn (C), rapeseed (R) or wheat (W) field.

Citation: Heim DM, Heim O, Zeng PA, Zheng J (2016) Successful Creation of Regular Patterns in Variant Maps from Bat Echolocation Calls. Biol
Syst Open Access 5: 166. doi:10.4172/2329-6577.1000166

Page 4 of 6

Biol Syst Open Access, an open access journal
ISSN:2329-6577

Volume 5 • Issue 2 • 1000166



Figure 4: These variant maps show non-double-maxima patterns. That is, they explicitly do not have two distinct maxima with values >105 in
contrast to the double-maxima maps shown in Figure 3.

Discussion
On all generated maps, the positions on the left-bottom triangle

area are empty. This is because our choice of axis obeys X+Y ≥ M.
Empty positions in the right-top area appear because the bat call
recordings consist of discrete short pulses with a longer time period of
silence in between.

Similarly, other visual characteristics in the colored areas can be
directly related to properties of the bat call recordings. As an example,
a signal of constant frequency can be transformed into a single
position on a variant map by choosing suitable parameters. This means
that, by optimizing the variant map transformation, it is possible to
focus on features of the initial bat echolocation call for the creation of
variant maps.

Since this transformation process is completely different from
conventional bat call identification schemes, because it involves

quaternion structures, it can be used to add optimizing parameters to
these schemes and form in this way the basis for a new identification
algorithm.

Summary and Outlook
We transformed 44 bat echolocation files into variant maps. All

created variant maps have a similar structure and can be classified by
focusing on specific visual features. As an example, we found a set of
projection parameters which allowed us to classify the recordings into
double-maxima and non-double-maxima maps.

Features like this can be traced back to the signal nature of the
recordings. In this way, variant maps offer the possibility to focus on
individual features of bat echolocation calls. Since there are multiple
numbers of possible combinations to create variant maps, we are very
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positive that a suitable projection combination can be found to fulfill
our ultimate goal of identifying single bat species.

In order to meet this target it is necessary to process a much higher
number of bat calls to create a sufficient large database for the effective
determination of possible projections and associated maps. This would
form the perfect basis for the development of a new echolocation call
identification algorithm.
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