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Introduction
Diabetes mellitus is characterized by persistent hyperglycemia with 

disturbances of carbohydrate, fat and protein metabolism that results 
from abnormalities in insulin secretion, action or both [1]. About 350 
million people across the globe are estimated to have diabetes [2], and 
type 2 diabetes mellitus (T2DM) accounts roughly 90% of all diagnosed 
cases [1]. Diabetes has a prevalence of 2-5% in most Western countries, 
and is rapidly increasing in Asiatic countries due to changes in dietary 
habits during the last years [3]. From 1980 through 2010, the number of 
Americans with diagnosed diabetes has more than tripled (from 5.6 to 
20.9 million) [4], and in the UK insulin use in children and adolescents 
increased significantly from 1.08 per 1000 children in 1998 to 1.98 in 
2005 (p<0.001) [5]. Type 1 diabetes (T1DM), previously called insulin-
dependent diabetes mellitus or juvenile-onset diabetes, accounts for 
about 10% of all diagnosed cases, and usually affects children and 
young adults, although disease onset can occur at any age. Risk factors 
may be autoimmune, genetic, and/or environmental [6]. 

In T1DM, pancreatic islet β cells are destroyed as a result of 
autoimmune processes causing severe insulin deficiency. Without 
insulin, blood glucose concentration increase with glucose uptake 
into muscle (energy), and to the liver (storage of glycogen), and 
hepatic gluconeogenesis also continues unabated, while ketone bodies 
and keto-acids are accumulating, finally leading to acute metabolic 
crises [7]. In T2DM, increases in insulin resistance lead to enhanced 

demand for insulin generation, beta cell hypertrophy, beta cell damage 
and fibrosis caused by excessive ROS/RNI production and/or other 
molecular pathomechanisms, with further reductions in insulin 
secretion [7]. 

T. gondii is a protozoan parasite known to infect animals,
birds and mammals, including about 30-50% of the world human 
immunocompetent population who have chronic asymptomatic 
infection and harbor parasite cysts especially in the central nervous 
system [8,9]. In Europe, North America, and Africa, there are three 
dominant clonal lineages of T. gondii called type I (e.g. RH and 
GT1), type II (ME49), and type III (VEG), which differ in prevalence, 
virulence, migratory capacity within the host, and ability to convert to 
the bradyzoite cyst phase [10]. Geoepidemiological prevalence of the 
parasite varies depending on the world region, ranging from as low as 
4% in some areas of the Far East, through 10-30% in the US, and from 
10% to up to 60% in European regions with high consumption of raw 
food, such as France [11-13]. 
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Abstract
Recently, it was suggested that maternal T and potentially B cells transferred during pregnancy and/or the 

breast milk feeding and their encounter with the antigen in mesenteric lymph nodes might play a role in development 
of type 1 diabetes mellitus (T1DM). T. gondii infection during gestation and/or after birth may be responsible for 
development of both T1DM and T2DM in children, adolescents and adults because: a) maternal microchimerism in 
peripheral blood was demonstrated to be significantly higher in patients with T1DM compared to unaffected siblings 
and healthy subjects, b) transmission of T. gondii as a Trojan horse in various types of eukaryotic cells, including 
T and B lymphocytes, c) swallowing by the fetus of amniotic fluid containing infected leukocytes and other cells, 
d) elimination of T. gondii in the breast milk during lactation, e) involvement of mesenteric lymph nodes after oral
infection with the parasite, and f) damage of the myenteric neurons during infection with the parasite in both the
animals with streptozotocin-induced diabetes and diabetic patients. Moreover, a significantly lower occurrence of
antibodies against T. gondii found in the sera of patients with T1DM compared with their first-degree family members
or healthy controls may be due to their T and/or B cell exhaustion perspective caused by chronic infection with the
parasite. This suggestion may be supported by the finding that latent toxoplasmosis was associated with markedly
reduced lymphocyte B-cell counts responsible for production of antibodies, markedly lower serum IgG, IgM, and IgA
levels, and a significant suppression of IL-2. On the other hand, patients with T2DM had increased anti-T. gondii
antibodies significantly more frequently than respective controls. Impaired vascular endothelial function characteristic
for the patients with diabetes mellitus may be at least in part due to the preferential T. gondii infection of endothelial
cells. Vitamin D and minocycline exerted beneficial effects on development and clinical course of diabetes mellitus
probably because of their immunomodulatory and antitoxoplasmatic activities. These data strongly suggest that the
parasite play an important role in development of both types of diabetes mellitus.
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T. gondii can infect and replicate in virtually any nucleated host cells 
and specifically increase the levels of key host microRNAs [14]. IFN-γ-
mediated immune responses control the parasite in both phagocytic 
and non-phagocytic cells through at least six different mechanisms 
depending on the types of cells responding to this cytokine. Such effector 
functions involve: 1) mechanisms mediated by IFN-γ responsive gene 
family proteins, including IGTP (an essential mediator of specialized 
antimicrobial activities of IFN-γ), which may be involved in the 
processing and trafficking of cytokines and/or antigens; 2) production 
of NO by inducible NO synthase (iNOS); 3) production of various 
cytokines (TNF-α, IFN-γ, IL-1β, etc.); 4) tryptophan degradation by 
indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase; 5) 
limiting the availability of intracellular iron to the parasite, and 6) 
production of reactive oxygen/nitrogen species/intermediates (ROS/
RNI) [15,16].

Immunocompetent hosts infected with T. gondii must develop a 
powerful immune response that has to be under tight control [17] and 
persistently maintained during their lifetime in all infected tissues to 
avoid life-threatening toxoplasmic encephalitis after reactivation of 
latent parasites [18,19].

Possible Association between Diabetes Mellitus, Auto-
immunity and T. gondii Infection 

A significantly lower occurrence of antibodies against T. gondii 
and some viruses was reported in the sera of patients with T1DM 
compared with their first-degree family members or healthy controls 
[20]. This very interesting finding may be caused by the impaired 
innate immune state capacity of those individuals caused by chronic 
infection with the parasite (probably acquired early during prenatal 
life), which is primarily responsible for the prolific production of 
autoantibodies due to various autoimmune condition. Host cell-
mediated immune responses are suppressed during chronic infection 
with T. gondii, and this was associated with significant suppression of 
IL-2, IFN-γ, and markedly lower levels of IgG1, IgG2a, IgG2b, IgG3, 
IgA, and IgM [21] (Tables 1 and 2). This reasoning may be supported 
by the fact that latent toxoplasmosis was associated with markedly 
reduced lymphocyte B-cell counts responsible for production of 
antibodies [22], and is consistent with the current studies on CD8 T 
cell deficiency and probable exhaustion perspective observed during 
chronic toxoplasmosis [23].

Gokce et al. [24] studied seropositivity rate of anti-T. gondii 
antibodies in 807 persons (351 men, 456 women; mean age 52.8 ± 
14.01 SD, range 15-88 yrs) with T2DM and found that IgG antibodies 
were present significantly more frequently as compared with 250 
healthy controls (110 men, 140 women; mean age 51.94 ± 13.44, range 
18-75 yrs) (p<0.001). IgM antibodies were found in 19 of the patients 
with diabetes mellitus and only in 4 controls (2.4 vs. 1.6%, p=0.3) [24] 
(Table 3). These findings may be supported by the geoepidemiology 
of autoimmune diseases which demonstrates that genetic individual 
susceptibility interacted with lifestyle and environmental factors, such 
as socioeconomic status, nutritional habits, environmental pollutants, 
and viral, bacterial and parasitic infections, acting as triggering and/
or protective agents [25-29]. For example, helminths were found to 
be protective in T1DM, autoimmune encephalitis, and ulcerative 
colitis probably via an induction of proinflammatory responses (TH1 
cytokines) and a concomitant development of type 2 Th cell line 
adaptive immunity [25,26]. Shapira et al. [25] suggested that T. gondii 
infection can initiate a pathogenic process that may eventually result 
in clinically overt autoimmunity because serum anti-toxoplasma 

antibodies IgG were positive in 42% of 1514 European patients with 
11 different autoimmune diseases as compared with 29% of controls 
(p<0.0001). In addition, ATxA IgM were more prevalent in the 
patients with anti-phospholipid syndrome (p<0.01), systemic sclerosis 
(p<0.05), and inflammatory bowel disease (p<0.05) than in controls 
[25]. Maternal microchimerism was found in the peripheral blood of 
patients with T1DM and pancreatic islet beta cell microchimerism 
[30]. It was demonstrated that this event leads to the production of 
IL-2, a proinflammatory cytokin, in IL-2 knockout mice [31]. Several 
autoimmune diseases due to maternal/fetal microchimerism were 
presented in table 4. Some of these diseases were probably associated 

Infectious agent T1DM FM Controls p value
T. gondii 5.4 24.4 40.0 0.001
EBV-VCA (IgG anti-VCA) 82.1 92.6 92.8 0.04
EBV-EBNA (IgG anti-EBNA) 71.4 89.3 90.7 0.001
CMV 69.6 79.7 92.9 0.001
HP 55.1 78.3 80.7 0.01

CMV: Cytomegalovirus; EBV: Ebstein-Barr Virus; EBV-VCA: EBV Viral Capsid 
Antigen; EBV-EBNA: EB Nuclear Antigen; HP: Helicobacter Pylori

Table 1: Percentages of T1DM patients, their first-degree family members (FM) 
and healthy controls with antibodies against T. gondii and some other infectious 
agents (according to Krause et al. [20]; with own modification).

Table 2: Percentages of autoantibodies associated with various autoimmune 
condition in T1DM patients,their first-degree Family Members (FM) and healthy 
controls (according to Krause et al. [20]; with own modification).

Autoantibody T1DM FM Controls p value
Antigliadin IgG 31.0 8.2 1.4 0.001
Antitissue transglutaminase IgG 3.5 0 0 0.03
Anticentromere 3.6 0.8 0 0.06

Values in parentheses denote percentages

Table 3: Relationship between the seropositivity rate of anti-T. gondii antibodies 
analyzed in 807 individuals with T2DM and duration of the disease (according to 
Gokce et al. [24]; with own modification).

Duration of 
T2DM (yrs)

Number of IgG-
positive individuals

Number of IgG-negative 
individuals

0-5 39 (16.8) 193 (83.2)
6-10 149 (51.6) 140 (48.4)
> 11 269 (94.1) 17 (5.9)

Interestingly, maternal microchimerism was found in the peripheral blood of patients 
with T1DM and pancreatic islet beta cell microchimerism [43]. It was demonstrated 
that this bioevent also leads to the production of IL-2,a proinflammatory cytokine,in 
IL-2 knockout mice [44] 

Table 4: Autoimmune diseases associated with fetal and/or maternal 
microchimerism (according to Klonisch and Drouin [32]; with own modification).

Disease Female/male ratio Tissue source References
Systemic sclerosis ≥ 8:1 Peripheral blood cells [33,34]
Juvenile idiopathic 
inflammatory myopathy 3:1 Sorted CD4+ or CD8+ 

peripheral blood cells [35,36]

Systemic lupus 
erythematosus 5:1 Peripheral blood 

nucleated cells [37]

Sjögren syndrome 9:1 Peripheral blood 
whole nucleated cells [37]

Primary biliary cirrhosis 14:1 Peripheral blood 
nucleated cells [38]

Hashimoto’s thyroiditis 20:1 Thyroid tissue [39]
Graves’ disease 8:1 Thyroid tissue [40]

Lichen planus 2:1 Peripheral blood 
nucleated cells [41]

Polymorphic eruptions 
of pregnancy pregnancy [42]
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with transmission of the parasite in various nucleated cells as a Trojan 
horse, because the percentage of T. gondii positive persons increases 
with age (Table 5). 

It should be emphasized that insulin and D-glucose had a dose-
responsive mitogenic effect on intracellular T. gondii replication and 
development in 3T3-L1 cells. In vitro insulin concentrations between 
10-2 and 10-1 µg/ml combination of 4.5 g/l D-glucose in DMEM 
(Dulbecco’s Modified Eagle Medium) gave maximum stimulus 
to T. gondii replication [44]. In the absence of D-glucose, insulin 
had comparably less effect on the parasite growth than two of their 
combination. D-glucose markedly affected the tachyzoite replication 
and appeared to be indispensable for maintaining the host 3T3-L1 cells 
[44]. Thus, the additive/synergistic effect of insulin plus D-glucose on 
multiplication of the parasite in pancreatic islet beta-cells may be at least 
in part responsible first for inducing insulitis, and then progressing to 
diabetes, as well as for triggering development of various autoimmune 
defense reactions of the host.

In summary, there is a strong laboratory, pathophysiologic and 
clinical evidence supporting suggestion about the association between 
chronic latent T. gondii infection and both development of diabetes 
mellitus and several concomitant autoimmune diseases. 

Similarities between Genetic Contribution of HLA-
DQ Molecules to the Development of Diabetes and 
Genetically-Dependent Outcome of T. gondii Infection
Diabetes

In humans, T1DM is associated with genes encoding the MHC, 
particularly the class II molecule DQA1*0301/DQB1*0302 [47-50]. 
About 90% of patients with T1DM express HLA-DQ8/DR4 or HLA-
DQ2/DR3 biomolecules [48]. Geogenetically, in Chinese population 
DQA1*0501, DQA1*0501, DQB1*0201, and DQB1*0302 were the 
susceptible alleles (all p<0.005) are relevant to T1DM, which is not 
totally the same as non-Chinese populations [51]. It must be emphasized 
that in the patients with the T1DM-associated DQB1*0302-DRB1*04 
haplotype, maternal microchimerism was found more often when the 
haplotype was paternally (70%) rather than maternally transmitted 
(14%) [30]. This finding is in agreement with the suggestion that not 
only the inherited but also non-inherited maternal HLA haplotypes 
may influence the risk for development of T1DM [52]. 

In mice, Wen et al. [50] provided direct in vivo evidence for the 
contribution of HLA-DQ molecules to the development of diabetes. 
They found that substitution of HLA-DQA1*0301/DQB1*0302 
for murine MHC class II provoked autoimmune diabetes in non-
diabetes-prone rat insulin promoter RIP-B7-1 C57BL/6 mice. 

Rajagopalan et al. [53] showed that spontaneous diabetes occurred in 
RIP-B7-1 transgenic mice expressing transgenic HLA-DR3 or HLA–
DQ8 molecules and the incidence of the disease was comparable 
between the two (approximately 30% in either sex up to 50 weeks 
of age). However, Kudva et al. [54] found that in NOD mice lacking 
endogenous class II molecules, transgenic expression of HLA-DR3 
and HLA-DQ8 associated with predisposition to T1DM alone was not 
sufficient to induce spontaneous diabetes. It should be noted that the 
induction of immunodominant, protective CD8+ T cell responses to 
T. gondii infection requires proteolysis by the endoplasmic reticulum 
aminopeptidase associated with antigen processing (ERAAP) in the 
endoplasmic reticulum [55]. Although a key function for ERAAP 
is shaping many precursor peptides to the appropriate length for 
presentation by MHC class I molecules, this pathomechamism may 
also partly participate in the immune processes reported in mice by 
Kudva et al. [54]. This reasoning is supported by the finding that T. 
gondii infection caused downregulation of MHC class II molecules and 
inability to upregulate class I molecules in murine macrophages [56-
58].

T. gondii
T. gondii tachyzoite division is composed of single G1, S, mitosis 

/cytokinesis phases with infectious daughters formed following each 
nuclear cycle [59,60]. Consequently, replicating parasites, which can 
divide 5 to 6 times in a single host cell, are continuously infective when 
mechanically liberated from host cells [59]. Gaji et al. [59] showed 
that tachyzoites preferentially egress and invade in the G1 phase of the 
parasite cell cycle, thus demonstrating functional coordination between 
the cell cycle and intercellular transmission. The parasite rapidly alters 
the expression of many mRNAs soon after cell invasion to intracellular 
replication [59].

Mack et al. [61] demonstrated a cause and effect relationship 
between human MHC genes and resistance to T. gondii infection and 
associated inflammatory processes. They found that in Caucasians, the 
DQ3 gene frequency was significantly higher in infected infants with 
hydrocephalus (0.783) than infected infants without hydrocephalus 
(0.444) or published controls (0.487). Consistent with the observed 
association between DQ3 and hydrocephalus in human infants, was 
the finding in the murine model that the DQ3 (DQ8; DQB1*0302) gene 
protected less than DQ1 (DQ6; DQB1*0601) [61]. 

Dubey et al. [62] studied pathogenesis of T. gondii oocysts in HLA 
transgenic mice infected with different doses of the parasite strains of 
different genotypes derived from several countries. It was found that 
the decreasing order of infectivity and pathogenicity was the following: 
mice C57BL/6 background IFN-γ gene knock out, HLA-A*1101, 
HLA-A*0201, HLA-B*0702, Swiss Webster, C57/black, and BALB/c. 

In the control individuals 45 yrs old or younger recruited from the same geographical region as the psychiatric patients admitted to the hospital, serofrequency of T. gondii 
infection ranged between 20 and 40% without any systematic age effect, whereas in the individuals older than 45 yrs serofrequency systematically increased with age from 
about 40% to almost 100% [45]

Table 5: Percentage of T. gondii positive individuals among 214 nonpsychiatrically affected controls depending on age analyzed during a large epidemiologic study of 869 
psychiatric patients [45,46].

Percent T. gondii positive Age (yrs)
18-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75

100 100
80 80 80
60 58 58 60
40 35 32 40 39 38
20 19
0
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Mice fed as few as 1 oocyst of type I and several atypical strains died 
of acute toxoplasmosis within 21 days post inoculation, while some T. 
gondii type II, and III strains were less virulent [62]. In North America, 
T. gondii serotype II and NE-II caused congenital toxoplasmosis, and 
prematurity and severe disease at birth was related with the parasite 
NE-II serotype [63]. This serotype was also associated with rural 
residence, lower socioeconomic status and Hispanic ethnicity (p<0.01-
0.001) [63].

In summary, literature data indicate that there are considerable 
similarities of genetic contribution between chronic latent T. gondii 
infection, parasite strain affecting infectivity and pathogenicity, its 
developmental stage, dose, route of infection, innate immune state of 
the host, and local environmental factors, and development of diabetes 
mellitus. 

Disturbances of Innate Immunity in Patients with 
Diabetes Important for Triggering Development of the 
Disease

Han et al. [64] showed an overall depressed immunity in long-
term patients with T1DM, and markedly increased gene expression for 
IFN-γ, IL-4 and IL-10 mRNA levels in new-onset patients compared to 
at-risk and long-term types of T1DM patients.

Clinical investigations performed in diabetic patients and 
experimental studies in diabetic rats and mice showed defects of 
neutrophil chemotactic, phagocytic and microbicidal activities [65]. 
Also, there were many other abnormalities, including decreased 
microvascular response to inflammatory mediators, reduced protein 
leakage and edema formation, decreased mast cell degranulation, 
impairment of neutrophil adhesion to the endothelium and migration 
to the site of inflammation, production of ROS, reduced release of 
cytokines and prostaglandins by neutrophils, increased leukocyte 
apoptosis, and reduction in lymph node retention capacity [66]. 
Endothelial dysfunction appeared to precede the development of overt 
hyperglycemia in the patients with T2DM [66]. Metabolic routes by 
which hyperglycemia is linked to neutrophil dysfunction included the 
advanced protein glycosylation reaction, the polyol pathway, oxygen 
free radical formation, the NO-cyclic guanosine-3’-5’ monophosphate 
pathway, and the glycolytic and glutaminolytic pathways [65]. 

Diabetes causes marked changes in function and metabolism 
of neutrophils, e.g. glutamine oxidation and glutaminase activity 
are markedly decreased in neutrophils from diabetic rats [67] and 
glutamine plays an important role in protein (as an amino acid source), 
lipid (by NADPH production) and nucleotide synthesis (by purine and 
pyrimidine production), and in NADPH oxidase activity [68]. It must 
be emphasized that the tachyzoite stage of T. gondii, responsible for 
an acute infection, rapidly metabolizes glucose via glycolysis [69,70]. 
Blume et al. [70] demonstrated however that glucose is nonessential for 

T. gondii tachyzoites because host-derived glucose and its transporter 
in the parasite are dispensable by glutaminolysis. Thus, eventually 
increased requirements for glutamine and competition for this amino 
acid between T. gondii and neutrophils (and probably other cells) 
may result in diminished sources of glutamine and development of 
disturbances in maintaining regular metabolic and immune processes 
in many host cells. Moreover, this amino acid raises the in vitro bacterial 
killing activity and the rate of ROS generation by neutrophils [71,72], 
and delays spontaneous apoptosis of these cells [73].

Defective phagocytosis and decreased activity of intracellular killing 
of bacteria and Candida [74-76] (probably including also T. gondii) in 
neutrophils, are examples of the impaired mechanisms responsible for 
the increased susceptibility to infections in the patients with advanced 
stages of DM. 

Rodacki et al. [77] found that the onset period of T1DM is marked 
by a slight reduction in blood NK cells, but in some patients the cells 
were unusually activated, as estimated by increased IFN-γ expression). 
NK cells patients with in long-standing T1DM had a markedly lower 
expression of p30/p46 NK-activating receptor molecules compared with 
control individuals, and this abnormality may be rather consequence 
than cause of the disease [77]. T1DM follows an immunologically 
mediated destruction of the pancreatic cells and autoreactive T-cells 
play a pivotal role in this process. NK cells are also potentially involved 
in this process, given their ability to kill target cells and interact with 
antigen-presenting cells and T-cells [78-80]. Indeed, NK cells can 
lyse islet cells in vitro [81,82]. Because NK cells are a major source of 
IFN-γ, their pathophysiological impact on the disease is to modulate 
the aggressiveness of the immune attack and the rate of its progression 
from insulitis to overt diabetes [77]. 

It was reported that pancreatic β-cell destructive insulitis was 
associated with increased expression of several proinflammatory 
cytokines (IL-1, TNF-α, TNF-β, INF-α, INF-γ, IL-2, and IL-12), 
whereas non-destructive (benign) insulitis was linked with the 
expression of antiinflammatory cytokines (IL-4 and IL-10) and TGF-β 
[83] (Table 6). Proinflammatory cytokines such as IL-1, TNF-α, TNF-β 
and IFN-γ may be directly cytotoxic to pancreatic β-cells by inducing 
NO and ROS in these cells. These data are in agreement with the 
findings that systemic administration of a wide variety of cytokines 
demonstrated to prevent development of IDDM in NOD mice and/or 
BB rats depending on the dose and frequency of administration [83].

Lajoix et al. [84] demonstrated the presence of neuronal NO 
synthase (nNOS) in rat pancreatic islets and INS-1 cells. Electron 
microscopic study showed that nNOS was mainly localized in insulin 
secretory granules and to a lesser extent in the mirochondria and 
the nucleus. It appeared that β-cell nNOS exerted, like brain nNOS, 
two catalytic activities: a NO production and a NOS monooxidative 
reductase activity [84]. Kröncke et al. [85] found that NO is extremely 

++: cytokine presence correlates with β-cell destructive insulitis; +: cytokine presence correlates with benign insulitis; 0: cytokine presence does not correlate with either 
destructive or benign insulitis; nd: not detected;  

?: not reported; NOD: Non-Obese Diabetic mice; BB: Biobreeding rats; Humans: pancreas of humans with IDDM

Table 6: Correlations of cytokines expressed in islets with β-cell destructive or benign insulitis (according to Rabinovitch [83]; with own modification).

Proinflammatory Type 1 cytokines Type 2 cytokines Type 3
cytokines cytokine
IL-1 TNF-α IFN-α IL-12 IFN-γ TNF-β IL-2 IL-4 IL-6 IL-10 TGF-β

NOD mice ++ ++ 0 ++ ++ ++ ++ + ++ + +
BB rats ++ ++ ++ ++ ++ ? ++ 0 ? + +
Humans 0 nd ++ ? ++ ? nd 0 0 ? ?
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toxic for islet cells and even in the absence of other macrophage-
generated potentially toxic products can rapidly and completely kill 
these cells. 

Proinflammatory cytokines are increasingly thought to contribute 
to beta-cell dysfunction and death not only in T1DM, but also in the 
progression of T2DM. It was established that pancreatic beta cells, 
as well as neural cells, can be destroyed by several toxic agents and 
noxious stimuli, such as for example: 1) ROS (H2O2, O2

-, HO-) and 
NO, 2) cytokines (TNF, IL1-β, IFN-γ), 3) hyperglycemia and 4) islet 
amyloid polypeptide [86]. Cytokines can alter intracellular calcium 
levels by depleting calcium from the endoplasmic reticulum (ER) 
and by increasing calcium influx from the extracellular space [87]. 
Depleting ER calcium leads to protein misfolding and activation 
of the ER stress response. Disrupting intracellular calcium may also 
affect organelles, including the mitochondria and the nucleus, and as 
a chronic condition, cytokine-induced calcium disruption may lead to 
beta-cell death in both T1DM and T2DM [87]. Host cell mitochondria 
and ER have an intimate relationship with T. gondii due to their 
recruitment to and association with the parasitophorous vacuole 
membrane (Table 7) [88]. Moreover, discharge of adhesive proteins T. 
gondii apical storage organelles (micronemes) is stimulated by contact 
with host cells and this process is regulated by increases in intracellular 
calcium within the parasite [89]. In addition, gliding of the parasite is 
controlled by secretion of microneme proteins and factors that alter 
calcium fluctuation in the cytosol, while chelation of intracellular 
calcium blocked parasite motility [90]. 

Experimental studies indicated that disruption of endothelial 
insulin signaling through the activity of protein kinase C-β and 
NFκB reduces NO availability, and Tabit et al. [91] observed 1.7-
fold higher basal eNOS phosphorylation at serine 1177 in patients 
with diabetes (p=0.007). Nitrotyrosine levels were higher in diabetic 
patients indicating endothelial oxidative stress, and protein kinase 
C-β expression was higher in those patients and was associated with 
lower flow-mediated dilation (r=-0.541, p=0.02) [91]. In T. gondii, 
calcium-dependent protein kinases (serine/threonine kinases) are 
key mediators of signaling [92], and a protein kinase C receptor 1 was 
identified in tachyzoites [93]. Proliferation of the parasite is dependent 
on its ability to invade host cells, which is mediated partly by calcium-
dependent protein kinase 1 [94]. cAMP-dependent protein kinase 
plays an important role in the growth of tachyzoites [95], and a plant-
like calcium-dependent protein kinase in T. gondii is required for 
optimal in vitro growth, regulates microneme secretion when parasites 
are intracellular and its egress from host cells [96]. 

Leem and Koh [97] suggested that impaired mitochondrial 
function and ER stress are closely associated with pancreatic β cell 
dysfunction and peripheral insulin resistance, and each of these factors 
contributes to the development of T2DM [98-103]. ROS generation is 
thought to act as local messengers between the ER and mitochondria 
[103] and many ROS sources and targets are localized to the ER and 
mitochondria [104]. NO signals the ER stress response via inhibition 
of mitochondrial respiration because in NO-generating cells the 
respiratory chain is disrupted [105] and NO can bind to cytochrome c 
oxidase and inhibit the enzyme, in competition with oxygen [106]. In 
addition, NO mediates cytokine-induced (IL-1β, TNF-α, and IFN-γ) 
inhibition of insulin secretion by human islets of Langerhans through 
generation of iron-nitrosyl complexes that inactivate enzymes, such as 
aconitase and ribonucleotide reductase [107-109], while on the other 
hand, IL-1β and TNF induce NO formation and accumulation of cyclic 
GMP in pancreatic β cells [110,111]. 

Weaver et al. [112] showed that stimulation of human donor islets 
with a cocktail of inflammatory cytokines (TNF-α, IL-1β, and IFN-γ) 
significantly induced NADPH oxidase-1 (NOX-1) gene expression 
(p<0.05), and concomitantly induced loss of islet glucose stimulated 
insulin response (p<0.05), elevated expression of MCP-1 (p<0.01), 
increased cellular ROS production, and induced cell death [112]. 
Recently, the role of NOX in mitochondrial dysregulation in diabetes 
was reported [113], and NOX-1 participated in ROS-dependent cell 
death of Caco2 cells [114].

T1DM results from the destruction of insulin-producing 
pancreatic beta cells by a beta cell-specific autoimmune process leading 
to absolute insulin deficiency. Beta cell autoantigens, macrophages, 
dendritic cells (DC), B lymphocytes, and T lymphocytes have been 
found to be involved in the pathogenesis of autoimmune diabetes 
[115-117]. Beta cell autoantigens are thought to be released by 
cellular turnover or damage, then processed, and finally presented 
to T helper cells by antigen-presenting cells. Macrophages and DC 
are the first cell types to infiltrate the pancreatic islets. Naive CD4+ T 
cells can be activated by IL-12, a proinflammatory cytokine, released 
from macrophages and DC. The CD4+ T cells secrete IFN-γ and IL-2, 
and IFN-γ activates other resting macrophages, which release IL-1β, 
TNF-α, and free radicals, all toxic to pancreatic beta cells if produced 
in excess [118]. Beta cell antigen-specific CD8+ T cells activated by IL-2 
produced by the activated TH1 CD4+ T cells differentiate into cytotoxic 
T cells and are recruited into the pancreatic islets, finally leading to the 
destruction of beta cells [115-117]. In addition, beta cells can also be 

ER: Endoplasmic Reticulum. PVM: Parasitophorous Vacuole Membrane. The extent of PVM-organelle association was measured at 4 hrs and 20 hrs post-infection. 
The specific parameters measured are the Surface to Volume ratios (Sv) of the PVM (SvPVM), PVM-associated mitochondria (SvM) and PVM-associated Endoplasmic 
Reticulum (SvER), all relative to the volume of the PV. The mean surface densities and the Standard Error (SE) for the sample size measured are presented. The extent 
of PVM-mitochondrial and PVM-ER association was represented as a percentage of their surface densities (SvM and SvER) relative to SvPVM. The values for the mean 
surface densities and the percentage association were rounded off to the level of significance indicated

Table 7: Morphometric analysis of T. gondii PVM-host organelle association (acc. to Sinai et al. [88]; with own modification).

Sample treatment Sample size
(n)

SvPVM
Mean (SE)

SvM
Mean (SE)

SvER
Mean (SE)

Percentage
PVM-mitochondrial association

Percentage
PVM-ER association

Untreated, 
4 hrs 31 3.20 (0.16) 0.58 (0.07) 1.78 (0.22) 18 56

Nocodazole,
4 hrs 31 3.70 (0.17) 0.33 (0.08) 1.79 (0.15) 9 47

Untreated,
20 hrs 30 2.70 (0.19) 0.61 (0.06) 0.80 (0.13) 23 30

Nocodazole,
20 hrs 30 3.22 (0.19) 0.81 (0.09) 1.21 (0.20) 25 38

Pyrimethamine
20 hrs 30 2.96 (0.14) 0.79 (0.09) 1.00 (0.14) 27 34
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damaged by granzymes and perforin released from CD8+ cytotoxic T 
cells, and by cytokines and reactive oxygen/nitrogen species generated 
by activated macrophages accumulated in the islets. Thus, activated 
macrophages, TH1 CD4+ T cells, and beta cell-cytotoxic CD8+ T cells 
act synergistically to destroy beta cells, resulting in the development of 
autoimmune T1DM [115-117]. 

Abscisic acid (ABA) is a membrane-permeant hormone rapidly 
produced and released from human islets stimulated with high glucose 
concentrations, which regulates several important physiologic functions 
related to stress [119]. ABA acts as an endogenous proinflammatory 
cytokine in human granulocytes because it activates many functions 
of these cells including phagocytosis, migration, production of ROS 
and NO [119,120]. Nanomolar ABA concentrations increase glucose-
stimulated insulin secretion from human and murine pancreatic 
β cells, and the paracrine production of the hormone by activated 
granulocytes and monocytes suggests that ABA may also be involved 
in dysregulation of insulin release during inflammation of pancreatic 
islets [119,120]. 

ABA has been detected as a product of human granulocytes 
[120,121], pancreatic islet cells [119], and other cell types [122]. 
Nagamune et al. [121] demonstrated production of ABA also by T. 
gondii. ABA induced the release of intracellular calcium stores via the 
generation of cAMP ribose [121], controlled calcium signaling within 
the parasite, and calcium was responsible for several critical bioevents 
related to T. gondii, including its motility, secretion, cell invasion, and 
egress. It appeared that ABA-mediated calcium signaling controls the 
decision between lytic and chronic stage growth, a developmental 
switch that is crucial in pathogenicity and transmission of the parasite 
[121]. Parasite- or host cell-derived ABA represents a potential 
initiating agent of calcium mediated host cell autophagy [123]. The 
above-presented processes, with possible involvement of T. gondii 
infection, may be at least in part responsible for the increased β-cell 
apoptosis and deficit of β cells development found in pancreatic tissue 
from 124 autopsies in humans with T2DM and in mouse model of type 
2 diabetes [124,125]. 

Pathologic or radiologic evidence of pancreatitis was noted 
with T. gondii, especially in HIV-infected patients or in other 
immunocompromised hosts. The majority of these individuals had 
no clinical symptoms of pancreatitis and infection was demonstrated 
histologically during postmortem examination [126].

Immunomodulatory Effects of Latent Toxoplasmosis in 
Animals and Humans
Animals

Kankova et al. [127] showed that mice in the early phase of latent 
T. gondii infection had transiently increased serum IL-12 levels and
decreased generation of IL-10. There was also a decreased production
of NO by stimulated macrophages, diminished generation of IL-2
and IL-4, and a markedly lower proliferative activity of splenocytes
compared with controls in the early and also in the late phases of the
infection, which suggested that immunosuppression processes play an
important role during latent toxoplasmosis [127].

Tachyzoites of T. gondii stimulate production of IL-12 [128-131] 
and this proinflammatory cytokine activates NK cells and T cells to 
produce IFN-γ that is crucial for host resistance [132-136]. IFN-γ 
and TNF-α act synergistically to mediate killing of tachyzoites by 
macrophages and the combination of these two cytokines results in a 
greatly enhanced production of free oxygen radicals and NO, both of 

which can affect parasite killing [128,136-138], although NO and its 
metabolites appear to be the primary effectors. NO is produced as a 
result of iNOS activation, which is dependent on activation of NFκB 
[139]. Gomez-Marin [140] obtained evidence of NO generation not 
only in the host cells, but also in T. gondii [141,142], which has its 
own cNOS producing 2-6 µmol of nitrites that could be essential in 
intracellular signaling. The NO defensive mechanism, where levels of 
nitrites can reach 120 µmol or more, is probably toxic for human and 
mice tissues [140].

T. gondii induces overproduction of IFN-γ and other
proinflammatory cytokines which may contribute to host tissue injury 
and death [143,144]. IFN-γ-induced antitoxoplasmatic activity is 
mediated by NO and indeed, induction of iNOS was demonstrated 
during the parasite replication in murine macrophages [145]. IFN-γ 
combined with TNF-α activated macrophages to produce increased 
quantities of RNI that are involved in the control of parasite replication 
[138] (Table 8).

Seabra et al. [194] found that NO was produced by monocyte-
derived macrophages only if cultured in the presence of macrophage-
colony-stimulating factor. Monocyte-derived or peritoneal 
macrophages infected with T. gondii presented lower iNOS expression, 
had a marked reduction in NO production, and only viable parasites 
caused partial inhibition of this process [194]. 

Lüder et al. [195] showed that infection of primary bone marrow-
derived macrophages or monocyte/macrophage RAW264.7 cells with 
a mouse-avirulent T. gondii strain markedly decreased NO production 
that had been induced by activation with either IFN-γ or bacterial 
lipopolysaccharide (LPS), or IFN-γ plus LPS. The down-regulation 
of NO production by the parasite enabled its considerable replication 
in macrophages activated with IFN-γ or LPS alone. iNOS transcripts 
induced by IFN-γ alone or in combination with LPS were also dose-
dependently down-regulated after infection of RAW264.7 cells with T. 
gondii [195].

Infection of mice with T. gondii elicits a dominant TH1 cytokine 
response involving IFN-γ, IL-12, IL-1β, and TNF-α. TNF-α induction 
has a serious impact on the parasite-induced pathology at early stages 
of infection. TH2-associated cytokines, such as IL-4 and IL-10, appear 
relatively late after infection, and may limit immune pathology [196]. 
To resolve acute infection, IFN-γ induces indoleamine 2,3 dioxygenase 
(IDO) release, resulting in tryptophan degradation and kynurenic acid 
accumulation [197]. IDO activated T cells and blocked their conversion 
into TH17-like T cells [198]. Tryptophan depletion is thought to be 
responsible for suppression of the growth of the acute stage tachyzoites. 
Kynurenic acid accumulation in the brain could potentially alter 
dopamine metabolism due to its NMDA antagonistic property [199-
201] (Figures 1-3).

In mice, T. gondii infection caused a significantly increased
formation of RNI probably due to elevated serum NO concentrations 
[143], and a significantly higher serum kynurenine/tryptophan ratio 
compared with control animals (p<0.05). The authors suggested 
that increased free radical toxicity may cause elevation in tissue 
malondialdehyde (MDA) levels arising from lipid peroxidation in T. 
gondii-infected mice, while unchanged serum MDA concentrations 
might indicate the increased oxidative stress due to the parasite 
infection restricted to intracellular area [143]. 

Wang et al. [123] presented evidence that T. gondii induces host cell 
autophagy in both HeLa cells and primary fibroblasts by a mechanism 
dependent on calcium, and that it exploits the nutritive function of host 
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autophagy to enhance its proliferation. Autophagy is a lysosomal self-
digestion process essential for cellular homeostasis, differentiation and 
survival, which protects organisms against a wide range of pathologies, 
including infection, neurodegeneration, ageing. (Nb. autophagy 
is considered a basis for the health promoting effects of vitamin D 
because of at least two functions, the induction of cancer cell death and 
the clearance of Mycobacterium tuberculosis in macrophages [202]). 
Autophagy-dependent T. gondii growth correlates with autophagy-
dependent consumption of host cell mass that is dependent on parasite 
consumption. In macrophages infected with the parasite, fusion of 
the parasitophorous vacuole with lysosomes can be induced in an 
autophagy-dependent manner when host cell anti-parasitic function 
is activated via CD40 [203]. Parasite-induced autophagy is dependent 

on calcium sigaling and on abscisic acid. Autophagy as a component 
of host defense may be upregulated by proinflammatory factors, such 
as LPS [204] and IFN-γ [205]. The parasite is able to actively sequester 
host cell lysosome-derived vesicles, thereby potentially gaining access 
to their content [206]. T. gondii reside in host cell vacuoles which resist 
typical phagosome-lysosome fusion because phagosome acidification 
necessary for microbicidal effect is blocked by intracellular parasite 
[207]. Extracellular Toxoplasma is highly susceptible to acidic pH 
conditions, indicating that the acidification block is important 
for intracellular survival of the parasite [207]. Thus, it seems that 
hypoglycemia-induced neuronal death, increased superoxide 
production and microglia activation reported in patients with diabetes, 
and is not a simple result of glucose deprivation, but instead the end 
result of a multifactorial process [208]. These changes may at least 
in part reflect a defense reaction of the host against chronic latent T. 
gondii infection through increasing systemic and local acidification of 
the tissues. 

Humans

Flegr and Striz [22] found that in 128 analyzed male patients the 
prevalence of T. gondii infection was 10.9% which contrasted with 
23.7% in 312 female patients and 20-30% in general population reported 
in Prague (Czech Republic). The male patients with latent T. gondii 
infection had significantly decreased leukocyte, NK-cell and monocyte 
counts while the T. gondii-positive women had increased these values, 
as compared with controls. The B-cell counts were markedly reduced 
in both men and women with toxoplasmosis [22]. Karaman et al. [209] 
found a significantly higher serum NO levels in patients with latent 
toxoplasmosis as compared with seronegative controls, and Dzitko et 
al. [210] demonstrated markedly increased serum prolactin (a strong 
immunomodulator) levels in women with latent T. gondii infection. 
Prolactin has been show to enhance production of IFN-γ, IL-12, and 
IL-10, but not of TNF-α, in a stimulus specific manner [211]. In vitro 
preincubation of tachyzoites with recombinant human prolactin 
resulted in a significant reduction (up to 36.15%) in replication abilities 
of the parasite, and the inhibition of replication was caused by a limited 
capacity of the parasites to penetrate host’s cells as demonstrated by the 
reduced number of infected cells [212]. More detailed effects of chronic 
T. gondii infection concerning modulation of human innate immunity 
and metabolism were presented in other works [213-216]. Tables 9 and 
10 summarized host cell-mediated evasion strategy against infection 
with the parasite. 

In the sera of 37 IgG-seropositive patients with T. gondii 
infection, Karaman et al. [209] demonstrated significantly increased 
malondialadehyde (MDA) and NO concentrations, and a decrease 
in glutathione activity as compared with healthy controls. It was 
also found a markedly higher MDA levels (p<0.001) paralleled with 
significantly decreased concentrations of glutathione peroxidase 
(p<0.0188) and tocopherol fractions (alpha, gamma and lambda) 
(p<0.001) in T. gondii seropositive than in seronegative blood donors 
[248,249]. These significant alterations in redox status between the 
two groups of blood donors indicate that chronic T. gondii infection is 
associated with oxidative stress because MDA is arising from the lipid 
peroxidation and is an indicator of oxidative stress, glutathione defends 
cells against oxidative damage by ROS and peroxidase, and tocopherol 
is an antioxidant [249,250]. The increased NO concentrations can be 
associated with the stimulation of the cell-mediated immune system in 
these individuals reflecting a defense of the host against the infection 
with the parasite. This may be supported by the finding that NO is a 
major effector molecule of macrophage cytotoxicity against T. gondii, 

Numbers in parentheses denote reference nos

Table 8: Cytokines necessary for survival during T. gondii infection (according to 
Dupont et al. [146]; with own modification).

Cytokines Sources Functions

IL-12 Dendritic cells 
[147-149]

Promotes T cell proliferation and 
differentiation [134,150]

Neutrophils [151-153] Promotes NK cell responses [129,154]
Inflammatory 
monocytes [153,155] Promotes IFN- production [122,149]

IFN-γ NK cells 
[137,145,154] Promotes iNOS expression [158]

CD4+ T cells [159] Promotes p47 GTP-ase-mediated killing of 
T. gondii [160,161]

CD8+ T cells [159] Promotes tryptophan degradation 
[135,162-164]

TNF-α Neutrophils [151,165] Promotes macrophage activation [166]

Dendritic cells [165] Promotes control of parasite in non-
hematopoietic cells [167]

Macrophages [168]
Microglia [169] Promotes iNOS expression [138,170-172]
T cells [173]

IL-6 Monocytes [174] Necessary for optimal neutrophil responses 
[175]

Astroglia [176] Necessary for optimal IFN-γ responses 
[175]

Stromal cells [177]
Retinal pigment 
epithelial cells [178]

LT-α Lymphocytes [179] Necessary for normal secondary lymphoid 
architecture [180]
Necessary for optimal antibody and IFN- 
responses early during infection [138]
Necessary for optimal expression of iNOS 
[170]

IL-10 NK cells [181] Inhibits CD4+ T cell-mediated pathology 
[182] 

Macrophages [183]
CD4+ T cells [184]
CD8+ T cells [183]

IL-27 Antigen-presenting 
cells [185] Inhibits IL-17 production [186]

Inhibits IL-2 production [187]
Promotes IL-10 production [188]
Promotes PD-L1 expression [189]

CD40L 
(surface 
protein)

Expressed on T cells 
[190] Promotes TH1 responses in humans [191]

Promotes iNOS expression [192]
Promotes xenophagic killing of T. gondii 
[193]
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Figure 1: Various pathways of the essential amino acid tryptophan metabolism.  About 99% of the dietary tryptophan is metabolized along the kynurenine pathway 
(red arrows). Alternative pathways are the conversion of tryptophan to 5-hydroxytryptamine (5-HT) and then to melatonin, or to tryptamine and then to the kynuramines 
(or kynurenamines). N1-acetyl-5-methoxykynuramine is a metabolite deriving from melatonin by mechanisms involving free radicals, exhibits potent antioxidant 
properties exceeding those of its direct precursor N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine generated through either an enzymatic or a chemical 
reaction (free radicals) pathway. 3-HAO, 3-hydroxyanthranilate oxidase; IDO, indoleamine 2,3-dioxygenase; KAT, Kynurenine aminotransferase; MAO, monoamine 
oxidase; QPRT, quinolinic-acid phosphoribosyl transferase; TDO, tryptophan 2,3-dioxygenase [200]. 
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and its production by macrophages is catalyzed by a cytokine-inducible 
form of the NO synthase positively controlled by TNF-α, IFN-γ and 
IL-2 [178]. Other cell types, such as endothelial cells and hepatocytes, 
display a similar capacity for NO generation in response to cytokine 
stimulation [251]. 

Baltaci and Mogulkoc [252] reported that in rats T. gondii infection 
caused also a significant increase of plasma leptin concentrations 
(p<0.01), with no change in body weight of the animals. In the 
obese individuals, including diabetics, this biomarker exerts a 
proinflammatory activity, and its structure is similar to that of IL-2, an 
important proinflammatory cytokine (Table 11).

Maternal Microchimerism (Mmc) in the Circulation 
and Tissues of Mothers’ Immune-Competent Children 

with T1DM. Pancreatic Islet β Cell Microchimerism 
may Play an Important Role in Development of T1DM 
because of Possible Intracellular Transmission of T. 
gondii Infection as a Trojan Horse to Mother’s Progeny 

Pregnant women infected with T. gondii for the first time can 
transmit the infection to their fetuses across the placenta. The risk 
of congenital infection is lowest (10-25%) when acute maternal 
toxoplasmosis occurs during the first trimester and highest (60-90%) 
when it occurs during the third trimester [257]. In primarily infected 
pregnant woman invasion of the placenta by tachyzoites that then 
multiply within placenta cells, may cross the placenta, and enter the 
fetal gastrointestinal tract with amniotic fluid, invade circulation and/
or fetal tissue [258]. Passage of erythrocytes between mother and 
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Figure 2: Interrelationships between indoleamine 2,3-dioxygenase (IDO) 
and nitric oxide synthase (NOS) in macrophages or glial cells, and the 
potential interactions with neurons by means of N-methyl-D-aspartate 
(NMDA)-receptor-induced nitric-oxide (NO) formation. Arg, arginine; 3-HAA, 
3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; IFN-γ, interferon-γ; IL, 
interleukin; Kyn, kynurenine; KynA, kynurenic acid; LPS, lipopolysaccharide; 
mRNA, messenger RNA; iNOS, inducible nitric-oxide synthase; TGF-β, 
transforming growth factor-β; TNF-α, tumor necrosis factor-α; Trp, tryptophan; 
xA, xanthurenic acid. The broken lines represent possible reactions [200]. 
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Figure 3: Possible model for NO-mediated regulation of IDO in IFN-γ-primed 
mononuclear phagocytes. NOS, nitric-oxide synthase; IDO, indoleamine 
2,3-dioxygensae, L-Arg, L-arginine; L-Trp, L-tryptophan; IFN-γ, interferon-; 
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S-nitroso-N-acetylpenicillamine; DEANO, diethylaminodinitric oxide. SNP, 
DEANO, and SNAP release NO extracellularly, while GTN is thought to 
release NO intracellularly [201]. 
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fetus is a well-documented phenomenon and it was reported that 
maternal erythrocytes have been found in 10-80% of all newborns 
[259]. Also, materno-fetal passage of leukocytes and platelets has been 
demonstrated [260].

Investigations of MMc in subsets of whole blood from 31 healthy 
adult women showed that 39% (12/31) of probands had MMc in at least 
one cellular subset [261]. MMc was demonstrated in T lymphocytes 
in 25% and B lymphocytes in 14%, while monocyte/macrophages had 
MMc in 16% and NK cells in 28%, thus demonstrating that MMc cells 
are detectable in the peripherial blood of many healthy individuals 
[261,262]. 

Diabetics

Zhou et al. [263] demonstrated that two independent pathways 
of maternal cell transmission to offspring, i.e. transplacental passage 
during pregnancy and breast milk-feeding after birth.

Bidirectional trafficking of maternal and fetal cells occurs during 
almost all pregnancies resulting in the persistence of low levels of these 
cells in the mother and/or her offspring for several decades after delivery 
[264-267]. The cell types exchanged between mother and fetus include 
leukocytes and T cells [268-271] in addition to progenitors of different 
line-ages [267,272], such as hematopoietic [267] or mesenchymal stem 
cells [273] and/or endothelial progenitors [274]. It was suggested that 
maternal T and potentially B cells transferred during pregnancy or 
lactation might play a role in the development of T1DM [275]. 

Roy et al. [275] believe that fetal microchimeric cells did not seem 
to influence the level of islet inflammation in mothers despite their anti-
beta cell specificity. They showed that fetal lymphoid progenitor cells 
enter the maternal thymus and develop into double positive and single 
positive thymocyte [270]. A possible role of microchimerism in the 
pathogenesis of some autoimmune diseases has been suggested because 
microchimeric cells may differentiate into many lineages in various 
tissues finally inducing diverse pathophysiologic processes during the 
host lifetime [276] (Table 4). For example, proliferation of these cells 
in maternal tissue environment may be at least in part responsible for 
development of autoimmune thyroid diseases because of a significant 
prevalence of anti-IgG T. gondii antibodies present in those individuals 
[25,277,278], as well as papillary thyroid cancer induction [279]. Fetal 
microchimerism may take place during pregnancy starting from the 4th 
to 6th week of gestation [280]. This traffic of cells is primarily composed 
by immune cells, such as T and B-lymphocytes, monocytes, and 
NK cells, including hematopoietic stem cells CD34+ and CD34+/38+ 

committed to early B and T-cells with the capacity for multilineage 
differentiation [281]. The number of fetal progenitor cells circulating 
in the blood of pregnant women, has been estimated to be 0-2/mL, 
but in normal second-trimester pregnancies may vary from 1 to 6 
cells per ml of maternal venous blood [280]. At 36th week of gestation, 
100% of pregnant women have fetal cells in their circulation and after 
delivery and 30-50% of healthy women have detectable fetal cells in 
their blood from 4 weeks to decades after delivery [279,282] (Table 
12). Interestingly, in mice maternal background strain and strain 
differences between the mother and father significantly affected fetal-
maternal trafficking (both the number of fetal cells and the relative 
distribution of cell types in maternal organs) more than maternal 
immune competence [284].

Chimeric maternal cells (e.g. hematopoietic cells) have been 
found in human fetal [285] (including a second trimester fetus [286]), 
newborn [287] and infant tissues [288]. It must be emphasized that 
T1DM has been mostly related to maternal cell microchimerism 
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[289]. Nelson et al. [30] reported markedly higher levels of maternal 
microchimeric cells in the peripheral blood of 94 patients with T1DM, 
ranging from 3 to 28 years of age, than 54 unaffected siblings as well as 
24 unrelated healthy individuals studied.

Recently, patients with juvenile diabetes were found to have 
increased levels of maternal cell microchimerism when compared 
to their unaffected siblings. Nelson et al. [30] reported that maternal 
microchimerism (MMc) levels, expressed as the genome equivalent 
per 100,000 proband cells, were markedly higher in T1DM patients’ 
circulation than unaffected siblings and healthy individuals. In the 
patients with the T1DM-associated DQB1*0302-DRB1*04 haplotype, 
MMc was found more often when the haplotype was paternally 

(70%) rather than maternally transmitted (14%). Female islet β 
cells (presumed maternal) formed 0.39-0.96% of the total, whereas 
female hematopoietic cells were very rare [30]. There are also strong 
suggestions of a prominent role of the maternal perinatal environment 
in the predisposition to juvenile diabetes among the offspring [290,291] 
(Tables 12 and 13). Fetal DNA in maternal organs also has been 
detected in animals with streptozocin-induced diabetes [292]. 

In humans, fetal cells have been detected for decades in the 
maternal blood and tissues affected by both autoimmune and non-
autoimmune diseases, and these cells had morphological features of 
both hematopoietic and non-hematopietic tissue lineages cells [293-
295]. In mice, 30 days after STZ-induced diabetes fetal cells were 

Evasion strategy Consequence(s) Molecular mechanism(s) Parasite effect References
Induction of IL-10 Decreased TH1 response; 

Deactivation of macrophages
Independent of PGE2

Indirect

Indirect

[218,219]

Induction of TGF-β Reduced TNF-α production by 
macrophages; 
reduced IFN-γ production by NK cells

Antagonizes IL-12 Indirect [130,220,221]

IFN-γ/-β upregulation Reduced IFN-γ levels and splenocyte 
proliferation

Indirect [222]

Inhibition of TNF- α 
and IL-12 production

Deactivation of macrophages; 
inhibition of TH1 responses

Reduced phosphorylation of p65/
RelA; defective nuclear import of 
NF-κB; IL-10-independent STAT3 
phosphorylation

Direct [15,223-226]

Decreased IL-12 production by 
DCs

Inhibition of TH1 responses LXA4-mediated downregulation 
of CCR5

Indirect [227,228]

Blockade of MHC 
class II upregulation

Defective antigen presentation to CD4+ 
T cells

Reduced activity of CIITA and IRF-1 
promoters

Direct [56,229]

Inhibition of NO production Defective antiparasitic activity Inhibition of iNOS transcription Direct [194,195]
Inhibition of NO production in 
microglia

Reduced antiparasitic activity Secretion of PGE2, 
IL-10 and TGF-β

Indirect [230,231]

Inhibition of p47 GTPases Reduced transcription [232]
Significant suppression of IL-2, 
IFN-γ (but not IL-10). Markedly 
lower levels of IgG1, IgG2a, 
IgG2b, IgG3, IgA, IgM

Suppressed cytokine and 
immunoglobulin secretions by murine 
splenic lymphocytes

Indirect [21]

CIITA: Master Regulator of Major Histocompatibility Complex Class II Transcription; CCR5: CC Chemokine Receptor; DCs: Dendritic Cells; iNOS: Inducible Nitric Oxide 
Synthase; IRF-1: Interferon Regulatory Factor-1; LXA: Lipoxin A4; MHC: Major Histocompatibility Complex Molecules; PGE2: Prostaglandin E2; TGF-β: Transforming Growth 
Factor-β. Proliferation of T . gondii in inflammatory macrophages was associated with diminished ROS production in host cells [233]. In young children with congenital 
toxoplasmosis specific T cell response to the parasite antigens was impaired and such hyporesponsiveness has been restored during childhood. The acquisition of 
functional T cell response was disease-unrelated and indistinguishable 
in terms of strength, epitope specificity, and cytokine profile from the corresponding responses in immunocompetent adults with asymptomatic acquired T. gondii infection 
[234].
In pregnant mice, T. gondii infection caused a decrease of CD4+CD25+-regulatory T cells [235]. It must be noted that peripheral blood leukocytes (PBL) from healthy children 
older than 36 mths responded to several stimuli at levels comparable to those of PBL from adults, but surprisingly, cord blood leukocytes appeared to be more efficient in 
antigen-presenting function than PBL from children younger than 13 months [236].

Table 9: Partial downregulation of cell-mediated immune responses after infection with T. gondii (Lang, Gro & Lüder [217]; with own modification).

CTL: Cytotoxic T lymphocyte; Fas: Receptor; FasL: Fas Ligand (a cell surface molecule belonging to TNF family and death factor, which binds to its receptor Fas, thus 
inducing apoptosis of Fas-bearing cells); NK: Natural Killer cells; PARP, Poly(ADP-Ribose) Polymerase. aT. gondii delayed neutrophil apoptosis by inducing granulocyte 
colony-stimulating factor and granulocyte-macrophage colony-stimulating factor secretion by the parasite-infected human fibroblasts. Although neutrophils are unable to kill 
T. gondii, this can retard their division time from the usual 6-8 hrs cycle to a 24 hrs cycle and this enhanced neutrophil survival may contribute to the robust proinflammatory 
response elicited in the pathogen-infected host cells [247].

Table 10: Suppression of immune responses to T. gondii by parasite-triggered modulation of host cell apoptosis (acc. to Lang, Gro β & Lüder [231]; with own modification).

Evasion strategy Consequence(s) Molecular mechanism(s) Parasite 
effect

References

Apoptosis of CD4+ cells T-cell unresponsiveness Cell death by neglect Indirect [237]

Apoptosis of leukocytesa Unrestricted parasite replication and host death Upregulation of Fas and FasL; 
TNF-dependent mechanisms

Indirect [238-240]

Inhibition of apoptosis in 
parasite-positive cells

Blockade of host cell suicide; avoidance of CTL- and 
NK-mediated cytotoxicity

Inhibition of cytochrome c-release; upregulation of 
anti-apoptotic molecules
Interference with caspase activation; degradation 
of PARP (?)

Direct [241-245]

[246]
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detected in the maternal bone marrow, pancreas, liver and kidney 
(Table 13). Histological examination showed differentiated fetal cells 
within the pancreatic acinar cells, hepatocytes and tubular epithelial 
cells, and their morphological appearance was undistinguishable from 
their maternal counterparts and constant over the long term after 
delivery [293]. 

In pancreas samples obtained from 6 males with T1DM Vanzyl et al. 
[296] found that the frequency of MMc was significantly higher (range 
0.32-0.80%, mean 0.58%) than in 4 male controls (0.24-0.50%, mean 
0.38%; p=0.05). Interestingly, clusters of 2-3 MMc were occasionally 
found in the pancreases, particularly T1DM pancreases, suggesting 
replication of these cells [296]. In all pancreas samples analyzed MMc 

were identified within islets that appear to be insulin positive but non-
insulin staining MMc were also observed in the exocrine tissue [296]. 
In a separate analysis of pancreatic autopsy material from 4 males with 
T1DM they demonstrated that female cells in the pancreases of these 
male individuals were often positive for insulin. It was suggested that 
maternal cells could contribute to endocrine function in offspring 
[30,297]. It appeared that in all pancreases analyzed, female (presumed 
maternal) cells have been identified and immunochemistry showed 
insulin-producing XX beta cells in males. VanZyl and Gillespie [262] 
suggested that some cells that transfer from mother to child must 
therefore be adult stem cells with the capacity to differentiate into islet 
beta cells. Because these cells are 50% genetically distinct from the 
host, it could be a trigger for autoimmune attack, but so far there is no 
evidence to support this hypothesis [262]. On the other hand, this idea 
may however be in agreement with the fact that T. gondii is transmitted 
as a Trojan horse in many hematopietic cells, and therefore these cells 
could be the focus of lymphocytic attack and selectively destroyed in 
T1DM pancreas. This reasoning may be consistent with the findings 
that islets in T1DM pancreas are often present in a lobular pattern, 
with islets completely intact on one lobe and totally destroyed on an 
adjacent lobe [259,260].

T. gondii infection

T. gondii can actively infect any nucleated cell type, including 
cells from the immune system. Persson et al. [298] observed that a 
large number of NK cells have been infected by the parasite early after 
intraperitoneal inoculation of T. gondii into C57BL/6 mice. It appeared 
that one mechanism of NK cell infection involved NK-cell-mediated 
targeting of infected dendritic cells (DC), and infected NK cells were 
not efficiently targeted by other NK cells. It was suggested that rapid 
transfer of the parasite from infected DC to effector NK cells may 
contribute to sequestration of T. gondii and shielding from immune 
recognition shortly after infection [298]. It must be noted that NK cells 
do not posses intracellular killing pathway, such as for example NO, 
therefore NK cell infection may provide a niche in which the parasites 
proliferate and promote its persistence in a less hostile environment 
[298]. Table 14 presented in vitro differences in division rates of 
intracellular T. gondii tachyzoites in various types of cells [300-309].

The risk of infection with the parasite is 0.1% to 1% of all 
pregnancies [314]. All eukaryotic cells may function as systemic 
parasite transporters. Maternal microchimerism was found to be more 
common than fetal microchimerism (40% vs. 15%, p=0.05) [315]. In the 
mouse model, the effect of maternofetal transmission of T. gondii after 
oral infection was measured by the mortality rate in the mother, the 
fetus and the neonate [316]. When the infection preceded the mating, 
the percentage of neonates who died ranged from to 52% to 74%. In 
contrast, when the mating preceded the infection, these percentages 
were much more elevated ranging from 74% to 96% [316]. Weight 
and Carding [10] showed that T. gondii upregulated intercellular 
junction-associated proteins, such as intercellular adhesion molecule 1 
(ICAM-1), in MDCK II and BeWo cells [317]. The parasite influenced 
the cellular distribution of occludin to transmigrate the intestinal 
epithelium. ICAM-1 is expressed on leukocytes and endothelial 
cells and binding to its ligand (leukocyte function-associated 
antigen-1) activates leukocyte transmigration via actin-cytoskeletal 
rearrangements [318,319]. Migration is most common in type I strains 
and tachyzoites that move between epithelial cells, via the paracellular 
pathway, and do so without affecting the integrity of the monolayer 
[258,317]. It must be also added that NO mediates IFN-γ-induced 
hyperpermeability, dilates tight junctions and depletes ATP in cultured 
human intestinal epithelial monolayers [320,321]. 

Results are mean ± SD; CRP: C-Reactive Protein; hs: high-sensitivity; aLeptin has 
the structure similar to that of IL-2 and may activate the innate immune system and 
shift the cognate immune system toward a predominance of a proinflammatory 
TH1 T cell population while reducing the regulatory TH2 phenotype [255]. Leptin 
treatment was found to increase energy expenditure (oxygen consumption),as 
well as increased thermogenic marker uncoupling protein-1 and type II deiodinase 
mRNA levels 1.7- and 3-fold,respectively,in mice [256]. 

Table 11: Serum proinflammatory cytokines and leptin concentrations in obese 
children at prepubertal age compared with healthy children of the same age 
(according to Aygun et al. [253] and Kapiotis et al. [254]; with own modification).

Parameters Obese children Controls p
Leptin (ng/ml)a 19.9 ± 7.4 7.9 ± 5.1 <0.001
IL-1β (pg/ml) 33 ± 8.9 3.6 ± 1 <0.001
IL-2 (U/l) 0.4 ± 0.1 0.9 ± 0.1 <0.01
IL-6 (pg/ml) 45.2 ± 11.8 13.1 ± 3.9 <0.001
TNF-α (pg/ml) 9.2 ± 2.3 3.9 ± 1 <0.001
E-selectine (ng/ml) 78 ± 38 59 ± 29 <0.01
hsCRP (mg/l) 4.1 ± 4.8 0.9 ± 1.5 <0.001

Maternal cells [263] and soluble maternal HLA are also transferred in breast milk 
[283]

Table 12: Different types of cells involved in fetal-maternal trafficking (according to 
Klonisch and Drouin [32]; with own modification).

Extravillous cytotrophoblasts
Nucleated erythroblasts
Platelets
Mesenchymal stem cells 
CD34+ hematopoietic stem/progenitor cells
CD34+ and CD38+ lymphoid progenitors
CD19+ and IgM+ B lymphocyte precursor cells
CD8+ T cells
CD4+,CD25high and FOXP3+ regulatory 
T-cells
CD45+ leukocytes
CD3+ and CD14+ mononuclear cells
CD56+ and CD16+ natural killer cells

Group of animals Days of pregnancy Pancreas Liver Kidney
Controls 6 ND ND ND

13 ND ND ND
19 ND ND ND

Diabetics 6 64.2 ± 6.8 9.7 ± 0.8 13.5 ± 3.2
13 45.4 ± 5.1 13.3 ± 1.2 18.8 ± 3.5
19 49.8 ± 7.5 10.7 ± 1.4 10.1 ± 2.9

Data are expressed as mean ± SE. Results represent the amount of fetal DNA per 
1 x 105 maternal (total) genome equivalents

Table 13: Fetal DNA in maternal organs at day 30 after streptozotocin-induced 
diabetes (200 mg/kg for 2 days) in mice (according to Sunami et al. [292]; with own 
modification).
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Studies in animals performed by Chen et al. [322] showed that 
multipotent mesenchymal stromal cells were transferred to rat maternal 
venous blood. They trafficked via VEGF-A and integrin-dependent 
pathways across the placenta, engrafted in various fetal organs, and 
persisted in offspring for at least 12 weeks. Silveira et al. [323] found 
that T. gondii may circulate in the peripheral blood of recently and 
chronically infected immunocompetent individuals with or without 
ocular lesions. In the patients with active ocular lesions and positive 
anti-toxoplasma IgG but negative IgM, propagation of the infection 
may still occur through the blood [323]. 

T. gondii can be also transmitted via breast milk [324,325], and 
achlorhydria observed in human newborn infants during the first 10 
days of life [326] may favor infectivity with various forms of the parasite, 
such as oocysts, tachyzoites (invasive forms), and/or tissue cysts filled 
with bradyzoites [327]. It was demonstrated that breastfeeding seems 
to influence the development of diabetes in non-obese diabetic (NOD) 
neonates [328], because NOD progeny from NOD mothers deficient 
in T and B cells failed to develop diabetes [329]. Given the absence 
of activity of autoantibodies in this process [330,331], it seems that 
maternal T and predominantly B cells transferred during gestation or 
lactation might play a role in development of autoimmune diabetes. 
Roy et al. [275] found that in mice maternal T cells reactive against 
the endocrine pancreas of their progeny markedly increased islet 
infiltration. Specific maternal microchimeric T cells targeting fetal 
antigens in beta cells may also constitute evidence of their predisposing 
role in development of autoimmune T1DM. It must be emphasized that 
the maternal environment during gestation and a genetic predisposition 
to diabetes also play an important role in future development of T1DM 
in the offspring [290,332].

Possible Link between a Specific Role of T Cell Mem-
brane Metalloproteinases (MMPS) in Development of 
Diabetes and T. Gondii Infection-Associated Positive 
Modulation of Macrophages Migration by Increasing 
Expression of Matrix Metalloproteinases and Decreas-
ing CD44 Receptor at Cell Surface

Diabetes

 MMPs, a family of secreted zinc proteases capable of degrading 
collagen and other matrix components, may participate in a wide 
variety of pathophysiological responses, including inflammatory 
pocesses, embryonic development, and cell apoptosis [333,334]. 
MMP-2 appeared to be critical in rat-pancreatic islet development 
and is activated between embryological days 17 and 19, and TGF-β is 
responsible for islet morphoghenesis by regulating MMP-2 expression 
[335], On the other hand, tissue inhibitor of metalloproteinase-1 
(TIMP-1) prevents cytokine-induced dysfunction and cytotoxicity 
in pancreatic islets and β-cells, and in addition to inhibiting MMP-2 
and MMP-9 activity may also inhibit cytokine-mediated apoptosis in 
various cell lines. TIMP-1 mediated these effects by inhibiting cytokine-
induced activation of NK-κB [333]. Several studies demonstrated that 
pancreatic islets contain detectable amounts of MMPs and TIMPs 
[333]. In the children and adolescents with T1DM, Florys et al. [336] 
found serum MMP-2 as well as TIMP-1 and TIMP-2 levels significantly 
higher than in controls (p<0.01, p<0.02, and p<0.001, respectively), and 
a strong positive correlation was noted between MMP-2 and TIMP-2 
(r=0.8, p<0.0001).

Ridnour et al. [337] showed a dose-dependent, biphasic regulatory 
effect of NO on the activity of MMPs (MMP-1, -9, and 13) secreted 
from murine macrophages. Low exogenous NO perturbed MMP/
tissue TIMP-1 levels by enhancing MMP activity and suppressing the 
endogenous inhibitor TIMP-1. Exposure of purified latent MMP-9 to 
exogenous NO demonstrated a concentration-dependent activation 
and inactivation of the enzyme, which occurred at higher NO flux. They 
suggested that NO regulation of MMP-9 secreted from macrophages 
might occur by RNI-mediated protein modification [337].

Zhou et al. [338] demonstrated that MMPs contribute to pancreatic 
islet fibrosis and insulin insufficiency in Zucker diabetic fatty rats. In 
both male and female rats, the authors found marked increases the 
mRNAs encoding proteases and extracellular matrix components that 
are associated with fibrosis and tissue remodelling. The mRNAs for 
MMP-2 (>10-fold increase in activity), -12, -14 were sharply increased 
with the onset of islet dysfunction and development of diabetes [338]. 

Cell type Parasite division rate Mechanism References
Unprimed IFN-γ primed

Hemopoietic
Lymphocyte S [285]
Neutrophil S [285-287]
Adherent monocyte S [287-290]
Nonadherent monocyte R R ROS; not TS [285,291]

Dendritic cell R [285]

Alveolar macrophage R S Partly TS [155]
Peritoneal macrophage R S [292]
Monocyte-derived macrophage R S ROS; not RNI [155,156,157,288,290,292,293] 
Nonhematopietic
Neuron S [294]
Foreskin fibroblast R S TS [154,295]
Umbilical vein endothelial cell R S TS or ROS; not RNI [290,296]
Retinal pigment epithelal cell R S TS [297]
Fetal astrocyte R S RNI [294,298]
Fetal microglial cell R R [299]

R: Rapid; S: Slow; RNI: Reactive Nitrogen Intermediates; ROS: Reactive Oxygen Species; TS: Tryptophan Starvation

Table 14: Division rate of intracellular T. gondii tachyzoites in primary human cells in vitro (according to Channon et al. [299]; with own modification).
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The pathogenesis of T1DM begins with the activation of 
autoimmune T killer cells and is followed by their homing into the 
pancreatic islets where they directly contact and subsequently destroy 
insulin-producing β cells [339]. Autoreactive IS CD8+ T killer cells 
transmigrated from bloodstream through pancreatic microvessels 
endothelial cell barrier and into the islets of Langerhans, are specific 
for islet-derived insulin antigen [339,340]. The cell surface-associated 
signalling and adhesion CD44 receptor and other adhesion receptors 
including selectins, cadherins, immunoglobulin superfamily cell 
adhesion molecules, such as VCA, ICAM-1, and -2) and integrins, 
which are expressed in both T cells and endothelial cells, contribute 
to the adhesion of T cells to the endothelium [341]. The high affinity 
interactions of T cell CD44 with its abundant endothelial ligand, 
hyaluronian, are essential for firm adhesion and the subsequent 
transmigration events [342,343]. T cell membrane type-1 MMP (MT1-
MMP) regulates the functionality of CD44 (a marker of activated T 
cells) and thus control the rate at which T cells home into the pancreatic 
islets, finally affecting the severity of the disease [339]. CD44 is heavily 
glycosylated and its glycosylation negatively regulates oligomerization, 

the movement of CD44 across the plasma membrane, and recognition 
of hyaluronian [339,344]. 

T. gondii infection

The parasite is able to infect macrophages and dendritic cells for 
dispersal throughout the body. Seipel et al. [345] found that T. gondii 
infection positively modulated the macrophages migratory molecular 
complex by increasing MMPs, CD44 and alpha(v)beta(3) integrin. 
Migration in MatrigelTM of infected macrophages was augmented after 
48 hrs of infection, and inhibition of MMPs abolished this process. T. 
gondii infection also induced a decrease of CD44 receptor at cell surface 
and increased secretion of active MMP-9. Infected macrophages 
showed increased expression of MT1-MMP and ADAM10 (a disintegrin 
and metalloproteinase membrane10) MMPs [345]. Expression and 
function of several MMPs in experimental animals and humans during 
T. gondii infection were presented in table 15 [346-350].

T. gondii tachyzoites store toxolysin 4 (TLN4), an extensively 
processed putative metalloproteinase, in the micronemes and secrete 

↑↓: Increased or decreased levels; ADAM: A Disintegrin And Metalloprotease; actMMP: activated MMP; CNS: Central Nervous System; ECM: Extracellular Matrix; KO: 
Knockout; MMP: Matrix Metalloproteinase; MT-MMP: Membrane-Type Matrix Metalloproteinase; TIMP: Tissue Inhibitor Of Metallopproteinases; aMmp/Timp refers to 
mRNAs; bMMP/TIMP refers to proteins. WT: Wild Type.

Table 15: Expression and function of MMPs/TIMPs/ADAMs in toxoplasmosis (T. gondii infection) (acc. to Geurts et al. [346]; with own modification).

Model Mmpa-MMPb/TIMPb 
expression patternc

Functional data/associations Comments References

1. In vitro
T. gondii-infected THP-1 
cells

Mmp-2,-9, Timp-2↓, Mt1-
mmp↑ 
proMMP-2, proMMP-9, 
TIMP-2↓
proMT1-MMP↑, actMT1-
MMP↑

MT1-MMP activation by T. gondii infection 
probably explains parasite dissemination and 
access to immune-priviledged sites.

[347]

T. gondii-infected 
(macrophage-like) RAW 
264.7 cells

ActMMP-9↑ in infected 
supernatants
MT1-MMP↑ in T. gondii-
infected cells
ADAM-10↑  in T. gondii-
infected cells 

MMP inhibitor I
→ Abolished invasiveness of T. gondii-
infected macrophages over 3D ECM
MMPs might facilitate the access of 
infected leukocytes to immune-privileged 
sites

Increasing levels of MT1-MMP → shedding of 
CD44, a docking molecule for MMP-9

[345]

2. In vivo
Ileum tissue from T. gondii-
infected mice

Mmp-2,-9/MMP-2,-9↑ in small 
intestine
ActMMP-2↑ in small intestine
IL-23p19KO; mice
Mmp-2,-9/MMP-2,-9↓
No actMMP-2
→ Significantly reduced 
intestinal pathology

MMP-2KO mice (compared to MMP-9KO 
and WT mice)
→ Protected against the development 
of intestinal immunopathology 
and early death; MMP-2 mediates 
immunopathology in T. gondii-infected 
ileitis.
Treatment with gelatinase inhibitors 
(doxycycline and MMPI RO28-2653)
→ Ameliorated intestinal pathology
Treatment with gelatinase inhibitors 
protects mice against T- gondii-induced 
immunopathology

Selective blockage of gelatinoses may be a 
safe and effective strategy in prevention and 
treatment of intestinal inflammation

[348]

Brain tissue from T. gondii-
infected mice

Mmp-8, -10 and TIMP-1↑ in 
brain
MMP-8↑ in brain infiltrating 
CD4+/CD8+ T cells
MMP-10↑ in brain infiltrating 
CD4+ T cells
TIMP-1↑ in CNS-resident 
astrocytes and in brain 
infiltrating CD4+/CD8+ T cells

TIMP-1 deficient mice
→ Little morphological changes in tissue 
structure
→ ↑ CD4+ T cells in brain
→ Reduced parasite burden in brain
TIMP-1 is associated with inhibition of 
pathogen clearance without development 
of adverse pathology

MMP-8 and –10 production by brain-infiltrating 
T cells implies a role for MMPs in brain tissue 
penetration; TIMP-1 is associated with inhibition 
of pathogen clearance

[349]

3. Clinical studies
Serum from pregnant women 
with or without T. gondii 
infection vs. healthy non-
pregnant women

MMP-12 - > associated with ↑ 
elastin degradation products;
Pregnant women with 
toxoplasmosis > healthy 
pregnant women > healthy 
non-pregnant women

Interaction between MMP-12 and elastin in the 
serum of infected pregnant women suggests 
MMP-12 mediates damage to elastin and 
contributes to T. gondii-associated pathology 
during pregnancy 

350]
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it in response to elevated calcium, suggesting a possible role in cell 
invasion [351]. TLN4 is initially synthesized as a large precursor 
(~260 kDa) that is extensively processed into multiple proteolytic 
fragments within the parasite secretory system, and at least some of 
these fragments remain associated in a large molecular complex [351]. 

Niehaus et al. [352] found that T. gondii glycosylphosphatidylino-
sitols (GPIs) induced MMP-9 in human macrophage-like THP-1 cells 
via TLR2/4-dependent mechanism and the degradation of human ex-
tracellular galectin-3 (a substrate for MMPs-2 and -9, and a lectin 
specific for β-galactosides, which binds to both the glycan and lipid 
moieties of the parasite GPIs). It must be added that the parasite acti-
vated TLR2/4 receptors and induced a NF-κB-dependent production 
of TNF-α in macrophages [353,354].

Disturbed Carbohydrate Metabolism in Diabetes 
Mellitus. T. gondii Infection also Significantly Affects 
Glycolysis, Gluconeogensis and Tricarboxylic Acid 
(TCA) Cycle 
Animals

Glycolysis, gluconeogenesis and the TCA cycle are central pathways 
of the carbohydrate metabolism which need to be tightly regulated 
depending on the cellular demand for energy, reducing power and 
precursors for biosynthesis pathways. Diabetes mellitus is a metabolic 
disorder characterized by chronic hyperglycemia with disturbances of 
carbohydrate, fat and protein metabolism [1].

Palsamy and Subramanian [355] found altered activities of 
the key enzymes of carbohydrate metabolism, such as hexokinase, 
pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, 
fructose-1,6-biphosphatase, glucose-6-phosphate dehydrogenase, 
glycogen synthase and glycogen phosphorylase in liver and kidney 
tissues of streptozocin-nicotinamide-induced diabetic rats. During 
diabetic conditions, the glycogen levels, glycogen synthase activity 
and responsiveness to insulin signaling were diminished and glycogen 
phosphorylase activity was markedly increased [356] (Table 16). 
Glucose-6-phosphatase, a key enzyme in the homeostatic regulation of 
blood glucose level is critical in providing glucose mainly to the liver 
and kidney during diabetes, prolonged fasting or starvation [357]. 
It catalyzes the dephosphorylation of glucose-6-phosphate to free 
glucose as the terminal step in gluconeogenesis and glycogenolysis. 
This reaction occurs in the lumen of the endoplasmic reticulum and 
the enzyme complex is composed of a glucose-6-phosphate transporter 
that transport glucose-6-phosphate from the cytoplasm into the 
lumen of the endoplasmic reticulum and a glucose-6-phosphatase 
catalytic subunit that hydrolyzes the glucose-6-phosphate to glucose 
and phosphate [358]. Glucose-6-phosphate dehydrogenase catalyzes 
the first and rate-limited step of the hexose monophosphate shunt and 
produces NADPH needed for the maintenance of reduced glutathione 
and reductive biosynthesis [359]. NADPH is essential for both 
the production of ROS, such as superoxide anions and NO and the 
elimination of these radicals via glutathione peroxidase and catalase 
in hepatic as well as extrahepatic tissues [360]. It has been shown that 
modest changes in glucose-6-phosphate dehydrogenase activity itself 
have significant effects on cell growth and cell death in a variety of cell 
types [361,362]. 

Diabetic patients

Suhail and Rizvi [363] analyzed activities of the key glycolytic 
enzymes of red blood cells, i.e. hexokinase (HK), phosphofruktokinase 

(PFK) and pyruvate kinase (PK) and found that they were significantly 
(p<0.01) increased in patients with T1DM. It was suggested that the 
increased activity of the enzymes might be due to a greater proportion 
of young erythrocytes in diabetic individuals because of a shortened red 
cell life span as compared to healthy persons [363]. However, Sitzmann 
[364] measured the activity of the same three enzymes in 119 children 
suffering from juvenile T1DM and reported that the values were mildly 
diminished both in the group with good state of metabolic control 
and in those with bad control compared with the respective reference 
values [364]. This discrepancy may be at least in part explained by the 
exposure time of these patients to T. gondii infection, its intensity, cell/
tissue invasiveness of the parasite, its strain, etc. This suggestion may be 
supported by marked modulations of activities of enzymes participating 
in the metabolic pathways during glycolysis, gluconeogenesis and 
TCA-cycle found in T. gondii tachyzoites and bradyzoites [365-
367] (Tables 17-19). However, it appeared that the level of mRNA 
upregulation of some enzymes important for carbohydrate metabolism 
was only moderate, therefore other mechanisms, such as an increase 
in gluconeogenesis enzyme activity or uptake of glucose-6-phosphate 
from the host cell by the hexose transporter [377] may also take 
place [365]. T. gondii utilizes host sugars for energy and to generate 

Units are expressed as: mg/g wet tissue for glycogen, µmoles of UDP formed/h/mg 
protein for glycogen synthase and µmoles Pi liberated/h/mg protein for glycogen 
phosphorylase. Values are given as mean ± SEM, for groups of 6 rats in each. 
aValues statistically significant at p<0.05 

Table 16: Level of glycogen content and activities of glycogen synthase and 
glycogen phosphorylase in liver tissues of streptozotocin-nicotinamide-induced 
diabetic rats (according to Palsamy and Subramanian [355]; with own modification).

Groups Glycogen Glycogen synthase Glycogen phosphorylase
Controls 60.83 ± 1.35 842.17 ± 10.91 658.33 ± 11.46
Diabetic rats 19.50 ± 2.35a 525.67  14.39a 897.50 ± 28.26a

Host cell proteins were designated as being downregulated in expression 
(↓),upregulated (↑),or modulated (M). aThese host cell proteins also changed 
expression in the brains of patients with mild cognitive impairement,early AD,or 
AD [369]. It must be noted that T. gondii tachyzoites are thought to rely upon both 
glycolysis and the tricarboxylic acid cycle,while bradyzoites are largely dependent 
upon glycolysis [364,371]. Although tachyzoites utilize both glycolysis and 
oxidative phosphorylation to obtain energy,glycolysis seems to be the predominant 
pathway for ATP synthesis in the bradyzoite [372,373]. Moreover,ENO2 and 
lactate dehydrogenase1 are only found in tachyzoites,while ENO1 and lactate 
dehydrogenase 2 are exclusively expressed in bradyzoites [374,375]. Silencing 
of tachyzoite ENO2 altered nuclear targeting of bradyzoite ENO1 in T. gondii 
[376,377].

Table 17: Selected modifications in the proteomes of human foreskin fibroblasts 
infected with T. gondii: proteins implicated in glycolysis Nelson et al. [368]; with 
own modification).

Protein name Gene name Change in 
expression

Microarray 
experiment

Aldolasea A and B ALDOA,ALDOB ↑
ATP synthasea beta subunit ATP5D ↑
Cytochrome c oxidase 
subunit Vib COX6B ↓ ↑

Dimethyl arginine dimethyl 
aminohydrolase DDAH1 ↓ ↓

Enolasea 1 ENO1 M ↑
Glyceraldehyde 3 phosphate 
dehydrogenasea GAPDH ↑ ↑

Phosphoglycerate kinasea  1 PGK1 M ↑
Protein disulfide isomerase P4HB ↑
Pyruvate kinase M2 isozyme PKM2 M
Thioredoxin domain 5 
isoform 2 TXNDC5 ↑

Triose phosphate isomerase TPI1 M ↑
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glycoconjugate that are important for its survival and virulence. The 
parasite glucose transporter is proficient in transporting mannose, 
galactose and fructose besides glucose, and serves as a major hexose 
transporter at its plasma membrane [70]. 

T. gondii infection

The parasite posses a complete glycolytic pathway [366], as well as 
all enzymes for the TCA cycle and mitochondrial electron transports 
chain [365-368]. Tachyzoites are thought to rely upon both glycolysis 
and the TCA cycle, unlike the bradyzoites, which are thought to 
be largely dependent upon glycolysis [370]. Several enzymes of the 
glycolytic pathway have been shown to be modulated also during 
differentiation [370,378], with some showing stage-specific isoforms, 
such as enolase and lactate dehydrogenase (LDH) [379]. LDH1 and 
LDH2 genes and their products have been implicated in the control of 
a metabolic flux during parasite differentiation, and LDH knockdown 
parasites exhibited variable growth in either the tachyzoite or the 
bradyzoite stage, as compared with the parental parasites [380]. 

Denton et al. [372] found that both developmental stages of T. 
gondii (i.e. tachyzoites and bradyzoites) contained high activities of 
phosphofructokinase (specific for pyrophosphate rather than ATP), 
pyruvate kinase and lactate dehydrogenase (LDH), suggesting that 
energy metabolism in both forms of the parasite may center around 
a high glycolytic flux linked to lactate production. The significantly 
higher activity of the latter two enzymes in bradyzoites suggested that 
lactate production is particularly important in this developmental 
form. It should be noted that LDH is a terminal glycolytic enzyme that 

plays an indispensable role in the interconversion of pyruvate to lactate 
to yield energy under anaerobic conditions [378] and the reaction 
occurs in both cytosolic and mitochondrial compartments [357]. Both 
parasite forms contained low activities of NAPD(+)-linked isocitrate 
dehydrogenase. The results were consistent with the bradyzoites 
lacking a functional TCA cycle and respiratory chain [372]. Moreover, 
T. gondii uses PP(i) in place of ATP as an energy donor in at least two 
reactions: the glycolytic PP(i)-dependent phosphofructokinase and 
V-H(+)-PPase [vacuolar H(+)-translocating PPase (pyrophosphatase)] 
[381]. Pace et al. [381] showed that overexpression of cytosolic 
pyrophosphatase (TgPPase) in extracellular tachyzoites led to a 6-fold 
decrease in the cytosolic concentration of PP(i) relative to wild-type 
strain RH tachyzoites. This reduction of PP(i) was associated with a 
higher glycolytic flux in the overexpressing mutants. In addition 
to elevated glycolytic flux, TgPPase-overexpressing tachyzoites 
also possessed higher ATP concentrations relative to wild-type RH 
parasites. The authors believed that PP(i) had a significant regulatory 
role in glycolysis and, potentially, other downstream processes that 
regulate growth and cell division [381]. 

Glycolysis is a major source for T. gondii motility [366,373]. In the 
presence of glucose, a carbon source for both glycolysis and oxidative 
phosphorylation, a robust movement in a majority of the tachyzoites 
was observed, while omission of glucose resulted in a drastic decrease 
in the fraction of mobile parasites [71.6 ± 7.4% vs. 2.7 ± 2.9% (SD)]. 
Host cell egress and invasion induce marked relocations of glycolytic 
enzymes in T. gondii tachyzoites [366,373]. In the parasite, Coppin et al. 
[373] identified several genes and proteins associated with amylopectin 

Enzyme Gene accession numbers from ToxoDataBasea 

Glucosephosphate-Mutase I (GPM1) 76.m00002
Glucosephosphate-Mutase II (GPM2) 641.m00009
Fructose-Biphosphatase I (FBP1) 20.m03907
Fructose-Biphosphatase II (FBP2) 50.m00005
PEP-Carboxykinase I (PEP-CK1) 80.m00002
PEP-Carboxykinase II (PEP-CK2) 80.m02252
Pyruvate-Carboxylase (Pyc) 76.m01567

In contrast to most of the other T. gondii gluconeogenesis genes,namely fructose-biphosphatase,glucosophosphate-mutase and PEP-carboxykinase, which are 
encoded twice in the genome,pyruvate-carboxylase is only encoded once and the enzyme is localized inside the single mitochondrion,while the remaining reactions of 
gluconeogenesis are typically cytosolic [365]. a(www.toxodb.org/toxo/home.jsp)

Table 18: Gene prediction for irreversible steps in gluconeogenesis in T. gondii (according to Fleige et al. [365]; with own modification).

It seems that tachyzoites, but not bradyzoites, posses a functional tricarboxylic acid cycle because in cell homogenates of tachyzoites, activities of Succinate Dehydrogenase 
(SDH) and NADP+-dependent isocitrate dehydrogenase were detected, while no SDH activity could be found in bradyzoites [365,372] a(www.toxodb.org/toxo/home.jsp)

Table 19: Gene prediction for putative tricarboxylic acid cycle-associated enzymes in T. gondii and their localization (according to Fleige et al. [365]; with own modification).

Enzyme Gene accession numbers from ToxoDataBasea Localization
Citrate Synthase I (CS1) 59.m03414 Mitochondrion
Citrate Synthase II (CS2) 20.m03767
Citrate Synthase III (CS3) 42.m03311
Aconitase (ACN) 42.m03524 Mitochondrion
Isocitrate-Dehydrogenase I (IDH1) 583.moo674 Mitochondrion
Isocitrate-Dehydrogenase II (IDH2) 57.m00028
-Ketoglutarate-Dehydrogenase E1 (OGDH E1) 49.m03397
Dihydrolipoly-Transacetylase (OGDH E2) 38.m00017
Dihydrolipoly-Transacetylase (OGDH E3) 20.m03954
Succinyl-coa-synthetase alpha (Scsa) 80.m00087 Mitochondrion
Succinyl-coa-synthetase (ATP) (Scsb) 583.m00592 Mitochondrion
Fumarase (FUM) 57.m01846
Malate-Dehydrogenase (MDH) 641.m00168 Mitochondrion
FAD Malate-Dehydrogenase (MDH-FAD) 80.m00006 Mitochondrion
Branched-Chain α-Ketoglutarate-Dehydrogenase E1 (BCOGDH-E1) 49.m00028
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synthesis or degradation and glucose metabolism, including different 
forms of certain glycolytic enzymes, which are stage-specifically 
expressed during tachyzoite-bradyzoite interconversion. This 
interconversion is central to the pathogenic process and sometimes 
is associated with recrudescence of infection observed especially 
in the patients with AIDS. Biochemical analysis revealed that the 
glycolytic metabolite lactate is an inhibitory component of resistant 
for conversion cells, and upregulation of glycolysis in permissive cells 
through the addition of glucose or by overexpression of the host cell 
kinase, Akt (an intracellular ligand), was sufficient to convert cells 
from a permissive to a resistant phenotype [382]. In chronic infection 
with the parasite, the bradyzoites are located within tissue cysts that 
are enclosed by the wall containing specific lectin binding sugars, while 
the bradyzoites have accumulated large amounts of amylopectin, the 
storage polysaccharide of glucose [373]. 

Pomel et al. [367] demonstrated that the glycolytic enzymes of T. 
gondii tachyzoites undergoes a striking translocation from the parasites’ 
cytoplasm to their pellicles upon the parasite egress from host cells. 
Specifically, the glycolytic enzymes are relocated to the cytoplasmic 
face of the inner membrane complex as well as to the space between 
the plasma membrane and inner membrane complex. The glycolytic 
enzymes remain pellicle-associated during extended incubations of 
parasites in the extracellular millieu and do not revert to a cytoplasmic 
location until well after parasite have completed invasion of new 
host cells [367]. Translocation of glycolytic enzymes to and from the 
parasite pellicles occurred in response to changes in extracellular [K+] 
experienced during egress and invasion, a signal that requires changes 
of [Ca2+] concentration in the parasite during egress [367].

Nelson et al. [368] found a considerable up-regulation of the 
glycolytic pathway in T. gondii-infected cell because six of the ten 
enzymes involved in glycolysis showed evident modification, with 
either an increase or modulation (aldolase A and B, glyceraldehyde 
3 phosphate dehydrogenase, phosphoglycerate kinase, enolase, and 
pyruvate kinase), and one which showed a decrease in expression 
(triose phosphate isomerase) [368,383]. Increased glycolysis results 
in the production of both ATP and pyruvate, which enters most 
biosynthetic processes in the cell and may considerably affect 
oxidative phosphorylation (modulation of ATP synthase beta subunit, 

cytochrome c oxidase subunit Vib, and inorganic pyrophosphatase) 
(Tables 17 and 20). It should be noted that Kimata and Tanabe 
[384] found a markedly reduced invasion rate of T. gondii observed 
in ATP-depleted chick embryo erythrocytes, and the rate was 
restored in ATP-restored cells. This indicated that T. gondii invasion 
was dependent on the ATP level of the erythrocytes). It was also 
demonstrated that during T. gondii infection, six proteins involved in 
carbohydrate metabolism were modulated in the infected cell (aldose 
reductase, aldehyde dehydrogenase 1A3, aldehyde dehydrogenase 
X, hexoaminidase B, phosphoenoylpyruvate carboxykinase, and 
6-phosphogluconolactonase) [368]. Infection with T. gondii resulted 
also in dysregulation of the host cell cycle by promoting the G1-to-S 
transition in infected human foreskin fibroblasts [385]. 

Fleige et al. [365] showed that in T. gondii all analyzed TCA cycle 
enzymes were localized in the mitochondrion, including both isoforms 
of malate dehydrogenase (Table 19). The TCA cycle metabolizes 
acetyl-CoA into CO2, thereby generating ATP and reducing power, 
which typically enters the respiratory chain. The authors suggested 
that tachyzoites, but not bradyzoites, posses a functional TCA cycle 
[365]. Moreover, data on the parasite carbohydrate metabolism by 
localizing enzymes for glycogenesis and amylopectin synthesis were 
provided (Table 21). It was found that reactions of gluconeogenesis are 
mainly cystosolic, including PEP-carboxykinase-I and both isoforms 
of fructose bisphosphatase and glucosephosphate-mutase, while 
pyruvate-carboxylase is localized in the single mitochondria [366] 
(Table 18). In vitro, bradyzoites displayed a 2-fold upregulation of 
fructose-biphosphate I and glucosephosphate-mutase I (5-fold) and II 
(also 5-fold) compared with tachyzoites. This moderate upregulation 
of gluconeogenesis genes was likely contributing to satisfying the 
increased demand of glucose-6-phosphate for amylopectin synthesis, 
which take place during bradyzoite development [365] (Table 21). 
However, since the level of mRNA upregulation is only moderate, 
other mechanisms, such as an increase in gluconeogenesis enzyme 
activity or uptake of glucose-6-phosphate from the host cell by the 
hexose transporter [377] might also take place [365]. All these findings 
strongly suggest that chronic T. gondii infection plays an important 
role in carbohydrate metabolism disturbances characteristic for T1DM 
and T2DM.

Host cell proteins were designated as being down regulated in expression (↓), upregulated (↑), or modulated (M). Modulated proteins had expression altered across 
several isoforms on the same gel using the Amersham difference gel electrophoresis, and this probably indicated a posttranslational modification event [354]. aThe host cell 
proteins, which also changed expression in the brains of patients with mild cognitive impairement, early AD, or AD [369]

Table 20: Selected modifications in the proteomes of human foreskin fibroblasts infected with T. gondii: proteins implicated in metabolism (Nelson et al. [368]; with own 
modification). 

Protein name Gene name Change in expression Microarray experiment
6-Phosphogluconolactonase PGLS ↓ ↓
Acetyl coenzyme A acyltransferase ACAT1 M ↑
Adenylate kinase 2 isoform a AK2 ↑ ↑
Adenylate dehydrogenase 1A3 ALDH1A3 ↑ ↓
Aldehyde dehydrogenase X ALDH1B1 ↓ ↓
Aldose reductase  AKR1B1 ↑ ↑
Carbonyl reductasea CBR1 ↓
Cathepsin B CTSD ↓ ↓
Coproporphyrinogen oxidase CPOX ↑
Glutathione synthetase GSS ↑
Glutathione-S-transferasea chain A GSTA2 ↓ ↓
Phosphoenolpyruvate carboxykinase pck1 ↓
Protein-L-isoaspartate O-methyltransferase PCMT1 ↑
Pyridoxine 5’-phosphate oxidase PNPO ↓
Pyrophosphatase (inorganic) PPA1 ↓
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N-Linked Glycosylation of Proteins by T. Gondii may 
Participate in the Increased Generation of HbA1c 
Characteristic for Diabetes Mellitus 
Diabetes

In 1968, Rahbar [387] first discovered the association of increased 
HbA1c with diabetes mellitus [388]. HbA1c results from glucose 
condensing nonenzymatically with the N-terminal valine residue of the 
hemoglobin beta chain [389], and the HbA to HbA1c conversion takes 
place during the entire life span of the red blood cells, so the HbA1c 
concentration is higher in old red cells than in new red cells [389]. It 
must be noted that a significantly higher incidence of major congenital 
anomalies occurred in the offspring of women who had elevated 
glycosylated hemoglobin levels in the early part of their pregnancy 
[390]. This finding may be consistent with the severity of anomalies 
observed in newborn infants with congenital T. gondii infection.

Gould et al. [391] found that erythrocyte 2,3-diphosphoglycerate, a 
catalyst of glycation, was elevated in high compared with low glycators 
(5.61 ± 0.26 vs. 4.81 ± 0.24 mmol/l, p<0.001), and mean centile glycated 
hemoglobin was positively correlated with intra-erythrocyte pH 
(r=0.55, p<0.05).

Merino-Torres et al. [392] found that hemoglobin glycosylation 
index (HGI) is not related with blood glucose. In addition, the 
percentage of self-monitored blood glucose was the same for high 
glycosylators (HGI<0) as for low glycosylators (HGI>0). Moreover, 
Lachin et al. [393] showed that glycation index was not an independent 
risk factor for microvascular complications, and effect of this 
bioparameter on the risk was wholly explained by the associated level 
of A1c. Therefore, it was suggested that HGI should not be used to 
estimate risk of complications or guide therapy [393]. These findings 
may be consistent with an important role of T. gondii infection being a 
potential risk factor in development of diabetes.

T. gondii infection

The post-translational modification of proteins by the addition of 
N or O-linked oligosaccharides is common in most eukaryotic cells. 
They are added onto proteins either during their transport into the 
endoplasmic reticulum (in the case of O-linked oligosaccharides), 
or during their transport through the Golgi complex (in the case of 
the O-linked oligosaccharides) [394]. Protein glycosylation plays a 
critical role in the interaction of various pathogens with their host 
cells and organisms [395], and the correct folding of proteins and their 
export from the endoplasmic reticulum [396], as well as the correct 
intracellular targeting of proteins [397]. Luk et al. [394] showed that 
N-glycosylation is a common post-translational modification of 
proteins in T. gondii essential for the survival of the parasite and its 
viability, but the structure of these glycans differs substantially from that 
usually encountered in animals, plants and other unicellular organisms. 
The parasite synthesizes a large number of proteins with N and 
O-linked glycans that are found throughout the secretory pathway of 
tachyzoites. T. gondii tachyzoites contain at least 11 major and multiple 
minor N-glycosylated proteins, but so far only two have been reported 
to be glycosylated. The presence of N-linked glycans on GAP50, the 
membrane anchor for the myosin XIV motor complex in the parasite 
and gp23, which is a GPI-anchored Toxoplasma surface protein , 
have been demonstrated [384]. It was found that tachyzoite surface 
glycoprotein gp23 has N-linked glycans in the hybrid-type glycans 
composed of at least N-acetylgalactosamine, N-acetylglucosamine and 
mannose. T. gondii microsomes have the ability of to synthesize in vitro 
a glycosylated lipid-bound high mannose structure that is assumed 
to be identical with the common precursor for N-glycosylation in 
eukaryotes [398].

Garenaux et al. [399] demonstrated that T. gondii independently 
transfers endogenous truncated as well as host-derived N-glycans 
onto its own proteins, and suggested that the parasite scavenges 
N-glycosylation intermediates from the host cells to compensate for the 
rapid evolution of its biosynthetic pathway, which is primarily devoted 
to modification of proteins with glycosylphosphatidylinositol rather 
than N-glycans. In a similar way, T. gondii has been shown to mobilize 
selected host lipids to fulfill its high metabolic requirements during 
proliferation [400-402]. These exchanges could be facilitated by the 
close association of the parasitophorous vacuole (PV) membrane with 
the host endoplasmic reticulum (and mitochondria), where the early 
steps of N-glycan biosynthesis take place [399]. It must be emphasized 
that the PV membrane surrounding intracellular T. gondii functions 
as a molecular sieve allowing exchange of molecules up to 1300-1900 
Da between the host cell cytoplasm and the parasitophorous vacuolar 
space [403], i.e. protein antigens consisting of about 9-12 amino acids 
with a mean molecular weight of approximately 160 Da.

Finally, Fauquenoy et al. [404] demonstrated that N-glycans are 
required for efficient binding of T. gondii to gliding partners, because 
the parasite motility and host cell entry was severely impaired in the 
unglycosylated GAP50 mutants. In addition, N-glycosylation was 
found to be a prerequisite for GAP50 transport from the endoplasmic 
reticulum to the Golgi apparatus and for its subsequent delivery 
into the inner complex membrane. Thus, it seems that T. gondii uses 
N-glycosylation intermediates from the host cell for its own metabolic 
processes and such metabolic intervention may interfere with the rate 
of HbA1c generation in diabetics.

↑↑: Markedly increased gene expression; ↑: Increased expression; ↑: Weak 
expression; 0: No gene present; T. gondii enzymes were identified at the 
genome Web site: htttp://www.toxodb.org. The parasite genome encodes 
two fructose 1,6-biphosphatase isoenzymes, a single pyruvate-carboxylase, 
and two PEP-carboxykinases. The conversion from glucose-6-phosphate into 
glucose-1-phosphate,which forms the link between amylopectin metabolism and 
gluconeogenesis, is catalysed by two isoforms of glucosephosphate-mutase [365]. 
The following soluble tachyzoite antigenic proteins have been identified: a putative 
protein disulfide isomerase,Hsp60,Hsp70,a pyruvate kinase, a putative glutamate 
dehydrogenase, a coronin, a protein kinase C receptor 1, a malate dehydrogenase, 
a major surface antigen 1, an uridine phosphorylase, and a peroxiredoxin [93]

Table 21: Bradyzoite and tachyzoite stage-specifically expressed genes coding 
the enzymes involved in T. gondii amylopectin metabolism (Coppin et al. [386]; 
with own modification).

Enzymes Bradyzoite Tachyzoite
Actin ↑ ↑
UDP-glucose phosphorylase ↑ ↑
Starch (glycogen) synthase ↑ ↑
Branching enzyme 1 ↑↑ ↑
Branching enzyme 2 ↑ ↑↑
Isoamylase ↑ ↑
D-enzyme (α-1,4-glucanotransferase) ↑ ↑
α-glucan 0
α-amylase 0
α-glucosidase ↑ 0
Glycogenin ↑
R1 protein 
(α-glucan water dikinase) ↑ 0

Debranching enzyme ↑ ↑
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T. Gondii Infection may be atleast in Part Responsible 
for Development of Glucose-6-Dehydrogenase (G6PD) 
Deficiency, and Probably Participate in the Enhancing 
Diabetic Ketoacidosis Severity

G6PD deficiency, the most common enzyme deficiency and 
an X-linked inherited disorder, is affecting over 400 million 
people world-wide, and causes several diseases, including neonatal 
hyperbilirubinemia, with acute and chronic hemolysis, although 
persons with this condition may be asymptomatic. 

Tabbara et al. [405] performed serology testing for the presence 
of T. gondii and also analyzed frequency of glucose-6-phosphate 
dehydrogenase (G6PD) deficiency in 91 blood donor male volunteers 
aged 17 to 52 years. They found that 53 (58%) individuals were G6P 
dehydrogenase deficient. In addition, it appeared that 31 (58.5%) 
G6PD deficient subjects had positive titers for T. gondii as compared 
to 9 (24%) G6PD normal persons (p<0.002). It was suggested that 
G6PD deficiency increased the risk for the parasite infection by 2.5 fold 
probably due to decreased killing effect of phagocytic cells [405,406]. 
In addition, Gupta et al. [407] demonstrated that the parasite uses 
its secretory apparatus to modify lipids in the PVM and host cell 
membranes, because secreted T. gondii soluble phosphatidylserine 
decarboxylase reduced externalized phosphatidylserine on host cells 
enabling evasion of phagocytosis. The presence of increased serum 
anti-T. gondii IgM and IgG titers and G6PD deficiency were also 
reported in a 5-years-old male child [408].

Carette et al. [409] described two patients, one with ketosis-prone 
type 2 diabetes and the other with T1DM and ketoacidosis, who 
developed hemolysis during acute decompensation of the disease 
states. It appeared that both these patients had G6PD deficiency. It 
was suggested that this abnormality might also be facilitated by the 
erythrocyte depletion of glutathione, an important antioxidant, which 
is observed in the patients with diabetes [409,410]. 

Sobngwi et al. [411] demonstrated that G6PD deficiency alone is 
not a causative factor of ketosis-prone diabetes because they found a 
high (20.3%) prevalence of G6PD deficiency also in individuals without 
G6PD gene mutation, which may suggest a novel pathomechanism 
predisposing to ketosis-prone diabetes. In addition, in an adolescent 
with G6PD and T1DM it was found that disorders of hemolysis reduce 
the exposure time of hemoglobin to glucose, resulting in a falsely low 
hemoglobin A1c level discordant with blood glucose measurements 
[412]. Xu et al. [413] found that chronic hyperglycemia caused 
inhibition of G6PD activity via decreased expression and increased 
phosphorylation of G6PD, which therefore increased oxidative stress. In 
cultured cells high glucose concentrations caused activation of protein 
kinase A (PKA) and subsequent phosphorylation and inhibition of 
G6PD activity and hence decreased NADPH generation [414]. One may 
suggest that in the patients with ketosis-prone diabetes, a concomitant 
infection with T. gondii exerted similar effects on PKA activity and 
phosphorylation of the enzyme (Table 22), which could potentiate 
harmful effects of high glucose levels, thus finally aggravating clinical 
course of the disease. This reasoning may be supported by the findings 
that mononuclear leukocytes from obese patients with T2DM also have 
reduced activity of 6GPD, hexokinase, and 6-phosphofructokinase 
[419], and an increased prevalence of proliferative retinopathy was 
found in the patients deficient in G6PD [420]. In addition, moderate 
upregulation of gluconeogenesis genes was likely to contribute to the 
increased demand of glucose-6-phosphate for amylopectin synthesis 
(this reflects process of gluconeogenesis in contrast to glycolysis, 

i.e. degradation of this storage material), which takes place during 
bradyzoite development [365] (Table 21). However, since the level of 
mRNA upregulation was only moderate, other mechanisms, such as 
an increase in gluconeogenesis enzyme activity or uptake of glucose-
6-phosphate from the host cell by the hexose transporter [363] might 
also take place [361]. This may suggest that T. gondii infection of the 
red blood cells is able to filch this enzyme from the host cells for its own 
metabolic requirements, thus leading to the enhancement of G6PD 
erythrocyte deficiency and aggravation of diabetes state described 
above by Sobngwi et al. [411]. These reasoning is consistent with the 
finding of Usher-Smith et al. [421] that one of several factors associated 
with the presence of diabetic ketoacidosis at diagnosis of diabetes in 
children and young adults was a preceding infection (OR 3.41, CI 0.94 
to 10.47).

T. Gondii Infection may be Associated with Amyloid 
Deposition in the Pancreatic Islet Beta Cells. The 
Presence of Lactoferrin (Lf) in Amyloid Fibrils 
Characteristic for Patients with T2DM Probably 
Reflects Host Defense Reaction to the Parasite Latent 
Infection
Patients with diabetes

Amyloidosis is a disorder of protein metabolism in which normally 
soluble autologous proteins are deposited in tissues as abnormal 
insoluble fibrils, causing structural and functional disruptions [422]. 
In mouse model of type 2 diabetes evidence was presented for role of 
islet amyloid formation rather than direct action of amyloid [125]. 
Amyloid fibril formation is the hallmark of T2DM and amyloid fibrils 
deposit in the extracellular space and generally co-localize with the 
glycosaminoglycans (GAGs) of the basement membrane, a specialized 
component of the extracellular matrix that mainly is built of collagen 
and GAGs. GAGs have been shown to accelerate formation of amyloid 

T. gondii kinase activity is involved in phosphorylation of host IκBα and this unusual 
mechanism can be utilized in manipulating the NF-κB pathway [415]. Moreover, a 
novel parasite kinase activity at the T. gondii parasitophorus vacuole membrane is 
also capable of phosphorylating host IκB [416]. There is biochemical evidence for 
the presence of an oxidative phosphorylation and functional respiratory chain in 
the mitochondrion of tachyzoites [417]. Recently, cAMP dependent protein kinase 
important for the tachyzoite growth was identified in the parasite [95], and protein 
phosphorylation is a key event in the process of T. gondii-host cell interaction [418]. 
Changes in the proteomes of human foreskin fibroblasts following infection with T. 
gondii included, e.g. protein kinase C (delta binding protein) (modulated),protein 
kinase NYD-Sp9 (↑, up-regulated in expression), protein serine/threonine kinase 
(↓,down-regulated),glutathione synthetase (↑), glutathione-S-transferase chain A 
(↓), as well as several enzymes involved in glycolysis (Table 17) [368].

Table 22: Proteins undergoing a change in phosphorylation state following T. 
gondii infection (Nelson et al. [368]; with own modification).

Protein (localization) Phosphorylation 
status in infected cells Functional category

Caldesmon Unphosphorylated Mitosis
Calreticulin Unphosphorylated Protein folding
Nucleobindin Unphosphorylated Protein fate
Protein disulphide 
isomerase Unphosphorylated Structural

Thyroid hormone 
binding protein Unphosphorylated Signal transduction/cellular 

communication
Chaperonin HSP60 
(mitochondria) Phosphorylated Energy metabolism

Lamin A protein 
(mitochondria) Phosphorylated Unknown

Vimentin (mitochondria) Phosphorylated Structural
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fibrils in vitro for a number of protein systems [423]. Monsellier et al. 
[423] found that the GAGs acceleration effect was mainly governed 
by three parameters that account for about 75% of the observed 
experimental variability: the GAG sulfation state, the solute molarity, 
and the ratio of protein and GAG molar concentrations. GAGs are long 
unbranched polysaccharides that often occur as O- or N-linked chains 
of proteoglycans, with the exception of hyaluronic acid existing in a 
free form. Naturally occurring GAGs include heparin, heparin sulfate, 
dermatan sulfate, keratan sulfate, chondroitin sulfate and hyaluronic 
acid [423]. GAGs have been found intimately associated with all types 
of amyloid deposits in vivo so far analyzed, which may suggest that 
they play a pivotal role in amyloidogenesis [424-426] because they 
display an ability to promote fibrillogenesis in vitro for a number of 
protein or peptide systems [427-430]. For example, heparan sulfate 
and HS proteoglycans accumulation with amyloid β-peptide deposits 
was found in AD and Tg2576 mice [431]. In addition, for ordered 
protein to fibrillate, its unique and rigid structure has to be destabilized 
and partially unfolded, while on the other hand, fibrillogenesis of a 
natively unfolded protein involves the formation of partially folded 
conformation, i.e. partial folding rather than unfolding [432]. Moreover, 
the AD-associated amyloid β-protein exerted potent antimicrobial 
activity against eight common and clinically relevant microorganisms 
[433]. Lf, a component of amyloid fibrils in pancreatic islet β-cells, was 
found to have strong anti-toxoplasmatic activity [434]. In addition, 
long-term lactation exerted a protective effect on the development 
of T2DM in women with recent gestational diabetes mellitus [435], 
at least in part probably because the breast-milk contains increased 
amounts of Lf [434]. 

Amyloid formation and aberrant protein aggregations play a role 
in a range of human diseases including T2DM, Alzheimer’s diseases 
and Parkinson’s disease [436-438] (Table 23). Human islet amyloid 
polypeptide (IAPP, or amylin) is the major protein component of the 
pancreatic islet amyloid associated with T2DM [124,440-443] and 
IAPP induced toxicity is believed to contribute to the loss of β-cell mass 
associated with the late stages of T2DM. This amorphous proteinaceous 
material originally described as hyaline has tinctorial properties of 
amyloid [444]. Islet amyloid polypeptide is a 37 aminoacid, beta-cell 
peptide with is co-stored and co-released with insulin [445,446].

Amyloid deposition in pancreatic islet is one of the most common 
pathological features of T2DM found in at least one islet at post-
mortem in more than 90% of diabetic patients, but also demonstrated 
in about 15% of elderly (>60 years old) non-diabetic individuals 
[445,447,448]. In human diabetes, islet amyloid can affect less than 1% 
and up to 80% of islet mass indicating that islet amyloidosis largely 
results from diabetes-related pathologies. Interestingly, in the aged 
rats vitamin D administration mitigated age-related cognitive decline 
through the modulation of proinflammatory state, increased beta 
amyloid clearance and decreased amyloid burden [449].

Islet amyloid polypeptide (amylin) is secreted from pancreatic 
beta-cells, converted to amyloid, and its immunoreactivity was 
localized to beta-cell lysosomes. Pharmacological doses of islet amyloid 
polypeptide were found to inhibit insulin secretion as well as insulin 
action on peripheral tissues (insulin resistance) [450].

T. gondii infection

Tachyzoite forms of the parasite grow within an intracellular 
vacuole surrounded by host’s cell mitochondria and endoplasmic 
reticulum [88] suggesting that the rapid replication and propagation 
of the tachyzoites may imply essential metabolites supplied by these 

organelles of the infected cells [451]. Bradyzoites transform the vacuolar 
membrane to an envelope called a cyst-wall which loses the ability to 
bind to mitochondria and endoplasmic reticulum of the infected cells 
[452]. Tables 24 and 25 are presented with number of organelle and 
inclusion bodies in different forms of the protozoan, which contain 
various substances, including amylopectin, probably important for 
generation of the amyloid present in diabetic islet cells. Guerardel et al. 
[454] found that T. gondii synthesizes amylopectin following changes 
in the environmental conditions and this storage polysaccharide differs 
from glycogen and starch in terms of glucan chain length (Table 21). 
The authors demonstrated that the origin of the host cell can affect the 
physiology and some key metabolism of the parasite. Using HepG2 
cells they discovered that the culture medium of growing intracellular 
tachyzoites turned yellow rapidly, compared to that of tachyzoites 

The islet amyloid is derived from islet amyloid polypeptide (IAPP,amylin),a protein 
co-expressed and co-secreted with insulin by pancreatic β-cells. aIt must be noted 
that anti-IgG T. gondii antibodies were found to be significantly increased in both 
Alzheimer’s and Parkinson’s diseases as compared with controls (p<0.001) 

Table 23: The common molecular basis of islet amyloidogenic proteins-related 
T2DM and neurodegenerative diseases (according to Haataja et al. [439]; with own 
modification).

Diseases Protein that forms 
toxic oligomers Cell lost

T2DM islet amyloid polypeptide β-cells
Alzheimer’s diseasea β-amyloid protein cortical neurons
Parkinson’s diseasea synuclein dopaminergic neurons
Prion encephalopathy/
transmissible spongiform 
encephalopathies

prion cortical neurons

Amyotrophic lateral sclerosis mutant superoxide 
dysmutase motor neurons

Polyglutamine/Huntington’s 
disease 

Huntington’s 
polyglutamine pyramidal neurons

Sporozoites were freshly excysted from 34-day-old oocysts. Tachyzoites were 
obtained from the peritoneum of an IFN-γ knockout mouse 8 days after inoculation 
of tissue cysts. Bradyzoites were from cysts in the brains of mice at 8 months after 
inoculation of oocysts. It must be noted that tachyzoites and bradyzoites could both 
be present in the same parasitophorus vacuole indicating that stage conversion 
from tachyzoite to bradyzoite is asynchronous. Numbers represent means that 
were obtained by counting all organelles or inclusion bodies in 20 longitudinal 
sections of each type of zoite; ranges are given in parentheses

Table 24: Relative numbers of organelle and inclusion bodies in sporozoites,  
tachyzoites, and bradyzoites of the VEG strain of T. gondii (according to Dubey et 
al. [453]; with own modifications).

Stage Mean no. 
(range) of:
Rhoptries Micronemes Dense granules Amylopectin Lipid

Sporozoite 5.9 (2-11) 55 (40-78) 9.4 (5-15) 7.8 (3-13) 1.25 (1-3)
Tachyzoite 6.7 (2-11) 25 (19-38) 9.1 (5-17) 2.4 (1-6) 0.6 (0-2)

Bradyzoite 5.5 (2-8) 75.5 (36-
112) 2.7 (1-5) 21.8 (7-38) 0

For the source of these infectious stages, (Table 23). It must be noted that 
tachyzoites and bradyzoites could both be present in the same parasitophorus 
vacuole indicating that stage conversion from tachyzoite to bradyzoite is 
asynchronous

Table 25: Relative sizes of inclusion bodies in sporozoites, tachyzoites, and 
bradyzoites of the VEG strain of T. gondii (according to Dubey et al. [453],with own 
modifications).

Stage Mean size (nm) (range) in:
Dense granules Amylopectin Lipid

Sporozoite 208 (175-250) 356 (200-460) 388 (200-550)
Tachyzoite 244 (133-334) 201 (103-333) 224 (150-400)
Bradyzoite 181 (167-201) 358 (192-603) 0
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growing in non-transformed human foreskin fibroblast cells. This lead 
to the acidification of the culture medium from pH 7-7.5 to pH 6-6.5 
and this change in the pH probably was a consequence of glycolysis 
responsible for the major energetic metabolism driving ATP synthesis 
in the parasite, and the elevation of lactic acid level [454]. It is known 
that the culture medium acidification causes an accumulation of 
large amounts of amylopectin (10-20 mg of amylopectin per 2×1010 
parasites). Nutrient starvation occuring during this process may also 
be involved in amylopectin biosynthesis and accumulation. In another 
intracellular apicomplexan, Eimeria spp., depletion of amylopectin 
by incubation of the parasite at 37°C or 41°C lead to the impairment 
of these functions [455,456]. In addition, Ryley et al. [457] incubated 
Eimeria tenella sporozoites anaerobically, and correlated the decrease 
in amylopectin stores of the parasite with production of lactic acid plus 
lesser amounts of CO2 and glycerol.

Sawesi et al. [458] found that in mice T. gondii infection resulted in 
highly increased extracellular levels of glycosaminoglycans, including 
hyaluronan and chondroitin sulfate A, suggesting a role of these 
substances in the general defense mechanism of the host cells. This 
suggestion is consistent with the finding that cell surface heparan sulfate 
(HS) and glycans, which contain sialic acid, have been shown to act 
as potential receptors for the parasite [459-461]. Loss of HS chains or 
sialic acid from cellular glycoconjugates resulted in marked reduction 
of T. gondii infection in vitro [460]. Inhibition of glycosaminoglycan-
mediated amyloid formation by islet amyloid polypeptide and pro-
IAPP processing intermediates reported by Meng and Raleigh [436], as 
well as the presence of Lf in amyloid fibrils and deposits in the cornea, 
seminal vesicles, and brain [462], are in agreement with the above-
presented findings. 

Nilsson and Dobson [462] found a highly amyloidogenic region 
of Lf (sequence NAGDVAFV) that forms amyloid fibrils at pH 7.4 
when incubated at 37°C. Although full-length Lf does not by itself form 
amyloid fibrils, the protein binds to the peptide fibrils and the binding 
constitutes a selective interaction with the NAGDVAFV fibrils. The Lf 
appears to coat the peptide fibril surface to form mixed peptide/protein 
fibrils, but there was no formation of Lf-only fibrils. It was suggested 
that such process could be generally important during formation of 
amyloid fibrils in vivo because the identification of both full-length 
protein and protein fragments was common in ex vivo amyloid deposits 
[462].

Ando et al. [463] reported that in three patients with corneal 
amyloidosis electrophoresis of amyloid fibrils revealed Lf with and 
without sugar chains, and N-terminal sequence analysis demonstrated 
full-length Lf and a truncated tripeptide of N-terminal amino acids, 
Gly-Arg-Arg. Carboxymethylated wild-type Lf formed amyloid 

fibrils in vitro. Lf gene analysis in the 3 patients revealed a Glu561Asp 
mutation, and a compound heterozygote of Ala11Thr and Glu561Asp 
mutations in 1 patient. Heterozygotic Glu561Asp mutation was found 
in 44.8% of healthy Japanese volunteers, suggesting that the mutation 
may not be an essential mutation for amyloid formation (p=0.104), and 
that Lf was this precursor protein [463]. 

Lf is a cationic iron-binding glycoprotein belonging to the 
transferrin family, which accumulates in the amyloid deposits in the 
brain in neurodegenerative diseases, such as AD and Pick’s disease. 
Iwamaru et al. [464] showed that bovine Lf inhibited amyloidogenic 
isoform of cellular prion protein (PrP(Sc)) accumulation in scrapie-
infected cells in a time- and dose-dependent manner. Lf mediated the 
cell surface retention of normal cellular prion protein by diminishing 
its internalization and was capable of interacting with it as well as with 
PrP(Sc). In addition, Lf partially inhibited the formation of protease-
resistant prion protein. Lf present in the breast milk also protected 
against T. gondii infection [420], and current evidence indicate that 
a short duration of breastfeeding may constitute a risk factor for 
development of T1DM later in life [465].

Gastrointestinal Sensory-Motor Dysfunction Reported 
in Patients with Diabetes Mellitus may be at least in 
Part Caused by T. Gondii Infection
Diabetic patients

Gastrointestinal disturbances are common in diabetic patients 
and the entire gastrointestinal tract (GT) may be involved [466-469]. 
In patients with diabetic autonomic neuropathy (DAN), a number of 
abnormal conditions have been reported in different segments of the 
GT, such as esophagus (dysmotility), stomach (dysmotility, delayed 
emptying) and small and large intestine (dysmotility, delayed transit, 
bacterial overgrowth and diarrhea) [470] (Table 26). At present, it is 
believed that DAN is the major factor in the pathogenesis of these GT 
abnormalities and prolonged hyperglicemia play an important role 
in development of DAN through the glycation of the enteric nervous 
system [466,484-486]. Morphological and biomechanical changes 
as well as alterations of the enteric nervous system in experimental 
animals and patients with diabetes mellitus are presented in tables 27 
and 28.

Diabetic rats

In animals, streptozotocin-induced model of diabetes was 
associated with development of serious pathophysiological 
abnormalities, including morphological changes in the gastrointestinal 
tract and quantitative alterations of the myenteric plexus neurons 

IMMC: Inter-digestive Migrating Motor Complex; MMC: Migrating Motor Complex 

Table 26: Disorders of GT motility in patients with DM (according to Zhao et al. [466]; with own modification).

GT segment Motility disorders References
Esophagus Increased amplitude and number of peristaltic contractions [471-474]

Increased number of spontaneous and non-propagated contractions [475]
Decreased amplitude of lower esophageal sphincter pressure [471]
Multi-peaked contractions [476, 477]

Stomach Decreased antral IMMC [478]
Decreased postprandial antral activity and the number of antral contractions [479]
Pyloric dysmotility [480]

Small intestine Decreased or increased frequency and amplitude of the antropyloroduodenal contractions [481]
Increased duration of MMC cycle [482]
Early recurrence of the MMC and clusters of contractile activity [483]
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and other cells. For example, seven days after diabetes induction by 
streptozotocin, a significant reduction in the circumference and 
area of the colon (Table 29), size of the myenteric neurons and their 
nuclei (Table 30), and a decrease in the overall neuronal population as 
compared with controls, were demonstrated [504]. These changes were 
associated at least in part with marked body weight loss by the animals 
with diabetes [504]. Also, the number of myenteric plexus neurons 
per calculated area on the small and large stomach curvatures in 
diabetic rats examined after two months were found to be significantly 
decreased in diabetics compared with controls rats (Table 31). In 
addition, in the ileum, the relative percentage of the NADH-diaphorase 
positive myenteric neurons with the smaller area of cell body size in the 
ileum of diabetic rats increased and these with larger area decreased, 
in contrast to that found in control animals (Table 32). Izbeki et al. 
[496] also found that in the jejunum, ileum and colon of rats with 
streptozotocin-induced diabetes, both the total and the nitrergic 
neuronal cell number decreased significantly, while in the duodenum 
only the number of nitrergic neurons decreased. De Mello et al. [495] 
also demonstrated a significant reduction in density of the duodenal 
myenteric neurons stained with HuC/HuD compared with controls 

(18.6 and 19.77%, respectively, p<0.001). The density of nNOS neurons 
was also lower than that of controls (8.62 and 7.30%, respectively), 
but the difference did not attain statistical significance, which may 
suggest that the nitrergic neurons are less sensitive to acute diabetes 
induced by streptozotocin [495]. On the other hand, the density of 
NADHd-positive neurons in these groups was markedly higher than in 
control animals indicating that acute diabetes increases the activity of 
respiratory chain enzymes on these neurons, enhancing their staining 
[495] (Table 33). 

T. gondii infection

Immunochemistry studies performed by Haroon et al. [506] 
showed that in infected neurons of chronically infected BALB/c mice 
upon oral infection with T. gondii cysts, not only parasitic cysts but 
also the host cell cytoplasm and some axons stained positive for the 
parasite antigen suggesting that parasitic proteins might directly 
interfere with neuronal function. It appeared that both bradyzoites and 
tachyzoites functionally silence infected neurons because the activity-
dependent uptake of the potassium analogue thallium was reduced in 
cysts harboring neurons, and the percentage of nonfunctional neurons 

Table 27: Morphological and biomechanical changes of small intestine in diabetic patients (according to Zhao et al. [466]; with own modification)

Morphological changes Biomechanical changes
Increased intestinal weight, length, weight per unit length Decreased opening angle and residual strain in duodenum
Increased surface area of mucosa Increased opening angle and residual strain in jejunum and ileum
Increased number of goblet cells per villus Increased circumferential stiffness of the intestinal wall
Increased smooth muscle mass Increased longitudinal stiffness of the intestinal wall
Increased different layer thickness Decreased stress relaxation of small intestine
Increased proliferating cell nuclear antigen 
Decreased volume of interstitial cells of Cajal 

GT: Gastrointestinal Tract; ICCs, Interstitial Cells of Cajal; nNOS, Neuronal NO Synthase; GFAP, Glial Fibrillary Acidic Protein

Table 28: Alterations of the enteric nervous system found in experimental and clinical diabetes mellitus (according to Bagyanszki and Bodi,[487]; with own modification).

GT segment Type of abnormality Species References
Esophagus,stomach,intestine Loss of ICCs Human,mouse,rat [488]
Esophagus,stomach,intestine Diabetic gastroenteropathy Human,mouse,rat [489]
Stomach Gastroparesis, oxidative stress Mouse [490]
Stomach Gastroparesis, regional injury of ICCs Rat [491]
Stomach Gastroparesis Human [492]
Stomach Gastroparesis Human [493]
Stomach,intestine Oxidative stress Human,mouse,rat [494]
Duodenum Loss of enteric neurons Rat [495]

Duodenum,jejunum,ileum,colon Region-specific nitrergic neuronal loss, 
gastrointestinal motility disorders Rat [496]

Duodenum,cecum Loss of enteric neurons Rat [497]

Jejunum Decreased NO responsiveness and nNOS 
protein expression Rat [498]

Ileum Loss of enteric neurons Rat [499]

Small intestine Loss of enteric neurons, gastrointestinal motility 
disorders Human,mouse,rat [500]

Colon Loss of enteric neurons, gastrointestinal motility 
disorders, increased oxidative stress Human [501]

Colon Reduction in GFAP and neurotrophins Rat [502]

aValues significantly different compared with controls (P < 0.05)

Table 29: Length, weight, circumference, and area of the colon in streptozotocin-induced diabetic rats (according to Furlan et al. [503]; with own modification).

Parameters Controls (n=8) Diabetics (n=8)
Length (cm) 16.33 ± 1.57 14.49 ± 0.61
Weight (g) 2.90 ± 0.42 2.51 ± 0.11
Circumference (cm) 2.60 ± 0.15 2.05 ± 0.10a

Area (cm2) 42.58 ± 5.04 29.91 ± 2.27a
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increased over time in these animals. In vitro, live cell calcium (Ca2+) 
imaging investigations revealed that tachyzoites actively manipulated 
Ca2+ signaling upon glutamate stimulation leading either to hyper- or 
hyporesponsive neurons, and depleted Ca2+ stores in the endoplasmic 
reticulum [506]. 

In rats, after oral infection with T. gondii oocysts, Sant’Ana 
et al. [507] found a marked reduction in the number of goblet cells 
producing neutral mucins (PAS+) and sulphomucins (AB pH 1.0) as 

compared with control animals, and these changes reflected production 
of a more fluid mucous (Table 34). The number of vasoactive intestinal 
peptide (VIP-IR) submucosal neurons as well as the area of the VIP-
IR neuronal cell bodies also decreased significantly compared with 
control rats (667 ± 6.98 vs. 856 ± 14.89 per 1.74 mm2 of the jejunum, 
p<0.05, and 317.29 ± 9.28 vs. 404.24 ± 11.10 µm2, p<0.05, respectively). 
All these abnormalities indicated that oral T. gondii infection caused 
alterations in the chemical composition of the intestinal mucous and 
reduction in the number of submucosal neurons associated with 
atrophy of the remaining neurons in this cell subpopulation [507]. In 
this context, it is suggested that the morphological changes reported in 
duodenal atresia (a well known neonatal intestinal disease), such as the 
neuronal cells decreased in number and size, the circular musculature 
moderately-to-severely hypertrophic, and the interstitial cells of 
Cajal decreased even around the myenteric plexus [508], were due to 
chronic latent T. gondii infection. Also inflammatory lesions involving 
esophagus, stomach and duodenum frequently observed in neonates 
may be caused by the infection with the protozoan acquired prenatally 
[509-511]. Recently an association between T. gondii infection and 
development of abdominal hernia has been proposed [512]. More 
detailed gastrointestinal disturbances caused by chronic infection 
with the parasite in experimental animals and patients with several 
neurodegenerative diseases have been described elsewhere [434]. 

Possible Links between Elevated Plasma Levels of 
TGF-β1 in both T1DM and T2DM, and T. gondii 
Infection. Dual Role: TGF-β Inhibits Inflammation and 
Autoimmunity, and Increases Intracellular Parasite 
Replication
Diabetes 

TGF-β is a multi-functional cytokine with anti-inflammatory 
activities, such as inhibition of proliferation, maturation and/or 
activation of macrophages, lymphocytes and NK cells [513-516]. Smart 
et al [517] reported that TGF-β signaling is crucial for establishing 
and maintaining defining features of mature pancreatic β cells. Several 
authors demonstrated significantly increased plasma TGF-β1 levels in 
patients with NIDDM (7.9 ± 1.0 ng/ml vs. 3.1 ± 0.4 ng/ml, P<0.001; 
correlation with glycosylated hemoglobin (r2 = 0.42, P<0.001), 
women with T2DM, and women with prior history of gestational 
diabetes mellitus as compared with control individuals [518,519]. 
Elevated TGF-β1 concentrations were associated with retinopathy and 
neuropathy. It was interpreted as an anti-inflammatory response as 
these patients were known to have sublinical inflammation presumably 
triggered by hyperglycemia [519], although there might be also a 
concomitant T. gondii infection. Smoker diabetic patients showed 
also much higher plasma and urinary TGF-β1 levels than non-smoker 
diabetic individuals (12.6 ± 4.9 vs. 7.7 ± 4.7 ng/ml, P < 0.001; 27.5 ± 16.0 

*Values significantly different compared with controls (ap< 0.05; bp< 0.001)

Table 30: Areas of cell body and nucleus profiles of the proximal colon myenteric 
neurons in streptozotocin-induced diabetic rats (according to Furlan et al. [503]; 
with own modification).

Parameters Controls (n=8) Diabetics (n=8)
Total profile of the cell body (µm2) 219.20 ± 4.99 193.60 ± 4.32b

Nucleus profile (µm2) 81.88 ± 1.57 76.77 ± 1.31a

% of the cell profile occupied by the nucleus 39.89 ± 0.46 42.28 ± 0.42b

Table 31: Number of neurons per 11.6 mm2 areas of the small and large stomach 
curvatures in streptozotocin-induced diabetic rats (according to Fregonesi et al. 
[504]; with own modification).

Rat No. Small curvature Large curvature
Controls Diabetics Controls Diabetics

1 7743 4827 1331 962
2 6495 5544 1661 1172
3 8127 5172 2269 1770
4 9050 5018 1524 1032
5 7854 5784 1535 1458
Mean 7854 5269 1664 1279
SD 917 390 358 334
P 0.007319 0.008835

Table 32: Changes of absolute (F) and relative (%) frequency of NADH-diaphorase 
positive myenteric neurons classified according to the area of their cellular body 
profiles in the ileum of diabetic rats (n=5 per group) 15 weeks after induction of the 
disease with streptozotocin (according to Alves et al. [505]; with own modification).

Area of cell body 
size (µm2)

Absolute (F) 
and Controls F

relative (%)
%

frequency of 
Diabetics F

neurons/group
%

<100 14 2.8 24 4.8
100-200 186 37.2 311 62.2
201-300 212 42.4 144 28.8
301-400 74 14.8 21 4.2
401-500 11 2.2 - -
> 501 3 0.6 - -
Total 500 100 500 100

Results are expressed as mean ± SD; ap<0.001. HuC/HuD,anti-human neuronal 
protein HuC/HuD identifies all neuronal cell bodies in the ganglion; NADHd, 
diaphorase positive

Table 33: Density of neurons (neurons/11.07 mm2) reactive to the HuC/HuD 
and nNOS immunohistochemical techniques and NADHd histochemistry of the 
myenteric plexus of the duodenum in adult rats with experimental acute diabetes 
(according to de Mello et al. [495]; with own modification).

Technique Group of animals Density of neurons
HU Controls (n=5) 1472.80 ± 179.14

Diabetics (n=5) 1198.80 ± 237.24a

Insulin-treated rats (n=5) 1181.60 ± 179.53a

NADH Controls (n=5) 631.80 ±  5.18
Diabetics (n=4) 820.0 ± 8.13a

Insulin-treated rats  (n=4) 987.5 ± 19.69a

NOS Controls (n=5) 454.80 ± 59.41
Diabetics (n=5) 415.60 ± 109.30
Insulin-treated rats (n=5) 421.60 ± 48.22

Values are means ± SD; aResults significantly different compared with controls 
(P <0.05); AB 1+ or 2.5+, Alcian blue pH 1 or 2.5; HE: Hematoxylin/Eosin; IELs: 
Intraepithelial Lymphocytes; PAS: Periodic Acid Shiff 

Table 34: Changes in proportion of IELs and goblet cells/100 epithelial cells in 
the jejunum mucous tunica of rats 36 days post oral infection with 500 sporulated 
genotype 2 T. gondii ME-49 strain oocysts (according to Sant’Ana et al. [507]; with 
own modification).

Animals IELs Goblet cells
HE PAS+ AB 1.0+ AB 2.5+

Controls 7.80 ± 1.65 21.30 ± 3.29 9.71 ± 1.22 7.10 ± 1.12
Infected rats 8.90 ± 1.42 18.60 ± 2.18a 5.70 ± 1.79a 6.20 ± 1.73
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vs. 15.3 ± 6.3 ng/mg urinary creatinine, P = 0.01; and 15.3 ± 6.3 vs. 8.1 
± 4.4 ng/mg urinary creatinine, P<0.02, respectively) compared with 
control subjects [520]. These are important findings because TGF-β 
system mediated also diabetic renal hypertrophy and fibrosis build-up 
due to the extracellular matrix production [521,522], and TGF-β1 was 
found to induce vaginal tissue fibrosis in animal model [523], while the 
beta cell hypertrophy, beta cell damage and fibrosis, with reduction in 
insulin secretion, is characteristic for patients with T2DM [7]. In this 
context, a significant increase of plasma TGF-β1 levels caused by latent 
T. gondii infection may play a key role in development of pancreatic 
islet beta cell abnormalities found in T2DM.

Tonkin & Haskins [524] demonstrated that regulatory T cells 
(Tregs) transfer causes a reduction in the number of effector TH1 T 
cells and macrophages, and also inhibits effector T cell cytokine 
and chemokine production. Transfection of effector T cells with a 
dominant negative TGF-β receptor showed that in vivo suppression 
of diabetes by TGF-β-induced Tregs is TGF-β-dependent [524]. 
Anti-islet autoimmunity can be inhibited by transfer of „natural” 
CD4+CD25+ Tregs [525-528], or by induced Tregs which upregulate 
the Treg transcription factor Foxp3 after activation of CD4 T cells in 
the presence of TGF-β [524,529,530]. However, in pregnant mice, the 
infection of T. gondii caused the decrease of CD4+CD25+-regulatory T 
cells [235].

TGF-β plays a critical role in the suppression of lymphocyte 
proliferation and differentiation therefore preventing hazardous 
autoimmune responses, and its immunosuppressive effects are 
mediated through the inhibition of TNF-α and IL-1 [531] and blocking 
the induction of adhesion molecules like ICAM-1 and VCAM-1 
[519,532,533]. Filisetti & Candolfi [534] reported that TGF-β is well 
known for its immunosuppressive action on leukocyte cell lines. This 
cytokine was found to be an antagonist of TNFα, TNF-β, IFN-γ and IL-2 
[130,221]. The antiinflammatory action of TGF-β control development 
of immunopathological processes related to TH1 immune response in 
the brain [535] and the intestines [536]. However, TGF-β was reported 
to increase in vitro replication of T. gondii in retinal cells, suggesting 
that this cytokine may be involved also in immunopathological 
phenomena [537]. Elevated expression of TGF-β in vitreous, retina 
and retinal pigment epithelium has been correlated closely with retinal 
fibrosis and choroidal neovascularization [513]. Thus, the development 
of pancreatic islet β cells fibrosis characteristic for the patients with 
T2DM may be associated with the increased levels of this cytokine 
due to T. gondii infection because TGF-β belongs to biomediators 
favouring growth of the parasite [538]. 

T. gondii infection

Normal pregnancy is characterized by a preferentially TH2 immune 
response, with the production of antiinflammatory cytokines, such 
as IL-4, IL-5, IL-10 and TGF-β by both maternal and fetal cells [539-
543]. Host protection to T. gondii infection involves TH1 type immune 
response of inflammatory cells, lymphocytes and macrophages 
with enhanced production of IFN-γ, TNF-α, and IL-1β [534, 544]. 
Activated macrophages by IFN-γ inhibit parasite replication through 
a number of potent microbicidal mechanisms such as oxidative [545] 
and non-oxidative [546] mechanisms as well as the induction by IFN-γ 
of IDO that degrades tryptophan, which is required for the parasite 
replication [547]. Barbosa et al. [539] showed that in contrast with 
HeLa cells, treatments with IL-10 or TGF-β1 induced a considerable 
augmentation in both T. gondii intracellular replication and invasion 
into BeWo cells. BeWo trophoblasts were unable to control replication 

of the parasite even in the presence of exogenous IFN-γ [548]. In 
addition, treatment with IFN-γ alone or associated with IL-10 or 
TGF-β1 increased the same parameters in BeWo cells, whereas the 
opposite effect was observed in HeLa cells. When endogenous IL-10 
or TGF-β was blocked, both BeWo and HeLa cells were able to control 
the parasite infection only in the presence of IFN-γ. It was suggested 
that the higher susceptibility of BeWo cells to T. gondii may be due 
to immunomodulation mechanisms, suggesting the role of trophoblast 
cells in maintaining a placental microenvironment favourable to 
pregnancy may facilitate the infection into the placental tissues [539]. 

Hunter et al. [130] demonstrated that TGF-β antagonizes the 
ability of IL-12 to stimulate production of IFN- by splenocytes from 
SCID mice, and suggested a role for TGF-β in regulation of T cell-
independent resistance to T. gondii. Malipiero et al. [549] found 
that TGF-β is a potent deactivator of polymorphonuclear leukocytes 
(PMN) and macrophages since it suppresses the production of ROS, 
RNI and IL-1. TGF-β impairs expression of L-selectin on PMN and 
L-selectin is known to be essential for PMN recruitment in bacterial 
meningitis. On peripheral monocytes TGF-β is chemotactic, enhances 
phagocytosis, activates the production of cytokines – IL-1, TNF-β, and 
leads to increased expression of several integrin receptors. On tissue 
macrophages including microglia, the cytokine was found to inhibit 
phagocytosis and the production TNF-α, IL-1, IL-6, ROS, and to 
induce increased expression of IL-1 receptor antagonist [531,549-552]. 

Activation of macrophages plays an important role in the 
host resistance against intracellular pathogens. Langermans et al. 
[221] found that the IFN-γ-induced toxoplasmastatic activity of 
macrophages was inhibited by TGF- (mean fold increase = 6.3), 
which was also found for the IFN-γ-induced production of TNF-α, 
RNI and PGE2 by macrophages. It was found that PGE2, which has 
macrophage deactivating properties, was not involved in the inhibition 
of macrophage activation by TGF-β. It appeared that inhibition of 
TNF- production was a key factor in the TGF-β-induced suppression 
of macrophage activation with respect to toxoplasmastatic activity and 
RNI production [221].

Bogdan & Nathan [553] found that TGF-β can induce resting 
human monocytes to produce TNF, IL-1, and IL-6. It was found that 
IL-10 was about 25-fold more potent suppressor of LPS-induced TNF 
production by mouse macrophages than was TGF-β. TGF-β suppressed 
TNF release on a translational level. TGF-β, IL-4, and IL-10 have been 
shown to have strong macrophage-deactivating effects. 

Seabra et al. [554]. Activated macrophages control growth by NO 
production. However, T. gondii active invasion inhibits NO production, 
allowing parasite persistence. The mechanism used by T. gondii to 
inhibit NO production persisting in activated macrophages depends 
on phosphatidylserine exposure. TGF-β1 led to iNOS degradation, 
actin filament (F-actin) depolymerization, and lack of NF-κB in the 
nucleus [554]. 

Nagineni et al. [513] reported that in human retinal pigment 
epithelial cultures TGF-β enhanced parasite replication. Soluble 
extracts of T. gondii stimulated secretion of both TGF-β1 and TGF-β2 
significantly. T. gondii infection completely inhibited secretion of 
the active form of TGF-β2. Finally, Malipiero et al. [555] found that 
endogenous TGF-β suppresses host defense against pathogen infection 
also in the central nervous system. Thus, it seems that the increased 
levels of plasma TGF-β reported in the patients with T1DM and 
T2DM exert both beneficial and harmful effects because although this 
cytokine is an important regulator of pancreatic islet development 
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and has antiinflammatory and immunosuppresive activities, at the 
same time increases T. gondii replication in the host cells with further 
development of various pathophysiological irregularities.

Beneficial Effect of Thermal Therapy on Glycemic 
Control in the Patients with T2DM may be Associated 
with Stage Conversion of T. gondii Tachyzoites to 
Bradyzoites and Increased Generation of NO by 
Endothelial NOS 

Recently, it was reported that regular thermal therapy might 
promote insulin sensitivity while boosting expression of eNOS [556], 
and that control of glycemia was improved in the patients with 
T2DM receiving regular hot tub treatment [557]. Moreover, it was 
demonstrated that vascular endothelial constitutive isoform of NO 
synthase (eNOS) has been induced in cultured endothelial cells and 
cardiomyocytes exposed to mild heat (42°C) [558,559]. Endothelial 
eNOS mRNA expression and NO production also augmented about 
40% in hamsters given daily hot treatments (15 min of infrared sauna) 
that increased core temperature by about 1°C [560,561]. In the patients 
with coronary risk factors who underwent daily sauna treatment for 
two weeks (15 min of 60°C infrared sauna followed by 30 min covered 
with blankets) endothelium-dependent vasodilation was found to 
increase markedly [562]. Recently, it was also found that in mice 
thermal induction and overexpression of hsp72 might counter high fat 
diet-induced insulin resistance [563]. Several studies [564,565] showed 
that a physiologically relevant hyperthermia (39°C) selectively induced 
constitutive hs-hsp70 (hsc70) in H9c2 cardiac myoblasts and conferred 
oxidative protection. Hsc70-enriched cells exhibited a marked 
resistance to oxidative challenge, including exposure to hydrogen 
peroxide, hydroxyl radical, and hypoxia/reoxygenation [565]. These 
are important findings because, for example, the seropositivity rate 
for anti-T. gondii IgG antibodies among patients with chronic heart 
failure was significantly higher than in healthy volunteers (68% vs. 
36%, (P < 0.05), respectively) [566], and infection with the protozoan is 
associated with oxidative stress [209].

An increase in heat shock proteins 60, 70 and 90 (Hsp90), 
formation in T. gondii was demonstrated in bradyzoites on conditions 
which induce stage conversion, including increased temperature 
[567-569], and Hsp60 contributed to protection against the parasite 
infection [570]. Moreover, HSPs have been found to play a key role 
in the induction of a cellular immune response, including activation 
of NK cells by HSP70, which comprise 5-20% of peripheral blood 
mononuclear cells and are important in the control of bacteria, 
parasites and viruses [571]. Febrile temperatures (41°C) resulted in a 
synergistic increase in Hsp90 and Hsp70 synthesis induction [572,573], 
and a temperature-controlled shift from oligomeric complexes to 
smaller species with increasing temperature was found for small HSPs 
with low molecular mass of about 12-43 kDa [574] (Table 35). 

Thus, the beneficial effects of thermal therapy reported in patients 
with T2DM may be associated with the changes in the stage of T. gondii 
during latent chronic pancreatic toxoplasmosis because bradyzoites 
to tachyzoites interconversion can be due to a variety of factors, 
including temperature-dependent HSPs induction (Table 36). This 
reasoning may be supported by the following findings: a) in mice a 
mutagenized strain tachyzoites of T. gondii showed variable growth 
at temperatures between 34 and 39°C, and inability to grow at 40°C, 
which correlated with a loss of virulence [583]; b) the reports on the 
parasite-induced changes in human behavior, including decreased 
psychomotor performance in individuals with latent asymptomatic 
toxoplasmosis [584]; and c) the fact that T. gondii may circulate also 
in the peripheral blood of immunocompetent persons with acute and 
chronic toxoplasmosis [323]. Virulence of the parasite is associated 
with distinct dendritic cell responses and reduced numbers of activated 
CD8+ T cells [585]. It seems, therefore, that marked changes in the 
innate immune state associated with an improvement of balance 
between various proinflammatory and antiinflammatory cytokines 
and other inflammation mediators caused by fever probably resulted 
in T. gondii tachyzoite (representing a subacute persistent stage of 
cerebral toxoplasmosis) bradyzoite (representing a chronic stage) 
interconversion and/or apoptosis in tachyzoites, finally beneficially 
affecting glycemic control of some patients with T2DM.

RH tachyzoites, ME49 strain of T. gondii. ESP molecular weight (kDa)a Temp. (°C) 4 25 37 42
110 + +
97 + +
86 + (Tg386) +
80 + (Tg485) +
70 + + + 
60 + +
54 + + +
42 + (Tg786) +
40 + +
36 + + + (Tg378)
30 + + +
28 + + + (Tg556)
26 + + +
22 + + +
19 + + +

aThe RH strain of T. gondii was maintained by peritoneal passages in Balb/c mice. For positive reference serum, mouse was infected with ME49 strain of the parasite for 8 
weeks until the animal had brain cysts postmortem. The molecular mass of 15 ESP was estimated at 37°C. Among them,110, 97, 86, 80, 60, 42 and 40 kDa proteins were 
released temperature-dependently, while those of 70,54,36,30,28,26,22,and 19 kDa were released temperature-independently as low as 4oC. Five ESP of 86, 80, 42, 36 
and 28 kDa reacted with monoclonal antibodies: Tg378 and Tg556 clones were detected 36 kDa and 28kDa proteins, respectively, in dense granules with involvement into 
parasitophorus vacuole, and these ESP were released regardless of temperature and time. Tg386 clone labeled presumably micronemal structure in tachyzoites, Tg485 
clone labeled surface membrane protein; while Tg786 clone labeled probably rhoptry in the apical portion. ESP by Tg786 clone was released continuously with increment, 
whereas those by Tg378 and Tg556 clones were ceased to release after 3 and 4 hrs changes, respectively 

Table 35: Profile of Excretory/Secretory Proteins (ESP) released from purified tachyzoites of T. gondii incubated for 1 hr at different temperatures and then analyzed by 
monoclonal antibodies (Son and Nam [575]; with own modification).
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Vitamin D Deficiency is Linked with Development 
of Diabetes Mellitus. Protective Role of Vitamin D 
may be Partly Due to its Immunomodulatory and 
Antitoxoplasmatic Activities
Diabetes

Sørensen et al. [586] reported a trend toward a higher risk of T1DM 
with the lower serum levels of vitamin D during pregnancy (the odds 
of the disease was more than 2-fold higher for the offspring of women 
with the lowest levels of 25-OH D compared with the offspring of those 
with levels above the upper quartile). 

Evidence exists that patients with T1DM and T2DM have a higher 
incidence of hypovitaminosis D [587], and vitamin D deficiency has 
been associated with increased risk of T1DM. Vitamin D deficiency in 
early life accelerates T1DM in non-obese diabetic mice [588]. Children 
and adults need at least 1000 IU of vitamin D per day to prevent 
deficiency when there is inadequate sun exposure [589]. Interestingly, 
BCG vaccinated infants were almost six times (CI: 1.8-18.6) more likely 
to have sufficient plasma vitamin D concentrations than unvaccinated 
infants [590]. It appeared that Mycobacterium tuberculosis purified 
protein induced a significant increase of several immune factors in 
adolescents, including IFN-γ, TNF-α, IL-2, IL-6, IL-10, IL-17, GM-
CSF, MIP1α, and IP-10 when compared to paired samples taken prior 
to BCG vaccination (P<0.0025) [591]. 

Moreover, intranasal vaccination with mycobacterial 65-kD heat 
shock protein (HSP) prevented development of insulitis and diabetes 
in non-obese diabetic mice [592], and DNA vaccine containing the 
mycobacterial hsp65 gene protected mice from streptozotocin-induced 
insulitis and diabetes [593]. These findings may be explained by the 
important role of HSPs acting as molecular chaperones in protection 
from and pathogenesis of infectious diseases [434,568,594]. Hisaeda 
& Himeno [595] showed that the expression of host-derived 65 kDa 
HSP was crucial in directing host immune system to achieve protective 
immunity against infection with T. gondii. A relationship was found 
between the biomolecule expression on/in host macrophages and 

development of immune defense against the parasite, regardless of 
differences in strains and forms of the protozoan (Tables 37 and 38). 

Vitamin D treatment has been shown to improve, and even 
prevent, development and/or clinical course of T1DM in both humans 
and in animal models [596]. Pancreatic islet insulin-producing beta-
cells as well as numerous cell types of the immune system express the 
vitamin D receptor and vitamin D-binding protein. Some organs have 
the capacity to metabolize 25-hydroxyvitamin D to its active form 
1,25-dihydroxyvitamin D, which has a potent immunomodulatory 
activity that also enhances the production and secretion of several 
hormones, including insulin [589]. Pharmacologic doses of 1,25(OH)2D 
prevented insulitis and T1DM in nonobese diabetic mice [597] and 
other models of T1DM, possibly by immune modulation, such as for 
example, increased monocyte differentiation to macrophages, thus 
increasing their cytotoxic activity, reduced the antigen-presenting 
activity of macrophages to lymphocytes, prevented dendritic cell 
maturation, decreased proliferation of activated lymphocytes, inhibited 
T lymphocyte-mediated immunoglobulin synthesis in lymphocyte 
B cells, delayed-type hypersensitivity reactions, and generation and 
activity of NK cells [598-603], as well as by direct effects on beta-cell 
function. It should be noted that vitamin D deficiency was found 
to be associated with retinopathy in children and adolescents with 
T1DM [604]. The prevalence of this clinical entity was higher as 
compared with the vitamin D sufficient patients (18 vs. 9%, P = 0.02; 
OR 2.12 [95% CI 1.03-4.33]), and was dependent of diabetes duration 
(1.13, 1.05-1.23), and HbA1c levels (1.24, 1.02-1.50) [604]. This is an 

aOne cannot exclude that the differences in therapeutic efficacy between valproic 
acid and sodium valproate used in several neuropsychiatric diseases were 
related to acidic or alkaline target local tissue conditions induced by these two 
pharmaceutical forms of a drug (low doses vs. high doses, respectively) [577,578]. 
bPhysiologically relevant circumstances that could play a role in stage conversion 
in vivo include heat shock through a fever [576]. cNO overproduction in ASD 
individuals [579] is an inhibitor of mitochondrial function [106]. dStress-induced 
elevation of cAMP could play a role in bradyzoite induction because addition of 
cAMP or cGMP to tachyzoites can stimulate stage conversion [580]. PLK, a T. 
gondii ME49 clonal strain able to differentiate in vitro, exhibited a rise in cAMP in 
response to bradyzoite inducing conditions, but elevation of cAMP under the same 
conditions was not evident in RH, a strain that does not differentiate well [580]. It 
must be emphasized that inducers of oxidative stress (nb. a state characteristic 
for autistic patients) also have been demonstrated to cause parasite encystment 
in vitro [581,582] 

Table 36: Factors associated with tachyzoite and bradyzoite interconversion 
(according to Lyons et al. [576]; with own modification).

Tachyzoite to bradyzoite conversion Bradyzoite to tachyzoite conversion
High pHa Lack of NO
Low pHa Lack of IFN-γ
Heat shockb Lack of TNF-α
Mitochondrial inhibitionc Lack of IL-12
Presence of NOc Lack of T cells

Elevation of both cAMP and cGMPd
Induction of a variety of HSPs, including 
HSP70, is associated with bradyzoite 
transitione 

aBALB/c mice were used as hosts; bSymbols used here represent resistance to 
infection; +: resistant; ++: very resistant; -: susceptible; cSymbols used here 
represented levels of HSP65 expression as follows: +: strong; ++: very strong; -: 
none

Table 37: Relationship between HSP65 expression and resistance to infection with 
T. gondii (according to Hisaeda and Himeno [595]).

Infected parasite Host statusa Resistance to 
infectionb

Expression of 
HSP65c

Beverly strain
    Bradyzoite Non-immune + +

   Bradyzoite Immune with 
sonicated T. gondii ++ ++

   Tachyzoite
After in vivo passage Non-immune - -

RH strain
    Tachyzoite Non-immune - -

    Tachyzoite
Live-vaccinated with 
a low dose of the 
Beverly strain

++ ++

aTcR: T-cell receptor; bSymbols represent as follows: -: none; ±: very weak; +: 
weak; ++: strong; +++: Very strong; cInfection with bradyzoites of the Beverly strain 
of T. gondii. Symbols represent as follows: -: Susceptible; +: weakly resistant; ++: 
resistant; +++: strongly resistant; “++” here (also expression level) is comparable 
with “+” in Table 34. dEspecially at the early phase of infection. Scid, severe 
combined immunodeficiency; nu/nu, nude mice

Table 38: Requirements of T cells for HSP65 expression (according to Hisaeda 
and Himeno [595]; with own modification). 

Hosta Expression of HSP65b Resistance to infectionc

CB17 scid/scid - -
   + Fetal thymus graft + +
   + Fetal liver cell transfer ++ ++
BALB/c nu/nu ± -
BALB/c +/+ ++ ++
    + Anti-TcR αβ +++ +++d

    + Anti-TcR γδ - -
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important finding because retinopathy and other abnormalities 
were frequent complications reported in individuals with ocular 
toxoplasmosis [605-607], and cataracts have been demonstrated also 
in both streptozotocin-induced diabetic rats [608] and T1DM pediatric 
population [609]. Tedesco et al. [607] demonstrated free parasites in 
the retinal vasculature, the presence of mononuclear inflammatory 
infiltrate and parasites in the vasculature of choroids in infected eyes. It 
was suggested that the increased levels of histamine found in the retina 
and choroid of diabetic rats may enhance permeability of local vascular 
bed and participate in development of diabetic ocular complications, 
including lens opacities [610]. 

T2DM involves impaired pancreatic β cell function, insulin 
resistance and inflammation [611]. In T2DM, several disturbances 
in concentrations of systemic inflammation mediators have been 
demonstrated, including proinflammatory cytokines and other 
factors: IL-2, IL-6, IL-12, IFN-γ, TNF- and TNF-β, C-reactive protein, 
and plasminogen activator inhibitor-1 [603,612,613]. Vitamin 
D supplementation can increase insulin sensitivity and decrease 
inflammation in the patients with T2DM [587]. Studies showed that 
hypovitaminosis D was associated with an enhanced inflammatory 
response manifested as significantly increased serum TNF-α, IL-6, 
and CRP levels in healthy [613-616] and obese persons [617, 618]. 
Moreover, in some clinical states associated with inflammation, 
vitamin D supplementation caused a marked decrease in serum levels 
of these proinflammatory factors [619, 620] and an increase in anti-
inflammatory cytokine IL-10 concentration [621]. 1,25(OH)2D3, 
vitamin D3 analog, exerted direct action on purified mouse Langerhans 
cells reducing IL-10 production and enhancing the production of IL-6 
and IL-12p40 upon activation by CD40 ligation [622]. In addition, 
1,25(OH)2D3 upregulated the production of IL-1β, CCL3, CCL4, and 
CCL5. The generation of TH2-type chemokines, represented by CL17 
and CCL22 was inhibited, whereas IFN-γ-triggered production of TH1-
type chemokines represented by CXCL9, CXCL10, and CXCL11, was 
increased [622]. It was reported that daily intake of 2000 UI vitamin D 
was associated with improved β cell function [623]. Moreover, results 
of a cross-sectional analysis showed that patients with serum 25OH D ≥ 
80 nmol/l levels had reduced risk of developing T2DM when compared 
to those individuals who had ≤ 37 nmol/l [624]. 

Vitamin D is important for insulin synthesis and release because 
of the presence of both 1-α-hydroxylase and vitamin D receptor in 
pancreatic β cells [587,625]. Vitamin D is also involved in insulin 
sensitivity by controlling calcium flux through the membrane in both 
β cells and peripheral insulin-target tissues [611,626]. The opening of 
voltage-sensitive Ca2+ channels allows Ca2+ uptake by β-cell, thereby 
contributing to secretion of insulin [97]. Evidence exists that vitamin 
D has a potential antimicrobial activity and therefore may reduce 
the risk of various infections through multiple mechanisms [627]. 
Dendritic cells (DCs) are primary targets for the immunomodulatory 
activity of 1,25(OH)2D3, as indicated by inhibited DCs differentiation 
and maturation, leading to down-regulated expression of MHC-II, 
costimulatory molecules and IL-12. Inhibition of this proinflammatory 
cytokine production by 1,25-(OH)2D3 is associated with down-
regulation of NF-κB protein levels in activated lymphocytes [628,629]. 
1,25-(OH)2D3 dose-dependently inhibited LPS-induced cytokines 
production in PBMC modulating intracellular calcium [630]. In 
addition, this active metabolite may protect against oxidative injuries 
caused by the NO burst because it dose-dependently inhibited iNOS 
messenger RNA expression of the LPS-stimulated RAW 264.7 cells 
and also significantly reduced the gaseous NO release and OONO- 
production [631]. Moreover, 1,25(OH)2D3 enhances IL-10 production 

and promotes DCs apoptosis [632], as well as increases PGE2 
production by monocytes, a mechanism which partially accounts for 
the antiproliferative effect of 1,25-(OH)2D3 on lymphocytes [633]. 
This metabolite has a direct effect on naive CD4+ T cells to enhance 
development of TH2 cells [634], increases regulatory T-cells and arrests 
autoimmune diabetes in NOD mice [635]. These actions emphasize the 
plethora of general benefits of vitamin D and its active metabolite in 
immunomodulating and antimicrobial mechanisms, thus favoring the 
host in courtailing present and imminent infections.

T. gondii

In acute toxoplasmosis, 1,25(OH)2D3 reduced survival rate of 
infected mice compared to untreated animals, and significantly 
decreased serum IFN-γ and IL-12p40 concentrations indicating 
inhibition of TH1-type cytokines, as well as reduced CD4+ T lymphocyte 
and splenocyte counts, thus enhancing host sensitivity to T. gondii 
infection [636]. Surprisingly, no increase in parasite load was observed 
in the organs, which suggested an inhibitory effect of 1,25(OH)2D3 at 
a cellular level [636], like previously it was reported for Plasmodium 
faciparum [637]. Further studies showed that treatment with vitamin 
D dose-dependently inhibited both in vivo and in vitro growth of T. 
gondii intracellularly, possibly by limiting tachyzoite proliferation 
within the parasitophorous vacuole because of activity at the cellular 
level [627,638]. Ghaffarifar et al. [639] demonstrated that in RPMI 
1640 cell culture vitamin D3 (1000 IU) similarly like IFN-γ (100 IU) 
significantly decreased proliferation of T. gondii (RH stran) tachyzoites 
per infected peritoneal macrophage of BALB/c mice as compared with 
control animals (Table 39). It should be noted that the in vitro inhibiting 
effect of vitamin D3 alone on tachyzoite proliferation, as well as the 
increase of NO generation by macrophages, were more distinct than 
the respective effects of IFN-γ [639]. This emphasizes the importance 
of NO activity against T. gondii tachyzoites in the infected cells (Table 
40), despite the fact that T. gondii partially inhibits NO production 
of activated murine macrophage [194]. 1,25(OH)2D3 also induced 
NO synthesis and suppressed growth of Mycobacterium tuberculosis, 
another intracellular microorganism, in a human macrophage-link cell 
line [640]. These findings are consistent with the beneficial effects of 
pretreatment with 1,25(OH)2D3 (0.5 µg/kg for 2 days) on various tissue 
pathological changes caused by peritoneal administration of oocysts 
in mice and histologically examined after seven days post inoculation 
[638]. It appeared that 1,25 (OH)2D3 reduced tissue damage and 
parasite load in situ, and in particular the difference of the number 
of parasites per 1 mg of standardized tissue DNA was significant in 
the spleen (Table 41). Thus, vitamin D immunomodulatory and 
antitoxoplasmatic activities were probably at least in part responsible 
for inhibition of diabetes development in both patients with T1DM 
and T2DM.

Beneficial Role of the Increased Indoleamine 
2,3-Dioxygenase (IDO) Activity for both Diabetes and 
T. gondii Infection Prevention/Treatment
Diabetes

IDO may exert an immunoregulatory function and has the capacity 
to affect the course of various infections, autoimmunity, cancer and 
transplantations [6]. Increasing evidence support suggestions that 
IDO may delay the onset and progression of autoimmune diseases, 
e.g. IDO expressing NK cells contributed and promoted acceptance 
of rat liver allograft [641]. Jalili et al. [642] demonstrated the long 
survival and viability of syngeneic islets exposed to IDO-expressing 
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fibroblasts within the composite grafts in a diabetic animal model. It 
was also found that transient up-regulation of IDO in dendritic cells by 
human chorionic gonadotropin down-regulated autoimmune diabetes 
[643]. Nb. it should be noted that IDO production by human dendritic 
cells results in the inhibition of T cell proliferation [644]. In addition, 
human chorionic gonadotrophin administration markedly inhibited 
T1DM onset in NOD female mice in an IDO-dependent fashion. Also, 
it was found that a defect in tryptophan catabolism impaired tolerance 
in NOD mice [643], and previously it was reported that IFN-γ blocks 
the growth of T. gondii in human fibroblasts by inducing the host cells 
to degrade tryptophan [161]. Moreover, functional IDO was induced 
when human islet were treated with IFN-γ [643], and otherwise it is 
known that IFN-γ is the key cytokine responsible for development 
of immune defense against T. gondii in all infected tissues and cells, 
including the central nervous system [161,231]. IDO is induced in 
the mouse brain in response to peripheral administration of LPS 
and superantigen [645], although LPS induction of IDO is mediated 
dominantly by an IFN-γ-independent mechanism [646]. These findings 
are important for diabetic patients with T. gondii infection because their 
metabolic-cytokine responses to a second immunological challenge 
might be excessive [647]. Recently, Fallarino et al. [648] provided 
promising evidence for treatment of T1DM using IDO expressing 
encapsulated Sertoli cells, and it appeared that IDO mediated TLR9-
driven protection from experimental autoimmune diabetes induced 

in C57BL/6 mice by streptozotocin. In wild type animals, the disease 
was accompanied by up-regulation of IDO in pancreatic lymph nodes 
and would be greatly exacerbated by in vivo administration of an IDO 
inhibitor [648,649]. 

It should be emphasized that the increased IDO activity causes 
acceleration of tryptophan metabolism that results in enhanced 
generation of melatonin (Figure 1), a neuroimmunomodulator 
produced also by the pineal gland, retina, gut and immunocompetent 
cells including both bone marrow cells [650] and lymphocytes 
[651]. Melatonin is a free radical and peroxynitrite scavenger [652-
654], and exerts anti-inflammatory effects, including inhibition of 
NF-κB activation [653,655,656], prevention of iNOS expression 
and direct inhibition of catalytic activity of NOS [657], decrease 
malondialdehyde production and increase glutathione peroxidase 
activity [658-660]. Also two melatonin metabolites, N1-acetyl-N2-
formyl-5-methoxykynuramine and N1-acetyl-5-methoxykynuramine, 
exerted potent anti-inflammatory and antioxidant effects [661,662]. 
The protective biological effects of melatonin on oxidative stress and 
inflammatory processes in both T1DM and T2DM, are important for 
reducing pancreatic β-cell damage caused by persistent autoimmune 
state and excessive production of proinflammatory cytokines during 
insulitis, eventually associated with chronic T. gondii infection. 
Interestingly, maternally administered melatonin differentially 

Experiment No. Controls Solventa Vit D3 
(1000 IU) 

IFN-γ 
(100 IU)

Vit D3 (1000 IU) plus IFN-γ (100 IU)

1 3.01 ± 0.14 2.93 ± 0.16 2.49 ± 0.19b 2.6 ± 0.2b 2.37 ± 0.19b

2 3.15 ± 0.12 3.03 ± 0.16 2.74 ± 0.16 2.5 ± 0.15b 2.58 ± 0.13b

3 3.05 ± 0.15 3.04 ± 0.14 2.82 ± 0.17 2.57 ± 0.16b 2.69 ± 0.2b

4 3.16 ± 0.14 3.0 ± 0.14 2.39 ± 0.19b 2.59 ± 0.2b 2.03 ± 0.19b

Numbers of tachyzoites are given as a mean ± SD; aEthanol 95; bStatistically significant differences compared with controls (P  0.05) 

Table 39: Effect of vitamin D3 and IFN-γ on proliferation of T. gondii (RH strain) tachyzoites per infected peritoneal macrophage of BALB/c mice after incubation for 96 hrs 
in RPMI1640 cells culture (according to Ghaffarifar et al. [639]; with own modification).

Values are given as mean ± SD. aEthanol 95. bStatistically significant results compared with controls (P ≤ 0.05). NO production was estimated as a nitrite release from 
infected macrophages (µM/ml)

Table 40: Effect of vitamin D3 and IFN-γ on NO production by peritoneal macrophages of BAL: B/c mice infected with T. gondii (RH strain) after incubation for 24 hrs in 
RPMI1640 cells culture (according to Ghaffarifar et al. [639]; with own modification).

Experiment No. Controls Solventa Vit D3 
(1000 IU) 

IFN-γ 
(100 IU) Vit D3 (1000 IU) plus IFN-γ (100 IU)

1 109 ± 8.02 108.2 
± 12.45 165 ± 11.30b 146 ± 7.22b 187.8 ± 9.82b

2 108 ± 9.46 108.9 ± 6.93 121.2 ± 6.68 139.5 ± 5.76b 136.2 ± 10.21b

3 109.6 ± 7.35 108.2 ± 4.96 139 ± 7.01b 146 ± 4.93b 146.9 ± 9.62b

4 109 ± 7.03 108.6 ± 4.26 166 ± 7.01b 146.2 ± 5.60b 191.5 ± 9.62b

Histopathologic examination of the tissues was performed 7 days post inoculation. Numbers are based on severity of the lesions (0, no lesion, 1, mild, 2, slight, 3, moderate 
changes) and the total was divided the number of animals in the group. Also, in vitro studies with incubated intestinal epithelial cells showed a significant dose-dependent 
inhibition of intracellular T. gondii tachyzoites (RH strain, type I) proliferation at 10-7 mol/l of 1,25(OH)2D3 concentration 

Table 41: Effect of pretreatment with 1,25(OH)2D3 (0.5 µg/kg/2 days) on tissue pathology caused by T. gondii avirulent ME49 strain infection with 20 cysts administered 
intraperitoneally in BALB/c mice (according to Rajapakse et al. [638]; with own modification).

Tissue Pathology No treatment Treatment with Vit D3

Lung Alveolar macrophages 1 0
Inflammatory foci 2 1

Liver Inflammatory foci 3 2
Hemorrhage 2 0
Mitosis 1 0

Small intestine Inflammatory infiltrates 1 0
Necrotic mucosal cells 2 1

Brain Presence of the parasite 2 0
Spleen Granulocytes 2 1
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regulated LPS-induced proinflammatory and anti-inflammatory 
cytokines in maternal serum, amniotic fluid, fetal liver and brain [663]. 

On the other hand, melatonin was found to decrease insulin 
secretion specifically both in vitro/in vivo [664-666] and type 2 
diabetic rats, as well as patients, exhibited decreased melatonin levels, 
whereas the levels in type 1 rats were increased [666]. Peschke et al. 
[666] suggested that catecholamines, which decrease insulin levels and 
stimulate melatonin synthesis, control insulin-melatonin interactions 
because the amines were increased in T1DM but were diminished in 
T2DM. This difference may be at least in part explained by the increased 
protective/defensive body requirements for this hormone in T2DM 
that resulted in its shortage in the host, as compared with T1DM, time 
of exposition to triggering factor(s) and underlying molecular and 
metabolic disturbances in these two clinical entities. 

Finally, calcium ion is necessary for insulin exocytosis and -cell 
glycolysis, both processes important in signaling circulating glucose 
concentration [667]. Calcium also plays an essential role in T. gondii 
motility, enhanced invasion of the parasite to host cells and its increased 
intracellular replication [668,669]. Therefore, the competition for 
calcium may contribute to its shortage in islet β-cells and participate in 
the development of hypoinsulinemia.

T. gondii infection
Increased levels of many tryptophan metabolites have been 

reported in several neurodegenerative disorders and were postulated 
to be secondary to induction of IDO and other enzymes of the 
L-tryptophan-kynurenine pathway. Inhibition of the increased IDO 
activity significantly exacerbated diseases scores and neuronal cell 
death in various central nervous system disorders [670]. Moreover, 
L-tryptophan degradation by IDO might have an important role in 
IFN-γ-induced antimicrobial effects [671]. Local accumulation of 
kynurenine metabolites, in particular, quinolinic acid, following IDO 
induction may represent a potentially detrimental event because 
quinolinic acid is a potent excitotoxin, and its overproduction has been 
linked to neuronal damage occurring in brain inflammation [672], 
initiation of lipid peroxidation [673], and development of disturbances 
in gluconeogenesis in the liver [674]. Spekker et al [675] proposed that 
IDO is responsible for the suppression of Neospora caninum growth, 
and other studies on T. gondii suggested that its growth could be 
contained when certain immune cells including dendritic cells were 
actively expressing IDO [163]. Moreover, L-tryptophan-L-kynurenine 
pathway metabolism accelerated by T. gondii infection was found to 
be abolished in IFN-γ-gene-deficient mice, and an antitoxoplasmatic 
mechanism of cross-regulation between iNOS and IDO that may vary 
among tissues, was demonstrated [671] (Figure 1). Thus, IDO and iNOS 
are involved in the immunomodulatory roles of IFN-γ, and evidence 
suggests that these functionally cross-regulated pathways [671] may 
play an important role in prediction and treatment of autoimmune 
diseases, particularly T1DM [6]. Dominant control of the regulatory T 
cells functional status and blocking their conversion into TH17-like T 
cells in response to inflammatory stimuli may markedly contribute to 
these bioactions [191].

Prevention of Hypoglycemia-Induced Neuronal Death by 
Minocycline may be Partly Associated with its Antimicrobial 
Activity against T. gondii Infection

Hypoglycemia and minocycline
Recently, Won et al [208] demonstrated that minocycline 

treatment markedly reduced neuronal death induced by hypoglycemia 
and cognitive impairment associated with this clinical state was also 

significantly prevented. Hypoglycemia was reported even in the patients 
with T1DM and T2DM who were strictly monitoring their blood glucose 
levels [208,676,677], and may be associated with serious complications, 
such as deterioration of mental efficiency, focal neurological deficits, 
seizure, and neuronal death [678,679]. Interestingly, it was suggested 
that hypoglycemia-induced neuronal death is not only a result of 
markedly impaired glucose supply to the brain [680,681], but also other 
contributing factors are involved, including sustained stimulation of 
glutamate receptors, NADPH oxidase activation with enhanced ROS 
generation, and extracellular zinc release [682-684], which plays an 
important role in mediating positively gene expression and production 
of cytokines IL-2 and IFN-γ in the Th1 cell line and negatively 
TNF-α, IL-1, and IL-8 in the monocyte-macrophage cell line [685]. In 
experimentally induced toxoplasmosis, zinc added to diet stimulated 
cellular immunity, increased CD8 and total number of lymphocytes 
[686].

T. gondii infection
Minocycline, a tetracycline broad-spectrum antibiotic, was 

developed as an antimicrobial drug for treatment of various infectious 
diseases, including T. gondii infection [687,688]. This antibiotic 
showed bacteriostatic effects limiting the growth of bacteria, inhibited 
production of proinflammatory cytokines, MMP-9 and activation 
of peripheral/central immunocompetent cells, including T cells, 
macrophages, and microglia [689]. Mice chronically infected with a 
low virulent strain Me49 of the parasite showed a significant reduction 
in the number of brain cysts after three weeks of treatment with 50 mg/
kg per day of minocycline. Therapy of the infected animals with the 
chemotherapeutic (100 mg/kg/day for 12 days) increased their survival 
and cure rates [687]. Moreover, in acute and chronic neurological 
disease animal models, including Parkinson’s [690], Huntington’s 
[691] and Alzheimer’s disease [692], as well as in human clinical 
trials minocycline had also neuroprotective, antiinflammatory and 
antiapoptotic properties [693-696]. These effects were thought to 
arise through the inhibition of microglial activation, iNOS, COX-2 
expression and modulation of cytokine expression and release [208]. 
Moreover, minocycline was found to exert an inhibitory effect on TNF- 
and IFN-γ production by stimulated T cells [697]. In contrast to the 
effect on T cells, addition of minocycline to LPS-stimulated monocytes 
led to a dose-dependent increase in TNF-α and IL-6 production. 
These results indicated that minocycline exerted differential effects 
on the regulation of cytokine production by T cells and monocytes. 
Given the pleiotropic effects of minocycline, it was suggested that the 
immunostimulatory effect on monocytes might counteract its beneficial 
properties in the treatment of several forms of chronic inflammation 
[697]. Several authors found a possible relationship between T. gondii 
infection and etiology of Parkinson’s disease [698], schizophrenia 
[699,700], Alzheimer’s disease [701], and obsessive-compulsive 
disorder [702], and minocycline was found to exert beneficial effects 
in the treatment of schizophrenia [703,704], as well as in patients with 
toxoplasmic encephalitis [705]. Thus, it seems that preventive effect of 
minocycline in the hypoglycemia-induced neuronal death was at least 
in part associated with its antiparasitic activity. 

Prevention of Hypoglycemia-Induced Neuronal Death 
by Hypothermia may be Caused by Cold Stress-Related 
Modulation of Immune Responses Associated with 
Enhanced Activity Directed against T. gondii Infection 
Hypoglycemia and hypothermia

Shin et al. [706] demonstrated that hypothermia prevented neuronal 



Citation: Prandota J (2013) T. gondii Infection Acquired during Pregnancy and/or after Birth may be Responsible for Development of both Type 1 and 
2 Diabetes Mellitus. J Diabetes Metab 4: 241. doi:10.4172/2155-6156.1000241

Page 29 of 55

Volume 4 • Issue 2 • 1000241
J Diabetes Metab
ISSN:2155-6156 JDM, an open access journal

death induced by hypoglycemia. It was suggested that hypoglycemia-
induced microglial activation resulted from the brain infiltration 
with peripheral and local inflammatory cells, enhanced release of 
several proinflammatory/neurotoxic substances (various cytokines, 
chemokines, NO, ROS) associated with morphological changes of 
microglial cells [707,708], and finally brain tissue inflammation 
[709,710]. The beneficial effect of cold stress on antibody production 
was found to be mediated via several nervous system-derived factors, 
such as glucocorticoids, catecholamines, and/or neuropeptides [711]. 
Shanks & Kusnecov [712] demonstrated stress-induced enhancement 
of B cell antibody responses to KLH (a keyhole limpet hemocyanin, a 
potent antigen in reaginic sensitization of mice and rats) in BALB/cByJ 
mice and B lymphocytes expressed the β2-adrenergic receptor, and 
binding of norepinephrine to this receptor was necessary to maintain 
optimal TH2 cell-dependent antibody generation in vivo [713]. 
Moreover, norepinephrine appeared to be necessary for optimal IgG 
and IgM responses [713]. Experimental studies revealed adrenergic 
modulation of insulin sensitivity, i.e. drugs with β-adrenomimetic 
activity, such as epinephrine, novodrin, partusisten, α-adrenomimetic 
- phenylephrine, and one-hour immobilization stress enhanced 
insulin sensitivity in animals [714,715]. Interestingly, Keijzers et al. 
[716] suggested that caffeine might decrease insulin sensitivity in 
healthy humans possibly as a result of elevated plasma epinephrine 
levels. It seems, however, that the significant increases of epinephrine 
and norepinephrine (P < 0.0005 and P < 0.02, respectively) [716] 
reflected rather a defense reaction of the host, because Graham et al. 
[717] demonstrated that caffeine ingestion elevated insulin response 
in humans during an oral glucose tolerance test. The above-presented 
adrenergic modulation of insulin sensitivity in experimental animals is 
consistent with this reasoning. 

In mice, chronic cold stress induced a regulatory phenotype 
in macrophages, characterized by diminished phagocytic ability, 
decreased TNF-α and IL-6 and increased IL-10 production [718]. 
Resting macrophages stimulated spleen cells to produce regulatory 
cytokines, and an immunosuppressive state that impaired cold 
stressed mice to control Trypanosoma cruzi proliferation [718]. These 
regulatory effects correlated with an increase in macrophage expression 
of 11β-hydroxysteroid dehydrogenase, an enzyme that converts 
inactive glucocorticosteroid into its active form [718]. Moreover, in 
experimental animals, exposure to cold significantly decreased insulin 
secretion induced by arginine, butyrate and tolbutamide, and the 
release of insulin by pancreatic β-cells appeared to be inhibited through 
stimulation of α-adrenergic receptors [719,720].

Hypothermia and T. gondii infection

Several authors showed that cold stress profoundly modulated 
immune response and the outcome of infections because many 
mediators released during physical stress, such as glucocorticoids and 
catecholamines, influenced the growth and multiplication of pathogens, 
including T. gondii [711,721-724]. Cold stress can suppress [725,726] 
or enhance [727,728] immunity by inducing and/or enhancing the 
synthesis of specific proteins with relevant roles in transcription, 
translation, and recombination [729,730]. Aviles & Monroy [711] 
showed the increased serum specific anti-T. gondii IgG (but not IgM) 
levels in infected and in infected and stressed mice that underwent cold 
stress (the animals were kept in cold water, 1 ± 0.5°C for 5 min each 
day for 8 days) in the chronic phase of infection with the parasite. It 
appeared that cold stress modulated not only the physiologic processes 
of the host but also affected the pattern of antibody production against 

T. gondii antigens during longer parasite persistence in the circulation 
[711]. In mice with chronic phase of infection, cold water stress caused 
strong antibody response manifesting as the 5-kDa antigen on the 
surface of tachyzoites (not present in bradyzoite preparations), with 
significant diagnostic potential [731]. A similar protein (4-5kDa) 
was identified in human serum samples that reacted with IgM upon 
primary infection with the parasite [732]. Otherwise it is known that B 
cells (responsible for the production of antibodies) play an important 
role in resistance to persistent T. gondii infection, especially in the 
brain and lung [733]. 

Catecholamines act through adrenergic receptors and suppress the 
activation of TH1 responses and stimulate TH2 immune responses in 
antigen presenting cells and TH1 cells [734-738]. Recent data however 
suggest that catecholamines play an important role in the induction of 
stress-induced (tailshock stress) proinflammatory cytokines and that 
β-adrenoceptors are critical for tissue (peripheral) IL-1β induction, 
while both α- and β-adrenoceptors contribute to the induction of 
plasma (systemic) cytokines [739]. Catecholamines also regulate host 
innate immune responses under stress situations. In vitro studies have 
shown that the treatment of human umbilical vein endothelial cells with 
α1-adrenergic receptor agonists inhibited multiplication of T. gondii 
[725], and norepinephrine influenced the growth and the production 
of virulence-associated factors in gram-negative bacteria [740,741]. 
Recently, it was found that cold water stress decreased parasite burden, 
expression of chemokines and their receptors in intestinal epithelial 
cells in vitro and in vivo [722], and down-regulated expression of TLR-
2, -4, -9, and -11 in these cells [742]. Moreover, increased survival 
was found in mice infected orally with T. gondii and subjected to cold 
water stress as compared with controls [743]. In contrast, such stress 
had deleterious outcomes when mice were infected intraperitoneally 
[721]. These findings may support our suggestion that cold stress-
induced host innate immune modulations during latent chronic T. 
gondii infection also may be partly responsible for the prevention of 
hypoglycemia-induced neuronal death by hypothermia. 

Impaired Vascular Endothelial Function and Abnormal 
Metabolic Fate of NO in the Patients with Diabetes 
Mellitus may be Due to the Preferential T. Gondii 
Infection of Endothelial Cells

Endothelial dysfunction with reduced bioavailability of NO 
characteristic for the patients with diabetes mellitus play an important 
role in the development of diabetic vasculopathy [744,745], but has 
been linked also to atherogenesis and non-diabetic glomerulosclerosis 
[746,747]. It is interesting that the effect of intensive glycemic control 
on levels of markers of inflammation in patients with T1DM in the 
diabetes control and complications trial appeared to be not good enough 
[748]. Thus, these discrepancies might be at least partly explained by 
the preferential T. gondii infection of the vascular endothelial cells.

Diabetes mellitus

Hamed et al. [749] reported that the endothelial progenitor 
cells (EPCs) from diabetic patients generated more O2

-, had higher 
NAD(P)H oxidase and superoxide dismutase activities, but lower NO 
bioavailability, as compared with healthy individuals. The function of 
EPCs, which are key cells in vascular repair, is impaired in diabetes 
mellitus, and NO and ROS can regulate their function. Plasma glucose 
and HbA1c levels in the diabetic patients were correlated negatively with 
the NO production from their EPCs [749]. NO is a biologically active 
unstable radical that is synthesized in vascular endothelial cells by eNOS, 
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and its bioavailability depends on the balance between its production 
and inactivation rates [750]. Exposure of EPCs to high glucose 
concentrations increases NAD(P)H oxidase activity which results in 
increased O2

- generation and reduced NO bioavailability because O2
- 

inactivates NO and uncouples eNOS [751]. It was demonstrated that 
NO bioavailability and the in vivo reendothelialization capacity of 
ECs from diabetic patients can be restored by inactivating NAD(P)H 
oxidase [752]. 

Milsom et al. [753] found preferential binding of endogenous and 
exogenous NO to glycosylated deoxy-hemoglobin and consequently an 
abnormal metabolic fate of NO in patients with T1DM. They showed 
that NO-hemoglobin binding was increased at a HbA1c concentrations 
greater than 8.5% compared with 5.9% (P < 0.01). In blood from diabetic 
patients, added NO was metabolized mainly to nitrosyl hemoglobin 
and plasma nitrosothiols, with a 2-fold increase in nitrosyl hemoglobin 
observed across all NO levels (P < 0.05), and these preferential increases 
correlated positively with HbA1c concentrations [753].

Cellek et al. [754] demonstrated NO-dependent morphological 
degeneration and functional nitrergic nerves impairment in diabetes 
mellitus, and reduced activity and protein amount of neuronal NOS 
in penile tissue of diabetic rats. Similar degenerative process of the 
peripheral nerves was reported in diabetic men [755]. Administration 
of L-NAME (NG-nitro-L-arginine methyl ester), the inhibitor of 
NO synthase, appeared to be protective in this condition [754]. The 
atrophy of the nitrergic neurons in the enteric nervous system of the 
gastrointestinal tract has been documented also during chronic T. 
gondii infection in experimental animals and men, streptozotocin-
induced diabetes, and in diabetic patients [434], because the 
parasite shows tropism to nerve cells [756]. These morphologic and 
functional abnormalities probably reflect a defense activity of the 
innate immune system of the host in response to the presence of the 
parasite, resulting in an increased level of NO produced by the iNOS 
[757,758]. NO is generated together with several proinflammatory and 
anti-inflammatory cytokines and chemokines during the invasion by 
T. gondii, which induces severe inflammatory process at the site of 
infection. However, excessive amounts of NO are cytotoxic not only 
for the parasite but also for the host cells [757], because this cytotoxic 
molecule inhibited the mitochondrial and nuclear enzymes [759]. 
On the other hand, however, inhibition of iNOS exacerbated chronic 
cerebral toxoplasmosis in T. gondii-susceptible C57BL/6 mice, although 
did not reactivate the latent disease in T. gondii-resistant BALB/c mice 
[760]. 

Glucose enters into the glycolytic pathway by phosphorylation to 
glucose-6-phosphate accomplished by hexokinase and glucokinase, 
with ATP required as phosphate donor. Glucose-6-phosphate 
is an important compound, being at the junction of glycolysis, 
gluconeogenesis, the hexose monophosphate shunt, glycogenesis, and 
glycogenolysis [761]. As in many reactions involving phosphorylation, 
magnesium must be present [761], and patients with T2DM frequently 
have hypomagnesemia, hypertriacylglycerolemia in association 
with enhanced HbA1c levels, retinopathy and neuropathy [762,763]. 
Glycolysis proceeds by the oxidation of glyceraldehyde-3-phosphate 
to 1,3-diphosphoglycerate, and glyceraldehyde-3-phosphate 
dehydrogenase is the enzyme responsible for the oxidation [761]. 
In many biological systems, nitrosation reactions transferring NO+ 
from NO donor to a protein S group affect protein function and 
Mohr et al [764] demonstrated that NO-induced S-glutathionylation 
led to inactivation of glyceraldehyde-3-phosphate dehydrogenase, 
thus finally affecting metabolism of carbohydrates and lipid acids. 

In short, gluconeogenesis is the process whereby glucose is formed 
from noncarbohydrate metabolic substrates such as pyruvate, 
lactate, or amino acids, mainly alanine. This metabolic pathway 
occurs predominantly in the liver and kidney and is essential for the 
production of glucose during prolonged fasting when glucose stores 
have been depleted (Figures 4 and 5) [765,766]. 

T. gondii infection

In congenital toxoplasmosis, infection of endothelial cells lining 
the umbilical cord and the placental blood vessels by the parasite is 
potentially the major transmission route to the fetus [767]. T. gondii 
invades and proliferates in HUVEC where it resides in parasitophorous 
vacuoles (PV), and at the time of PV formation, the cell surface anionic 
sites and fucose residues (human endothelial cells contain exposed 
fucose residues) are excluded, while HLA class I molecules are present 
only on a minority of the parasite-containing vacuoles. When the 
parasite invades the host cells, a PV sheltering are formed because the 
PV membrane contains proteins (ROP2) anchoring the mitochondria 
of the host cells to the external surface [768]. T. gondii cyst wall also 
has anionic sites and this negative charge is mainly produced by 
phospholipids [769]. The protozoan uses the mitochondria of the host 
cell to escape from the action of lysosome enzymes. Once within the 
PV, the parasite multiplies even in phagocytic cells until complete 
destruction of the host cell [768]. The formation of PV prevents it from 

Figure 4: Glyceroneogenesis generates G3P (glycerol-3-phosphate) instead 
of glucose. Gluconeogenesis (broken arrows) and glyceroneogenesis 
(more frequently broken arrows) share several steps in common with 
glycolysis (solid arrows) because most of the reactions are readily 
reversible (two direction arrows). Three kinase reactions (HK, hexokinase; 
PFK, phosphofructokinase; and PK, pyruvate kinase) in glycolysis are not 
reversible and require separate enzymes for gluconeogenesis (PC, pyruvate 
carboxylase; PEPCK, phosphoenolpyruvate carboxykinase; F1,6-Bpase, 
fructose-1,6-bisphosphatase; and G6Pase, glucose-6-phosphatase) and 
glyceroneogenesis (PC, PEPCK). PEP, phosphoenolpyruvate; DHAP, 
dihydroxyacetone phosphate; GAP, glyceraldehyde-3-phosphate; OAA, 
oxaloacetate; TCA, tricarboxylic acid cycle (Krebs cycle) [765].
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merging with the lysosome – a strategy of the protozoan developed 
to protect its growth within the host cells. During the intracellular 
life cycle of T. gondii there is no fusion of host cell lysosome with 
PV, however lysosome-phagosome fusion and parasite destruction 
occur when fixed or antibody-coated live parasites are internalized by 
macrophages [770]. 

Cortez et al. [771] found that HUVEC activated with INF-γ inhibited 
T. gondii infection and multiplication by 67.5% and 91.0%, respectively. 
After 4 hrs, 10.2% of INF-γ-activated HUVEC exhibited phagosome-
lysosome fusion, and NAD(P)H oxidase present at the plasma 
membrane of activated HUVEC was internalized together with the 
parasite in 38% of the cells. This may suggest that NAD(P)H oxidase may 
participate in a mechanism by which INF-γ-activated HUVEC inhibit 
T. gondii multiplication [771]. This suggestion and the fact that diabetic 
patients had increased NAD(P)H oxidase activity [749] are consistent 
with the finding that two forms of lactate dehydrogenase LDH1 and 
LDH2 from T. gondii were inhibited competitively by gossypol and 
gossylic iminolactone, and this correlated with specific inhibition of 
tachyzoites growth in human foreskin fibroblast cultures [772]. Since 
the bradyzoite LDH2 was more sensitive in vitro to these compounds 
than the tachyzoite LDH1, it is likely that the growth of bradyzoites 
in cysts would be inhibited by gossypol and gossylic iminolactone 
as well [772]. Gossypol and derivatives are aldose reductase (polyol 
dehydrogenase) inhibitors [773], and gossypol, a natural product 
from cotton seed, is a non-selective competitive inhibitor of NADH 
binding to LDH with Ki value 1.4 µM for LDH1 [774]. There was an 
association between the erythrocyte aldose reductase activity and the 
complications of diabetes mellitus [775,776]. It was reported that the 
patients with T1DM who had erythrocyte aldose reductase activity 
greater the mean ± 2 SD of the found in non-diabetic controls were 
four times more likely to have diabetic complication than non-diabetic 
individuals (P < 0.0005) [775]. In order to explain this relationship 
it should be noted that aldose reductase is a member a family of 
NADPH-dependent oxidoreductases, present in several human tissues 
that reduces glucose to sorbitol. In animal models there is evidence 
that the production of sorbitol is associated with the development of 
diabetic complications, including neuropathy, nephropathy, cataracts 
and retinopathy. In hyperglycemia, hexokinase is saturated and the 
fraction metabolized by aldose reductase increases which involves 
the sorbitol or polyol metabolic pathway resulting in accumulations 

of sorbitol and fructose [776]. Chandra et al. [777] showed that 
increasing NO availability inhibits aldose reductase, thus preventing 
sorbitol accumulation, whereas inhibiting NO synthesis promotes the 
activation of the rate-limiting enzyme. Inhibitors of aldose reductase 
have been developed to reduce the incidence or slow the progression 
of the major complications of diabetes mellitus. Flavonoids were found 
to possess aldose reductase inhibition and antioxidant activities in vitro 
as well as inhibition in the accumulation of sorbitol in the tissues of 
streptozotocin-induced diabetic rats [778]. 

Canedo-Solares et al. [779] demonstrated that invasion of both 
human microvascular endothelial cells (HMEC-1) and umbilical 
vein endothelial cells (HUVECs) by T. gondii RH and ME49 strains 
increased along with time. HMEC-1 cells were more susceptible 
to infection with the parasite than HUVECs, and ME49 parasites 
were faster than RH ones and this may be related to their ability to 
survive out of the cell and to the fact that T. gondii is more invasive 
during G1-S phase. In addition, both HMEC-1 and HUVECs showed 
higher number of parasitic vacuoles per cell when infected by ME49 
tachyzoites than by RH protozoan, i.e. ~ 30 vs. 20 at 4 hrs, respectively 
[779]. These differences may also partly be explained by various 
division rates of intracellular T. gondii tachyzoites documented in vitro 
in many primary human cells, including endothelial cells (Table 14). 
Interestingly, compared to RH tachyzoites, ME49 tachyzoites induced 
a stronger upregulation of ICAM-1 in the brain vascular endothelial 
cells and an earlier and stronger IL-6 and MCP-1 secretion by these 
cells. T. gondii type I and II strains induced similar migration patterns 
of antigen-presenting cells but the infected antigen-presenting 
cells showed a more intensive migration compared to lymphocytes 
(4.63% vs. 0.6% of all cells) across the blood-brain barrier [780]. It 
was suggested that the parasite modulated gene expression of the 
brain vascular endothelial cells to promote its own migration through 
the blood-brain barrier as a Trojan horse [780]. Knight et al. [781] 
reported that the exposure of the rat retinal vascular endothelial cells 
to T. gondii infection after 2 hrs resulted in change of expression of 
approximately 6% of genes, including those involved in cell structure, 
protein and vesicle trafficking, cell-cycle regulation, transcriptional 
and translational machinery, and apoptosis. Infection of BUVECs with 
tachyzoites also enhanced transcription of several genes and induced 
adhesion of polymorphonuclear neutrophil cells (PMN) to both 
infected and noninfected BUVECs within one cell layer, suggesting 
parasite-induced paracrine activation of these cells and an effective 
role of PMN in development of the innate immunity to the parasites 
[782,783]. 

T. gondii is the common cause of posterior uveitis and a recurrent 
necrotizing retinochoroiditis worldwide, which may lead to a 
permanent loss of visual acuity. Tachyzoites spread throughout the 
body through the blood stream and lymphatics, but preferentially 
encyst in the eye and other parts of the CNS. Furtado et al. [784] found 
that human monocyte-derived dendritic cells infected with T. gondii 
tachyzoites transmigrated in larger numbers across stimulated human 
retinal endothelium than uninfected dendritic cells (P ≤ 0.0004). 
Antibody blockade of ICAM-1, VCAM-1, and activated leukocyte cell 
adhesion molecule inhibited transmigration, while chemokines CCL21 
or CXCL10 increased this process, which might be important for 
development of a novel therapeutic approach [784]. Zamora et al. [785] 
reported that T. gondii tachyzoites invade human retinal endothelial 
cells (HREC), which were more susceptible to infection with the 
parasite than other subpopulations human dermal endothelial cells. 
The enhanced susceptibility of human retinal vascular endothelium 
to infection by T. gondii may be related to preferential binding of 

Figure 5: Simplified process of glyceroneogenesis in adipocytes and its 
regulation by PEPCK-C. Lipolysis releases glycerol and fatty acids from 
triglyceride stores in fat cells. Fasting increases PEPCK-C production and 
fatty acid release is restrained due to increased glyceroneogenesis and re-
esterification in triacylglycerols, which requires glycerol-3-phosphate formation 
from non-carbohydrate precursors [766].
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tachyzoites to the retinal vascular endothelial surface, relative ease of 
penetration into the cell, rate of replication within the cell and/or cell 
response to infection, as compared with aortic (55% more), umbilical 
vein (33%) and dermal (34%) endothelial cells [786]. It appeared 
that growth of the tachyzoites was approximately 2.8-fold higher in 
retinal endothelium than in foreskin fibroblasts [786]. Binding of the 
parasite to host cells is partially mediated by interaction with sulfated 
glycosaminoglycans (GAGs). Table 42 summarized the blocking effect 
of several soluble sulfated proteoglycans on attachment of T. gondii 
parasites to human host cells from a variety of lineages [787]. Heparin, 
heparin sulfate, chondroitin sulfate showed a negative charged sulfate 
groups on the molecules-mediated dose dependent inhibition in the 
average number of parasites attached to the substrate and gliding [787]. 
It was found that low concentrations of GAGs increased invasion of 
human fibroblasts while mutant CHO cells lacking in cell surface 
sulfated proteoglycans were less susceptible to infection [788]. 

Brunton et al. [789] found that pretreatment of rat retinal vascular 
endothelial cells infected with T. gondii RH strain tachyzoites, with 
IFN-γ, TNF or IL-1β resulted in a significant decrease in the parasite 
replication, and this inhibition appeared to be independent of NO 
production while L-tryptophan catabolism may have a role in this 
IFN-γ-mediated process. When the ovine umbilical vein endothelial 
cells were pretreated with IFN-γ, a high degree of inhibition of T. 
gondii replication was observed with the effect being dose-dependent, 
with a maximum IFN-γ activity of 625 U/ml (range 0.15-1250 U/ml) 
[790]. Studies of Däubener et al [163] confirmed that indoleamine 
2,3-dioxygenase induction contributed to the antiparasitic effector 
mechanism inducible in human brain microvascular endothelial cells 
(HBMEC) by IFN-γ and TNF-α, because this enzyme was strongly 
induced in HBMEC, and its activity was enhanced by co-stimulation 
with TNF-α, while the addition of excess amounts of tryptophan 
to the HBMEC cultures resulted in a complete abrogation of the 
antitoxoplasmatic effect. The mechanism of inhibition of T. gondii in 
HUVEC activated by IFN-γ was found to be different from that present 
in mouse macrophages and human fibroblasts [310-313]. For example, 
Ji et al [791] demonstrated that exogenous NO triggered egress of T. 
gondii tachyzoites from infected peritoneal macrophages obtained 
from C57BL/6 mice, which then underwent necrosis. Moreover, 
addition of the calcium ionophore A23187 resulted in an increased 
release of merozoites from mature T. gondii meronts grown in cultured 
primary bovine umbilical vein endothelial cells (BUVECs) [792]. The 
extent and time course of the release was dependent on both, maturity 
of the meronts and concentration of the calcium ionophore because 
survival of parasitized host cells and the parasites themselves should 
be dependent on ion balances, especially on extra- and intracellular 
calcium concentrations [792]. 

Dimier & Bout [793] showed that when HUVEC were pretreated 
with IL-1β and TNF-α concentrations ranging from 1 to 100 U/ml, 
a dose-dependent inhibition of the intracellular parasite replication 
was observed. In addition, Benedetto et al. [724] demonstrated that 
pretreatment of HUVEC with an α-adrenergic resulted in a high 
degree of intracellular killing of T. gondii in these cells. Moreover, 
α-adrenergics activated HUVEC, and induced a marked dose-
dependent toxoplasmastatic activity. Also a significant positive 
correlation was observed between the toxoplasmastatic activity and 
release of NO2

- during the activation phase before infection with the 
parasite, although this effect was not present during the infection phase. 

Diabetes Mellitus Comorbidities
Possible association between diabetes, epilepsy and T. gondii 
infection

The prevalence of active epilepsy in European countries varies 
between 3.3 and 7.1 per 1000 for the age range 0 to 90 yrs, with a peak 
prevalence of 9 to 11.6 per 1000 in adults > 50 yrs of age, and 2.1 to 4.1 per 
1000 in children and adolescence [794,795]. Ramakrishnan & Appleton 
[796] found that 6 of 285 children aged less than 16 yrs with T1DM 
had epilepsy giving a prevalence of 21/1000, which is approximately six 
times greater than the prevalence of epilepsy in general population of 
children in UK. Caletta et al. [797] found that among their cohort of 10 
children suffering from both T1D and epilepsy, 5 was had generalized 
epilepsy and 5 was diagnosed with focal disease. Seizures caused by 
hypoglycemia in the patients with T1DM are quite frequent events with 
18.2 to 62 per 100 patient years depending on age, type of treatment, 
and residual insulin secretion [798,799]. 

Schober et al. [794] found that children and adolescents with 
T1DM had an increased prevalence of epileptic seizures. There was 
also an association between epilepsy and diabetic ketoacidosis in 
these patients, and the risk of ketoacidosis was almost double in the 
patients with epilepsy compared with patients with diabetes alone. It 
must be noted that the frequency of severe hypoglycemia was lower in 
the patients treated with antiepileptics [800]. This may suggest that T. 
gondii infection was an important triggering agent because for example 
valproic acid, an epileptic drug, exerted strong antitoxoplasmatic effect 
(Table 43). It must be noted that uptake of the drug by bovine brain 
microvessel endothelial cells has been well documented [801A], and 
these cells represent frequent targets of the parasite in human host 
(Table 42). In addition, Glodek-Brzozowska et al. [802] analysed 
784 children with T1DM and found that 8 of them (aged 7.5 to 18 
yrs) had epilepsy, as a concomitant disease, with local or generalized 
abnormal changes in EEG. The patients had seizure types of different 
morphology, including petit mal, partial, myoclonic, or tonic-clonic 

aMean ± SE, n = 2 or 3; bObtained from the American Type Culture collection; cAverage values (± SE) for all cell types tested. dA sulfated L-fucose oligosaccharide. eThe 
synthetic polyanion. IC50: Inhibitory Concentration; CSC: Chondroitin sulfate C; CSA: Chondroitin Sulfate A; Several heparin binding proteins were identified in lysates of T. 
gondii based on their ability to agglutinate red blood cells in a heparin-sensitive manner [460].

Table 42: Inhibition by soluble glycosaminoglycans of T. gondii attachment to various mammalian cells (acc. Carruthers et al. [459]; with own modification).

Cell type Cell line IC50 (µg/ml)a

Heparin CSC CSA Dextran sulfated Dextran Fucoidine

Endothelial HUV-EC-Cb 1.8 ± 0.2 1.6 ± 0.4 2.9 ± 1.5 1.0 ± 0.4 9.7 ± 3.4 4.1 ± 1.8
Epithelial HEp-2b 5.5 ± 1.6 4.5 ± 0.4 6.3 ± 2.3 5.7 ± 2.3 14.1 ± 2.1 19.5 ± 0.2
Fibroblast HFF 4.8 ± 2.0 4.1 ± 1.4 7.3 ± 1.7 2.2 ± 0.4 > 20 > 20
Glial or astrocyte U373b 3.0 ± 1.9 3.0 ± 0.8 1.1 ± 0.4 2.1 ± 0.4 7.4 ± 3.8 16.0 ± 3.7
Macrophage U937b 2.0 ± 0.3 1.8 ± 0.8 2.6 ± 1.5 6.7 ± 2.6 7.0 ± 2.7 13.2 ± 4.9
Melanocyte G361b 4.0 ± 0.3 2.0 ± 0.1 3.0 ± 1.9 4.6 ± 0.4 8.8 ± 4.7 0.3 ± 0.1
Averagec 3.5 ± 1.4 2.8 ± 1.1 3.9 ± 2.2 3.7 ± 2.1 11.2 ± 4.6 11.7 ± 6.2
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seizures, and 7/8 patients received treatment with valproic acid as 
the main anticonvulsant. Poor control of diabetes was observed in 4 
children during acute seizure attacks [803]. Moreover, Schober et al. 
[794] reported that the increased risk of this abnormality cannot be 
caused by carbonic anhydrase inhibitors, as previously suggested 
[804], because treatment with other antiepileptic medications also 
was associated with metabolic acidosis, which was observed even in 
patients without anticonvulsive treatment. The patients with epilepsy 
were younger at onset of diabetes and shorter as compared with those 
without epilepsy [794]. 

Palmer [805] showed a highly significant association between the 
seroprevalence rates for chronic T. gondii infection and prevalence 
rates of cryptogenic epilepsy (P < 0.001) (log-odds ratio of 4.8, CI 2.6 to 
7.8). Three children aged 5 to 11 years with Landau-Kleffner syndrome 
(aphasia plus epilepsy; the speech disorders appeared after epileptic 
seizures started) and EEG abnormalities, also had increased titers of 
IgG antibodies against T. gondii [806]. Furthermore, Stommel et al. 
[803] suggested that chronic T. gondii infection with brain cysts may 
be a cause of cryptogenic epilepsy because they found a statistically 
significant 59% elevation of the parasite antibodies among these 
patients as compared to controls (P=0.013). 

Interestingly, it was suggested [807] that the syndrome of epilepsia 
partialis continua represented symptoms of hyperglycemia and was the 
first symptom leading to the diagnosis of diabetes mellitus. However, 
the majority of the 22 patients analyzed had evidence of localized 
structural brain lesions and therefore it seemed that the hyperglycemia 
was not the main cause of the epileptic abnormalities [807].In a 
German population-based case-control study including 366 glioma 
and 381 meningioma cases, and 1494 controls Berg-Beckhoff et al. 
[808] found the positive association between epilepsy and particularly 
glioma suggesting that epilepsy is an early symptom of the disease. As 
the association was observed also for epilepsies occurring more than 
a decade before the diagnosis of glioma, the authors suggested that 
this might indicate an etiological role of epilepsy, or a relatively long 
preclinical state [808]. This finding and reasoning is consistent with the 
recent suggestion that chronic latent T. gondii infection of the central 

nervous system may be responsible for development of ependymoma 
and glioma [809].

Possible association between diabetes, migraine/other type of 
headaches and T. gondii infection

The prevalence of migraine and tension-type headache in the 
patients with diabetes mellitus was found to be higher as compared with 
controls without diabetes [810-812]. The disease was more common 
amongst teenagers with migraine compared with those without 
migraine [813]. Also, within a headache clinic population Tietjen 
et al. [814] identified diabetes mellitus as a migraine comorbidity 
constellation. However, in a large population-based cross-sectional 
study performed in Norway, Aamodt et al. [810] found the inverse 
relationship between migraine and diabetes. Prevalence odds ratios 
of migraine was lower amongst persons with diabetes compared with 
those without diabetes, the OR being 0.4 (95% CI: 0.2-0.9) for T1DM, 
and 0.7 (CI: 0.5-0.9) for T2DM. It appeared that OR of headache were 
lower amongst those with duration of diabetes ≥ 13 yrs compared with 
those who were diagnosed with diabetes during the last 3 years, OR 06 
(0.4-0.9) [810]. 

Split & Szydlowska [812] reported that amongst their cohort of 
154 patients with T2DM, 95 (61.7%) had migraine, and 32 (20.8%) 
tension-type headaches. In 50 individuals, the onset of migraine 
headaches occurred after diagnosis of diabetes, while in 45 individuals 
migraine was diagnosed before the onset of diabetes. Interestingly, in 
this group of patients the onset of diabetes caused a significant increase 
in the average number of headache days per year. In the control group 
of 106 persons, migraine was diagnosed in 17 (16%) subjects, while 
28 (26.4%) individuals suffered from tension-type headache [812]. 
Recently, Cavestro et al. [815] showed that both blood glucose and 
insulin levels were higher in migraineurs than in healthy controls (P < 
0.0001) suggesting altered metabolism of insulin in this clinical entity. 
Moreover, Okada et al. [816] demonstrated higher levels of lactic acid 
and pyruvic acid in the plasma of patients with migraine as compared 
with controls, which indicated mitochondrial function abnormalities 
in carbohydrate and fats metabolism, including tricarboxylic acid 
cycle. In addition, insulin sensitivity was found to be impaired in the 
patients with migraine as compared with normal individuals (P < 0.001) 
[817,818]. Therefore, its seems that there is a relationship between 
migraine/other types of headache and T1DM/T2DM, especially that 
many patients with recurrent headaches/migraine were found to be 
seropositive for T. gondii [819,820] and about two billion of people 
worldwide are chronically infected with the parasite.

Possible association between T1DM, autism spectrum 
disorders (ASD) and T. gondii infection

Freeman et al. [821] reported an increased prevalence of ASD in 
their group of 984 pediatric patients with T1DM in Toronto (Canada) 
than in general population (0.9% [95% CI: 0.3-1.5 vs. 0.34-0.67]). The 
median age at diagnosis of ASD was 4.8 yrs (range 3.3-6.8), while that 
for T1DM was 8.2 years (range 0.8-13.5). In mothers of patients with 
autism, Comi et al. [822] reported higher incidence of autoimmune 
diseases compared with controls, and specifically autoantibodies 
implicated in autoimmune thyroid disorders also have been found 
with an increased prevalence in the patients with T1DM [823-825]. 
Although the studies performed by Harjutsalo & Tuomilehto [826] 
in northern Finland did not support their suggestion about the link 
between T1DM and ASD, Iafusco et al. [827] in their cohort of patients 

aMedian inhibitory dose, a measure of tachyzoite inhibition; bMedian toxicity dose,a 
measure of cytotoxicity; cTherapeutic index, a measure of efficacy determined by 
TD50/ID50 ratio. DMSO, dimethylsulfoxide; Toxo CGM, Toxoplasma cell growth 
medium. Valproic acid at a concentration of 1 µg/ml inhibited 7% of the tachyzoites 
and trimethoprim at 3.2 µg/ml produced 2% inhibition, but the combination of these 
two compounds at those concentrations resulted in a potentiating effect inhibiting 
55% of the tachyzoites 

Table 43: Drugs tested for in vitro activity against T. gondii (according to Jones-
Brando et al. [801]; with own modification).

Drug Solvent ID50
a

(µg/ml)
TD50

b

(µg/ml) TIc

Valproic acid ethanol 4.5 62.4 13.9
Sodium valproate ethanol 4.1 52 12.7
Carbamazepine ethanol 72 100 1.3
Litium carbonate 1 N HCl > 100 > 100
Haloperidol ethanol 5.6 103 18.4
9-OH-Risperidone tartaric acid 20.1 134 6.7
Risperidone tartaric acid 74 129 1.7
Fluphenazine HCl Toxo CGM 3.5 17.9 5.1
Clozapine ethanol 5.8 20 3.4
Olanzapine DMSO 33.2 100 3.0
Chlorpromazine HCl DMSO 2.6 6 2.3
Quetiapine fumarate DMSO 18.6 33 1.8
Trimethoprim DMSO 5.3 63.8 12.1
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with T1DM (aged <14 years) from several Italian centers of pediatric 
diabetology (0.72% [0.69-0.75] found a pattern similar to that observed 
by Freeman et al. [821]. They suggested that these differences may be 
linked to the incidence of diabetes, and emphasized that, for example, 
Sardinia (Italy) has a very high incidence of T1DM epidemiology 
(42.4/100 [95% CI: 40.5-44.4]), while the peninsular Italy has on 
overall incidence similar to other Mediterranean regions (8.4/100 [7.9-
8.9]; only 2 of 1373 analyzed patients aged < 14 years from Sardinia 
were diagnosed with autism [827]. These discrepancies emphasize 
importance of geoepidemiological differences in the incidence 
of diabetes and the fact that some environmental factors play an 
important role in development of both T1DM and ASD in the same 
person. Recently, a significantly lower occurrence of seropositive titers 
against the parasite was found in the patients with T1DM and their 
close family members [20] as compared with healthy controls. Similar 
results were obtained in 83 autistic children aged 1-18 yrs (mean age 6 
yrs) in whom only two patients had positive serum anti-T. gondii IgG 
levels (unpublished results, Magdalena Cubala-Kucharska, personal 
information, November 2012).These unexpected findings may be 
explained by the suppression of cytokine IL-2 generation, decreased 
activation of lymphocyte B cells responsible for immunoglobulin 
secretion and markedly lower levels of immunoglobulins IgG, IgA, 
and IgM due to T. gondii infection [21]. In addition, persistent and 
prolific primary autoimmune-induced generation of many antibodies 
characteristic for the patients with ASD directed against own proteins 
(the so called a perpetuum mobile-like biomachinery [434,828] may be 
associated with their exhausted secondary innate and acquired immune 
responses directed against foreign T. gondii antigens [23], in which 
host-endoplasmic reticulum-parasitophorous vacuole interaction 
provides a route of entry for antigen cross-presentation in T. gondii-
infected dendritic cells [829,15]. This explanation may be at least in 
part responsible for the markedly low occurrence of specific antibodies 
directed against the parasite found in the autistic children, as well as for 
the positive relationship found between the proportion of children who 
received the recommended vaccines by age 2 years and the prevalence 
of autism or speech/language impairment across the U.S. population 
[830].

Patients with autism have significantly increased NO production 
[579,831-833]. Higher plasma nitrite and nitrate (NOx) levels were 
also found in children with autism compared with controls [832]. 
Higher NOx concentrations demonstrated in red blood cells of autistic 
patients compared to age- and sex-matched normal controls, along 
with enzymatic evidence of NO-related oxidative stress [831], were 
associated with mitochondrial dysfunction [834]. The induction of 
a high-output inducible enzyme NOS (iNOS) is triggered primarily 
by IFN-γ, in combination with TNF- and IL-1β, or endotoxin 
[579,835,836]. It must be noted that autistic children showed enhanced 
production of the cytokines IFN-γ, TNF-α and IL-1 compared to 
controls [837,838]. Given the key role of these cytokines in the induction 
of iNOS that resulted in the elevated NO generation in autism one may 
suggest that iNOS was also involved in the enhanced NO production in 
diabetes mellitus due to a profuse secretion of these proinflammatory 
cytokines in this clinical entity (Table 6) [83-87]. Recently, it was 
demonstrated in vitro that exogenous NO released by different doses 
of sodium nitroferricyanide (III) dehydrate could trigger egress of T. 
gondii tachyzoites from infected peritoneal macrophages collected 
from C57BL/6 mice, which then underwent necrosis [839]. This 
finding is very important because it may represent a novel approach 
for treatment of neuroinflammation caused by the parasites located in 
astrocytes and other eukaryotic cells. 

Possible association between T1DM, celiac disease (CD) and 
T. gondii infection

CD occurs in children and adolescents with T1D with the 
prevalence ranging from 4.4 to 11.1% (mean 8%) as compared with 
0.5% in general population [839-841]. The mechanism of association of 
these two diseases involves HLA genotypes DR3-DQ2 and DR4-DQ8 
(T1DM), and DR3-DQ2 (CD) [839]. It is striking that T1DM and celiac 
disease share 13/52 (25%) risk loci outside the HLA gene complex 
(http://www.t1dbase.org) [842]. Both diseases T1DM and CD have an 
abnormal small intestinal immune response with inflammation and a 
variable grade of enteropathy [841]. Patients with T1DM often have only 
few and mild symptoms of CD or are asymptomatic (silent), and rarely 
present with severe manifestation of CD. The mean age at diagnosis of 
classical CD is usually around 2-3 yrs, while the age for T1DM is 7-8 
yrs. In the patients with T1DM, diabetes is usually diagnosed first, CD 
precedes diabetes onset only in 10-25% of individuals [839,843,844]. 

Cronin et al. [845] reported that of 177 patients attending a seizure 
clinic, four individuals had celiac disease (1 in 44). In a control group 
of 488 pregnant women only 2 samples were positive for celiac disease 
(1 in 244). In previous hospital records, 16 patients (10 F/6 M) suffered 
from both celiac disease and epilepsy (mean age at diagnosis of epilepsy 
was 23 yrs (range from < 1 to 67); mean age at diagnosis of celiac disease 
was 28.5 yrs (range < 1 to 73 yrs) [845]. 

Sandberg-Bennich et al. [846] demonstrated that the most 
evident risk factor for development of celiac disease was associated 
with neonatal infections (OR =1.52, confidence limits 1.19; 1.95). T. 
gondii infection may therefore play an important role in triggering 
development of both diabetes and celiac disease, especially that the 
increased percentage of antigliadin IgG antibodies was found to be 
associated with T1DM [20] (Table 2). Moreover, Rostami Nejad et 
al. [847] found that amongst 827 pregnant women, 154 (31%) and 58 
(7%) of them had positive total IgG and IgM for T. gondii serology 
(blood sample were taken at mean pregnancy duration of 5.5 months). 
In addition, 27 women (mean age 27 yrs; mean pregnancy duration 
4.8 months) were simultaneously diagnosed with celiac disease, and 16 
out of 27 (59%) had infection with the parasite as compared with 257 
out of 800 (32%) non-celiac disease pregnant women (OR = 3.07, 95% 
confidence limits 1.4-6.7) (P = 0.04). The authors suggested that celiac 
disease during pregnancy increase the risk of T. gondii infection [847]. 
Critical analysis of the literature data suggests however that on the 
contrary, chronic latent infection with the parasite increases the risk of 
celiac disease development [809]. This reasoning is strongly supported 
by the recent report of Severance et al. [848] that in mice receiving 
a standard wheat-based rodent chow, peroral, intraperitoneal and 
prenatal T. gondii exposure launched a highly significant generation 
of anti-gluten IgG antibodies in all infected animals compared to 
uninfected controls (P ≤ 0.00001). Perorally-infected females showed 
higher concentrations of anti-gluten IgG than males (P ≤ 0.009) 
indicating that the parasite-generated gastrointestinal infection led to a 
marked anti-gluten response in a sex-dependent manner [848]. These 
findings may be explained by the facts that: 1) transepithelial migration 
of T. gondii is linked to its active motility and virulence [849], 2) 
involves an interaction of human ICAM-1 with the parasite adhesin 
MIC2 resulting in its immunoprecipitation [317], and 3) the parasite 
targets the paracellular pathway to invade the intestinal epithelium and 
affects epithelial tight junction-associated proteins [10], thus finally 
affecting host intestinal wall permeability. Beneficial ameliorative 
effects of breastfeeding and human colostrum, which contains large 
quantities of lactoferrin, administered in neonatal autistic rats with 
celiac disease, may support the above-presented reasoning [850].
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Concluding Remarks
Maternal and/or fetal-derived islet infiltration by the cells infected 

with T. gondii may induce increased production of proinflammatory 
cytokines, such as TNF-α, IL-1β, and IFN-γ, which can result in 
development of insulitis. They also modify the antigen presenting cells 
toward a more immunogenic phenotype, thus triggering the offspring 
T cells to react against pancreatic self antigens, like it was found during 
induction of diabetes by viral or bacterial infections. This reasoning is 
consistent with the reports that elimination of maternally transmitted 
autoantibodies prevented development of diabetes in nonobese 
diabetic mice, and that oral administration of autoantigen induced 
autoimmune diabetes. Moreover, in vitro studies showed that insulin 
and D-glucose had a dose-responsive mitogenic effect on intracellular 
T. gondii replication and development in 3T3-L1 cells. One cannot 
therefore exclude that the additive/synergistic effect of insulin/glucose 
on multiplication of the parasite in pancreatic islet beta-cells may be at 
least in part responsible for triggering autoimmune defense reaction 
of the host that induce insulitis, and finally cause diabetes. TGF-β, 
a multifunctional cytokine, also was found to favour growth of the 
parasite through suppressing IFN-γ toxoplasmastatic activity. The 
pancreatic islet β cells hypertrophy and fibrosis characteristic for the 
patients with T2DM may be caused by the increased levels of TGF-β 
due to T. gondii infection because the elevated expression of the 
cytokine in vitreous, retina and retinal pigment epithelium was closely 
correlated with retinal fibrosis and choroidal neovascularization. 
In addition, TGF-β played a key role of in mediating diabetic renal 
hypertrophy, tubulointerstitial and vaginal tissue fibrosis. Increased 
membrane metalloproteinases secretion induced by the parasite may 
also contribute to the pancreatic islet fibrosis. Diabetes caused marked 
changes in the function and metabolism of neutrophils, for example 
glutamine oxidation and glutaminase activity were markedly decreased 
in the neutrophils from diabetic rats, and glutamine plays an important 
role in protein (as an amino acid source), lipid (by NADPH production) 
and nucleotide synthesis (by purine and pyrimidine production), as 
well as in NADPH oxidase activity. It must be emphasized that the 
tachyzoite stage of T. gondii, responsible for an acute infection, rapidly 
metabolizes glucose via glycolysis However, it was also demonstrated 
that glucose was nonessential for T. gondii tachyzoites because host-
derived glucose and its transporter in the parasite were dispensable by 
glutaminolysis. Thus, eventually increased requirements for glutamine 
and competition for this amino acid between T. gondii and neutrophils 
(and probably other cells) may result in diminished sources of 
glutamine and development of disturbances in maintaining regular 
metabolic and immune processes in many host cells. Moreover, this 
amino acid raises the in vitro bacterial killing activity and the rate of ROS 
generation by neutrophils, and delays spontaneous apoptosis of these 
cells. These findings may be further supported by the morphological 
abnormalities of myenteric neurons in experimental animals during 
Toxoplasma gondii infection, including hypertrophy/atrophy of the 
neurons and changes in the cell body areas depending on the parasite 
genotype, its form, dose, route of inoculation, animals studied, and part 
of the gastrointestinal tract involved. Virulence of the parasite was also 
associated with distinct dendritic cell responses and reduced numbers 
of activated CD8+ T cells. Impaired vascular endothelial function and 
abnormal metabolic fate of NO in patients with diabetes mellitus may be 
at least in part due to the preferential T. gondii infection of endothelial 
cells. Finally, vitamin D and minocycline exerted beneficial effects on 
development and clinical course of diabetes mellitus probably because 
of their immunomodulating and antitoxoplasmatic activities. In 
addition, a strong correlation was found between the HSP65 expression 

and protection against T. gondii infection, suggesting that this protein 
significantly contributed to development of the host defense system. It 
seems therefore that infection with this protozoan plays an important 
role in the etiopathogenesis of both types of diabetes.
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