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Abstract

Breast cancer is currently the most prevalent malignancy among women in industrialized countries, and 1 in 8
women living in the United States will develop the disease at some point in her lifetime. Although the incidence of
breast cancer has increased 0.3% per year since 1990, the mortality rate has decreased by 2% per year since 1990
due to improvements in treatment and early detection. New treatment strategies and a better molecular
understanding of the disease will be important to continue the progress science has made against this disease.

The aryl-hydrocarbon receptor (AhR) has been traditionally associated with activation by environmental
contaminants, acute toxicity, and cancer risks associated with exposures. However, the AhR has been highly
conserved throughout evolution suggesting an important biological role for the receptor independent of its response
to environmental contaminants. There is a significant body of evidence indicating the AhR plays a role in breast
epithelial cell differentiation and that receptor agonists can inhibit breast cancer growth. A 50% reduction in estrous-
induced terminal end buds was observed in the mammary glands of AhR knockout animals when compared to wild
type suggesting a role for the AhR in mammary development. In 2 independent rodent cancer bioassays, treatment
with the AhR agonist 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) significantly reduced the incidence of spontaneous
rat mammary tumors. These and other studies support the premise that the AhR plays a fundamental role in breast
epithelial cell differentiation. This review provides a brief summary of the current evidence that the AhR may be an
important pharmacological target for treating human breast cancer.
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Introduction
Breast cancer is currently the most prevalent malignancy among

women in industrialized countries, and 1 in 8 women living in the
United States will develop the disease at some point in her lifetime [1].
Although the incidence of breast cancer has increased 0.3% per year
since 1990, the mortality rate has decreased by 2% per year since 1990
due to improvements in treatment and early detection [1]. New
treatment strategies and a better molecular understanding of the
disease will be important to continue the progress science has made
against this disease.

The aryl-hydrocarbon receptor (AhR) has been traditionally
associated with activation by environmental contaminants, acute
toxicity, and cancer risks associated with exposures. However, the AhR
has been highly conserved throughout evolution [2] suggesting an
important biological role for the receptor independent of its response
to environmental contaminants. There is a significant body of
evidence indicating the AhR plays a role in breast epithelial cell
differentiation and that receptor agonists can inhibit breast cancer
growth. A 50% reduction in estrous-induced terminal end buds was
observed in the mammary glands of AhR knockout animals when
compared to wild type suggesting a role for the AhR in mammary
development [3]. In 2 independent rodent cancer bioassays, treatment
with the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

significantly reduced the incidence of spontaneous rat mammary
tumors [4,5]. These and other studies support the premise that the
AhR plays a fundamental role in breast epithelial cell differentiation.
This review provides a brief summary of the current evidence that the
AhR may be an important pharmacological target for treating human
breast cancer.

The Aryl-Hydrocarbon Receptor (AhR) Mechanism of
Action

The identification of the AhR originated in early toxicology studies
that observed an increase in mono-oxygenase activity following
exposure to polyaromatic hydrocarbons. Additional studies using a
highly potent inducer, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),
showed that binding to a cytosolic receptor was proportional to the
induction of mono-oxygenase activity [6]. The gene encoding the AhR
was subsequently cloned and characterized across multiple species
[7-9]. Further molecular characterization of the AhR demonstrated
that the receptor is highly conserved [2,10] and plays a significant role
in tissue development [1,11-13]. For example, targeted disruption of
the AhR in the mouse results in compromised immune function [14],
and deficiencies in the development of several tissues including
ovarian follicles [15], seminal vesicles [16], fetal vasculature [17], and
mammary glands [18].

The AhR is a ligand-activated transcription factor and a member of
the basic-helix-loop-helix Per-Arnt-Sim (bHLH-PAS) family of
proteins [19]. In an unliganded state, the AhR exists in the cytoplasm
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bound to chaperones HSP90, p23, and other proteins (Figure 1).
Ligand binding induces translocation of the AhR into the nucleus,
where it dissociates from cellular chaperones and heterodimerizes with
ARNT (aryl-hydrocarbon receptor nuclear translocator). AhR/ARNT
heterodimers bind to genomic dioxin response elements (DREs),
which initiates transcription of genes within the AhR gene battery,
including Cyp1a1, Cyp1b1, Aldh3, Nqo1, and Gsta1 [20-23].
Interactions with other cellular proteins have been identified leading
to a proposed role for the AhR in many signaling pathways including
the retinoblastoma (Rb) protein and cell cycle [24,25], estrogen
receptor (ER) signaling [26] and RELA and NFκB signaling [27].

Figure 1: Schematic representation of the AhR signaling pathway

Role of the AhR in Tissue Development
The AhR gene is highly conserved across both vertebrate and

invertebrate species [2,10]. The existence of ancestral AhR orthologs
that either bind no ligand or bind a range of ligands that are unique
from those recognized by the vertebrate receptors suggest that its role
in regulating xenobiotic metabolism is a recent adaptation [2,28].
Apart from the evolutionary conservation, evidence for a role of the
AhR in tissue development can be seen from the characterization and
disruption of the AhR in model organisms. In Drosophila
melanogaster, mutation of the AhR ortholog Spineless lead to
alterations in appendage development [29], neuron morphology [30],
and photoreceptor development [31].

In Caenorhabditis elegans, disruption of the AhR ortholog AHR-1
leads to alterations in neuronal development [32]. In a more relevant
mammalian model, expression of the AhR occurs early in
development in preimplantation embryos [33] and at gestational days
10 to 12 with high expression in many neuronal tissues [34].
Expression of the AhR expands to a large number of tissues by
gestational day 13.5 to 15.5 indicating a potentially broad functional
role in tissue development [34]. Targeted disruption of the AhR in
mice has revealed obligatory roles for the receptor in multiple tissues
including liver, the immune and cardiovascular systems, and the male
and female reproductive systems [14-18]. Notably, a 50% reduction in
estrous-induced terminal end buds was observed in the mammary
glands of AhR null animals when compared to wild types suggesting a
role for the AhR in mammary development [3].

Ligands of the AhR
Following the early studies characterizing the increase in mono-

oxygenase activity due to polyaromatic hydrocarbon exposure, a
significant research effort has ensued to identify and characterize both
endogenous and xenobiotic ligands for the AhR. Although the
endogenous ligand for the AhR is the subject of continued debate,
multiple candidates have been proposed including indigoids,
equilenin, arachidonic acid metabolites, heme metabolites, tryptophan
metabolites, and UV photoproducts of tryptophan [35]. In addition,
dietary compounds and nonligand activators of the AhR have been
identified [35]. For the xenobiotic ligands, the most well-known are
the halogenated dioxins, polychlorinated biphenyls (PCBs), and
polyaromatic hydrocarbons (PAHs) [20].

The halogenated dioxins include the dibenzo-p-dioxins and
dibenzofurans that are formed during both combustion and industrial
processes such as waste incineration, forest fires, pesticide
manufacturing, and paper pulp bleaching [36]. Within this class,
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,7,8-
tetrachlorodibenzofuran (TCDBF) are prototypical AhR agonists due
to their potency and efficacy in receptor activation [20]. For the PCBs,
the coplanar congeners with adjacent halogens in the lateral positions
of each ring and no halogen atoms near the biphenyl bridge are the
most potent AhR agonists [37]. These chemicals are used in a variety
of commercial products including flame retardants, adhesives,
transformers and capacitors, lubricants, and fluorescent light ballasts
[38]. Finally, the PAHs are a large class of AhR agonists that contain
four or more benzene rings [39]. Prototype AhR ligands in this
category include benzo[α]pyrene and 3-methylchloranthrene. PAHs
are found as byproducts of combustion processes and are typically
much less potent than TCDD or the coplanar PCBs.

Adverse Responses to AhR Ligand Activation
The effects of AhR activation have been primarily characterized

using xenobiotic ligands such as TCDD, PCBs, and PAHs. For the
classical AhR agonist TCDD, sufficient doses can cause cancer,
immune dysfunction, wasting, chloracne, ovarian failure, and birth
defects [20,40-42]. Both AhR null animals and mice with a mutation in
the DNA binding domain of the AhR are refractive to the toxic effects
of TCDD, suggesting that the AhR and its binding to DNA are
required to these effects [43,44]. For human cancer, epidemiological
data from occupationally exposed workers have established a clear
association between exposure to TCDD and increased risk for all
combined cancers and for lung cancer [45]. The magnitude of the
increased risk in these studies is generally low, but it is higher in sub-
cohorts considered to have the highest exposure to TCDD [45]. In the
rat, three separate bioassays have been performed [4,5,46].

In the most recent bioassay by the National Toxicology Program, an
increased incidence was observed for cholangiocarcinomas and
hepatocellular adenomas of the liver, cystic keratinizing epithelioma of
the lung, gingival squamous cell carcinoma of the oral mucosa, and
squamous cell carcinoma of the uterus [5]. There is substantially less
information regarding potential adverse responses for potential
endogenous or dietary ligands of the AhR with the majority of
exposure occurring for relatively short time periods. Exposure of up to
50 mg/kg of indigo or indirubin per day for a period of 3 days had
little effect on the rat liver [47]. Similarly, exposure mice to 20 mg/kg
of equilenin per day for 3 days had no reported effects [48]. Longer
exposures have been performed for indole-3-carbinol (I3C) (a
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component of cruciferous vegetables) and its metabolite
diindolylmethane (DIM). In exposures lasting up to one year, there
were no observable differences grossly or histologically between
groups and no changes in blood chemistry except that male rats
treated with high doses of I3C exhibited higher serum levels of 25-
hydroxy-vitamin D3 [49].

Protective Role of the AhR in Breast Cancer
While historically AhR agonists have been viewed as tumor

promoters, combined epidemiological, animal bioassay, and molecular
data indicate that this is an oversimplification. Examination of a
population exposed to TCDD following an industrial accident in
Seveso, Italy in 1976 showed a positive correlation between TCDD
exposure and sarcomas, cancers in the prostate, lung, bladder and
digestive tract, those in hematopoietic and lymphatic tissues, and all
cancers combined [50], supporting previous studies of occupational
workers [45]. However, a significant decrease in breast and
endometrial cancer was also evident in exposed individuals [50]. More
recently, a report following a population exposed to dioxin emissions
from a municipal waste incinerator noted a significant decrease in
incidence of invasive breast cancer in women living in the highest
exposed zone [51].

The reduction in breast cancer observed in the human studies is
supported by two independent rodent experiments showing a
significant decrease in spontaneous mammary tumor incidence
following a two-year exposure [4,5]. In an initiation-promotion model,
an absence of mammary tumors was observed in rats administered
TCDD compared with a 36% incidence in control animals [52].
Similarly, exposure to TCDD at sub-toxic doses decreased 7,12-
dimethylbenz[a]anthracene (DMBA)-induced mammary tumors by
72% and, in a subset of animals, the original tumors were no longer
detectable [53]. In contrast, control animals displayed a 390% increase
in tumor volume over the same time period. Finally, in animals
harboring ER+ human breast cancer cell xenographs, TCDD was
found to completely suppress hormone-stimulated tumor growth [54].
These results suggest that, similar to many nuclear receptor agonists,
the underlying biological responses to AhR activation are context
specific.

Cross-Talk between the AhR and Estrogen Receptor α
(ERα) Signaling Pathways

Cross-talk between the AhR and ERα signaling pathways occurs at
multiple levels and is dependent on cellular context. In the promoters
of many estrogen-inducible genes (e.g., pS2, cathepsin D, c-fos),
binding sites for the AhR-ARNT complex (DREs) are adjacent to or
overlap those of the ERα providing a means for the direct
transcriptional inhibition of ERα [55-57]. The AhR-ARNT complex
can also compete with ERα for coactivators, thereby dampening the
transcriptional response [58]. On a post-translational level, liganded
AhR can antagonize estrogen signaling by facilitating assembly of an
ubiquitin ligase complex that promotes proteasomal degradation of
ERα [59]. Finally, the AhR gene battery includes the cytochrome p450s
Cyp1a1 and Cyp1b1 [20-23]. Upregulation of these enzymes results in
an increase in estrogen metabolism and depletion of hormone levels
[60,61].

The functional consequences of the antagonistic AhR-ER cross-talk
are apparent in breast cancer cells. In growth assays, TCDD was
shown to completely reverse the proliferative effects of estrogen in

human breast cancer cells [54,62]. These observations have been
recapitulated in vivo. In a nude mice xenograft model, TCDD
suppressed estrogen-dependent tumor growth [54] and in a rat
mammary tumor model, co-treatment of an AhR ligand with the
antiestrogen tamoxifen was shown to completely inhibit growth of
carcinogen-induced mammary tumors [63].

The Effects of AhR on Proliferation and the Cell Cycle
Apart from antagonistic effects on ERα signaling, the AhR may also

display protective effects against human breast cancer by regulation of
key processes required for breast cancer cell growth, cell cycle control,
and cell migration. A number of studies have investigated the role of
the AhR in cancer cell proliferation. Paradoxically, the AhR appears to
facilitate growth in the absence of ligand, while the agonist-activated
receptor displays marked anti-proliferative effects in cancer cells. For
example, transfection of breast cancer cells with AhR siRNA is growth-
inhibitory [64,65]. Similarly, AhR-deficient hepatoma cells (AhR-D)
proliferate at a slower rate than wild-type cells (Hepa 1c1c7), and
ectopic expression of the AhR in the AhR-D cells increases their
growth to the rate of wild-type cells [66]. In contrast, a ligand-bound
AhR inhibits cell growth in a wide array of breast cancer cell lines
representing the major breast cancer subtypes, including both those
positive and negative for ER, Progesterone Receptor (PR), and Human
Epidermal Growth Factor 2 (HER2) [3,62,67-70].

It is now apparent that AhR-mediated suppression of cell growth
involves G1 cell cycle arrest [25,71-74]. The cell cycle arrest coincides
with association of the AhR with the hypophosphorylated and active
form of Rb to form transcriptional repression complexes on several
E2F-regulated genes required for S-phase progression [24,25]. In the
absence of ligand, however, the AhR facilitates cell cycle progression
by forming a complex with CDK4 and Cyclin D1 [74]. Thus, AhR
agonists may function as a molecular switch in cancer cells, converting
a basal AhR with growth-promoting activities into a potent anti-
proliferative factor.

Evidence for a Protective Role of the AhR in Breast
Cancer Cell Metastasis

In addition to cell growth and cell cycle regulation, the AhR has
been shown to regulate genes involved in metastasis. Breast tumors
most often metastasize to the lung and bone. These organs produce
and secrete a chemokine, CXCL12, which attracts breast cancer cells
expressing its receptor, CXCR4, on their cell surface [75]. In a recent
study, TCDD was shown to down regulate both CXCR4 and CXCL12
in a breast cancer cell line and decrease cell migration towards a
CXCL12 gradient [76]. While the consequences of CXCL12
suppression in these cells are unclear, the study demonstrated TCDD
may be adequate in preventing breast cancer cells from migrating to
areas with high CXCL12 expression [76].

There is emerging evidence that ligand activation of the AhR can
inhibit multiple aspects of the metastatic process. In a panel of breast
cancer cell lines that represent the 3 major breast cancer subtypes (ER
and PR-positive, HER2-positive, and triple-receptor negative), it was
found that agonist-activated AhR inhibited cell invasiveness and
motility and prevented anchorage-independent growth [65].
Knockdown of the AhR with siRNAs demonstrated that the inhibition
of invasiveness was receptor-dependent and endogenous receptor
activity was protective in each cell type examined [65]. Likewise, AhR
agonists were found to promote differentiation of breast cancer cells
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and mammary cancer stem cells into cells that displayed the
phenotypic markers of normal breast epithelial gland cells [65]. Thus,
the AhR plays an important role in mammary epithelial differentiation
and, as such, represents a promising therapeutic target for a range of
phenotypically distinct human breast cancers.

The AhR as a Potential Therapeutic Target for Human
Breast Cancers

Analogous to the selective estrogen receptor modulator (SERM)
concept, it has been proposed that selective AhR modulators
(SAhRMs) exist that are capable of activating the specific signaling
pathways involving the protective effects of the AhR in breast cancer
while limiting activation of those pathways leading to the toxic effects
[77]. Evidence for the feasibility of this concept is mounting. First,
non-traditional AhR ligands have been identified that are capable of
activating the receptor without association with the ligand binding
pocket [35]. Second, similar to steroid hormone receptors [78],
different ligands induce unique conformational changes in the AhR
that facilitate interaction with different transcriptional cofactors [79].
On a functional level, the AhR agonists I3C, DIM and a series of DIM
analogs were shown to effectively inhibit the growth of estrogen-
dependent and independent breast cancer cells and tumors in a
manner comparable to TCDD [67-70,72,80]. Structure-activity studies
using the DIM analogs showed that specific methyl and dihalo-
substitutions could further enhance the anticancer effects above those
substantial effects seen for DIM alone [67,68,80]. AhR agonists can
also be optimized for tissue-selective responses. The AhR agonist 6-
methyl-1,3,8-trichlorodibenzofuran (6-MCDF) was found to synergize
with tamoxifen to inhibit growth of mammary tumors in rodents
while inhibiting the undesirable estrogenic effects of tamoxifen in the
uterus and did not interfere with the bone-protective actions of
tamoxifen in ovarectomized animals [63]. Importantly, effective doses
of neither DIM nor 6-MCDF produced the adverse side effects
observed with TCDD exposure [49,67,81,82].

The AhR as a Potential Therapeutic Target for ER-
negative Human Breast Cancers

As put forth above, breast cancers are inherently diverse with
respect to hormone and growth factor receptor expression and are
typically broken down into subtypes based on ER, PR, and HER2
status. The tumor subtype can impact the growth and aggressiveness
of the disease as well as predict the response to different
chemotherapeutics [83, 84]. Tumors lacking expression of all 3
receptors (triple-negative) are typically the most challenging to treat
due to their aggressive natures and the absence of a pliable drug target.

Unlike the available ER-targeted and growth factor-targeted
therapeutics for breast cancer, AhR modulators may also have utility
in prevention and treatment of triple-negative tumors. In a recent
study the SERM Raloxifene, used clinically in prevention of ER-
positive breast cancers, was shown to prevent growth and promote
regression of triple-negative breast tumors in mice [85]. A second
study soon followed that implicated an AhR-dependent mechanism;
raloxifene was shown to activate the AhR, and as a consequence,
induce apoptosis of triple-negative breast cancer cells with no effects
on normal mammary epithelial cells [86].

Other AhR ligands have recently been identified as promising
therapeutics for ER-negative breast cancers. The synthetic flavonoid
aminoflavone, an AhR agonist, is currently in Phase 2 clinical trials.

Several recent studies that this agent induces DNA damage and
displays anti-proliferative, cytotoxic, and apoptotic activities in
multiple cancer cell types including triple-negative breast [87-90].
Finally, as mentioned earlier, the AhR agonists I3C, DIM and a series
of DIM analogs were shown to effectively inhibit the growth and
invasiveness of ER-negative breast cancer cells and tumors
[65,70,72,80]. Thus, it appears that the AhR hold tremendous potential
as a pliable drug target for treatment of estrogen-independent breast
cancers.

Summary and Significance
The current statistics associated with breast cancer reflect both its

importance in women's health and the progress we have made towards
understanding and treating the disease. The fact that the incidence and
mortality of breast cancer has not declined at the same rate as other
major causes of death speaks to the unmet need for both new
therapeutic targets and approaches. A series of mechanistically distinct
therapeutics are currently in clinical use for breast cancer, including
those targeting estrogen and growth factor signaling pathways.
However, it has become clear that breast cancer is a heterogeneous
disease. Each cancer has its own molecular and biochemical makeup
and, consequently, there exists no single drug or drug class that will be
sufficient to effectively eliminate the disease in all afflicted individuals.
This realization has continued to fuel efforts aimed at further
molecular characterization of the disease, and these efforts have led to
identification of potential and promising new drug targets such as the
AhR.
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