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Abstract

Uric acid is the final metabolic product of purine metabolism in humans due to a lack of the enzyme uricase. The
increased level of serum uric acid is tightly related to many diseases, such as hypertension, hyperlipidemia,
atherosclerosis, coronary heart disease and diabetes. Hyperuricemia has also been considered as an independent
risk factor in the progression of hyperuricemic nephropathy. Currently, it remains incompletely clear about the
underlying mechanism by which hyperuricemic nephropathy occurs. Our recent studies have demonstrated that
epidermal growth factor receptors is involved in the development of this disease in animals. Here we have made a
summary on our findings and discussed related issues.
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Introduction

Hyperuricemic nephropathy
In recent years, as a result of improvements in diet and living

standards, food intake has been rich in protein and purine, which is
known to result in an increased incidence of hyperuricemia [1].
Hyperuricemia, which is defined by uric acid levels exceeding 7.0
mg/dL in men and 6.0 mg/dL in women [2] and is strongly associated
with chronic kidney disease (CKD)[3]. Increasing evidence indicates
that sustained uric acid is a risk factor that causes or exacerbates
kidney fibrosis in the progression of CKD [4]. In our previous study,
we found that raising uric acid levels in rats can induce glomerular
hypertension and renal diseases as noted by the development of
arteriolosclerosis, glomerular injury and tubulointerstitial fibrosis [3].
In addition, the increased level of serum uric acid also tightly related to
other diseases, such as hypertension, hyperlipidemia, atherosclerosis,
coronary heart disease and diabetes [2,5-10].

Uric acid is the final metabolic product of purine metabolism in
humans due to a lack of the enzyme uricase [11]. In other mammals, as
a result of uricase located in the liver, uric acid can be broken down
into allantoin. Thus, when considering the process of human evolution,
a higher level of serum urate may confer a selection advantage due to
the antioxidant effects of urate [12]. Blood levels of uric acid are tightly
regulated by reabsorption and excretion mechanisms in the kidney.
Excretion of uric acid in the kidney is carried out with the assistance of
uric acid transporters. The transporters are divided into two categories:
urate reabsorption transporters and urate excretion transporters [13].

Urate reabsorption transporters have three members: urate anion
transporter 1 (URAT1), organic anion transporter 4 (OAT4) and
glucose transporter 9 (GLUT9). Urate excretion transporters also
include two categories: 75 the uptake of uric acid transporters and the
excretion of uric acid transporters. To date, more than ten OAT species

have been identified [14]. OAT1 (SLC22A6) and OAT3 (SLC22A8)
mainly assist the uptake of uric acid from blood to intracellular tubular
cells. Increasing evidence has indicated that while the functions of
these urate transporters are broke down, the level of uric acid in
human body is increasing, resulting in hyperuricemia nephropathy
(HN) [15-17].

Hyperuricemia has been considered as an independent risk factor in
the progression of HN. Elevation of the serum uric acid level induces
oxidative stress and endothelial dysfunction, resulting in the
development of both systemic and glomerular hypertension combined
with elevated renal vascular resistance and reduction of renal blood
flow [18-20]. Hyperuricemia is also able to induce an epithelial to
mesenchymal transition, which has direct effects on the tubular
epithelial cell injury [21]. Moreover, numerous observations suggested
that uric acid crystals are formed and deposited in the collecting duct
of the nephron, infiltrated by monocytes/macrophages [22].

The role of EGFR in hyperuricemic nephropathy
Recently, we have indicated that blockage of epidermal growth

factor receptor (EGFR) can attenuate the development of HN [4].
Numerous studies have demonstrated that the activation of TGF-β1
signaling pathway is essential to glomerular sclerosis and
tubulointerstitial fibrosis inducing by hyperuricemia [23-25]. TGF-β1
contributes to fibrosis in two ways, one way is combining with TGF-β
receptors and activating downstream Smad3. Then activated Smad3 in
combination with Smad4, up regulated the expression of TGF-β1-
targeted genes in the nucleus [26]. The other is inducing fibrosis via
activation of epidermal growth factor receptor (EGFR) independently
[27,28].

EGFR is a member of receptor tyrosine kinases protein family, and
activation of EGFR results in different cellular consequences that are
related to fibrosis, including cell proliferation, migration,
differentiation and transformation [29,30]. Moreover, numerous
studies revealed that activation of EGFR is associated with the
pathogenesis of renal interstitial fibrosis [31,32]. In our previous study,
we observed the role of EGFR in chronic kidney disease in a rat model
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of HN induced by oral administration of a mixture of adenine and
potassium oxonate. We found that renal function was improved and
glomerular sclerosis was attenuated as well as renal interstitial fibrosis
after treatment of gefitinib, a special inhibitor of EGFR, in
hyperuricemic rats. Activation of TGF-β signaling, increasing level of
pro-inflammatory cytokines/chemokines and elevation of XOD
activity induced by uric acid were also inhibited by EGFR blockage.
Additionally, inactivation of EGFR preserved the level of OAT1 and
OAT3. As numerous evidence has demonstrated that EGFR signaling
activation is essential to the production of TGF-β1 in mice models of
renal fibrosis induced by unilateral ureteral obstruction (UUO) injury,
we also suggested that blockage of EGFR decreased phosphorylation of
Smad3 the level of TGF-β1 in the rat model of HN [23,31]. Our results
also showed that inhibition of EGFR suppressed phosphorylation of
ERK1/2, which was activated by uric acid in vivo and in vitro. These
data were accordance with Chen’s report that EGFR contributed to
expression of TGF-β1 via ERK1/2 activation [33].

Summary
With all these data, we have displayed that inhibition of EGFR

prevented the progression of hyperuricemia-induced nephropathy and
preserved the function of kidney in a rat model. This renal protective
effect occurs through inhibition of TGF-β signaling, suppression of
inflammation and decreasing levels of uric acid via protecting
expression of urate transporters. Therefore, EGFR may play a critical
role in hyperuricemia nephropathy.
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