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Abstract

The retinoid X receptor (RXR) is a member of the steroid/thyroid hormone superfamily of nuclear receptors (NRs)
which are transcription factors that are essential in embryonic development, maintenance of differentiated
phenotypes, metabolism and cell death. This review is to provide an overview of the mechanism of RXRα and RXRα
signaling pathways involving RXR/TR3, RAR/RXR, PPAR/RXR, VDR/RXR, LXR/RXR, FXR/RXR in cancer cells and
other diseases, which will enhance our ability to design rational therapeutic drugs for cancer. Recent studies have
shown that an N-terminally truncated RXRα (tRXRα) exists in several cancer cell lines and primary tumors, which is
considered as a kind of oncoprotein, demonstrating the new suitability of targeting tRXRα for cancer therapy.
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Introduction
Nuclear receptors are a class of transcription factors that can

directly bind to DNA and modulate target gene transcription. Nuclear
receptors play key roles in reproduction, development, and
homeostasis of organisms [1-3]. On the basis of their ligands, nuclear
receptors are classified into three families. The first is the classic and
most extensively characterized group, steroid- and thyroid-hormone
receptors [1], including retinoid nuclear receptors. The second class is
the orphan nuclear receptors, which are structurally related to nuclear
hormone receptors but for which no ligand has yet been discovered.
The third class of nuclear receptors is adopted orphan nuclear
receptors, whose regulation has been shown to range from true ligand-
independence to highly promiscuous ligand-dependence. The retinoid
receptor subfamily contains two classes, namely, the retinoic acid
receptors (RARs) and retinoid X receptors (RXRs). Each class consists
of three subtypes (α, β and γ) [4].

The structure of nuclear receptors is similar despite wide variation
in ligand sensitivity. With few exceptions, they contain an NH2-
terminal region (also known as the A/B region) that harbors a
transactivation domain (AF-1); a core DNA-binding domain (the C
region), also contains a dimerization interface that determines target
gene specificity [5-7], containing two highly conserved zinc finger
motifs that are common to the entire family except for dosage-specific
sex reversal-adrenal hypoplasia congenita critical region on the X
chromosome-1 (DAX1) and short heterodimeric partner (SHP) [8]; a
hinge region (also named D region) that permits protein flexibility to
allow for simultaneous receptor dimerization and DNA binding; and
the E region, ligand-binding domain (LBD), contains a dimerization
interface, and a ligand-dependent activation function (AF-2),The rest
part is a variable F region whose entire function has not been known
so far (Figure 1).

Figure 1: Schematic representation of RXRα.

Nuclear receptors are major targets for drug discovery and have key
roles in development and homeostasis, as well as in many diseases such
as cancer [8]. Retinoid X receptor α (RXRα) are becoming increasingly
appreciated not simply as silent heterodimerization partners of other
NRs, but also as therapeutic targets for cancer therapy and prevention
by interacting with its ligands and several related signaling pathways.
RXRα plays a role in many physiological processes including
carcinogenesis [9]. Several RXRα ligands containing 9-cis-Retinoic
acid (9-cis-RA), Targretin and the NSAID Etodolac and Sulindac could
bind to RXRα to regulate different biological functions. One case of
Retinoids’ cancer therapy is that the effects of retinoid-based
“differentiation therapy” have been impressively shown in the case of
Acute Promyelocytic Leukaemia (APL) [10]. Genetic data also indicate
that RXRα are involved in the chemopreventive activity of RA in
experimental skin carcinogenesis [10]. It has been reported that
targretin, a synthetic RXRα ligand, the major side effect of which is the
induction of hypertriglyceridaemia, is recently used for treating
persistent or refractory cutaneous T cell lymphoma [9,11,12],
indicating the possibility of targeting RXRα for cancer therapy (Table
1).

Cell type Available/Possible Treatments(RXRα
Ligands)

Acute Promyelocytic
Leukaemia

9-cis-Retinoic acid
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kin carcinogenesis 9-cis-Retinoic acid

cutaneous T cell lymphoma targretin

Table 1: Specific cancers and available/possible treatments targeting
RXRα.

RXRα plays a central role in the regulation of many intracellular
receptor signaling pathways and can mediate ligand-dependent
transcription. RXRα enhances human cholangiocarcinoma growth via
simultaneous activation of Wnt/β-catenin and NF-κB pathways [13].
The expression of the dominant-negative RXR affected the expression
levels of a number of genes, some of which have been implicated in
transcription, signal transduction, protein synthesis and protein
trafficking [14]. The features of hepatocyte RXRα deletion in mice are
that genes related to angiogenesis (Nos3, Kdr) were down-regulated,
which leads to inhibition of angiogenesis, whereas genes connected
with adipogenesis (Cebpb, Srebf1), pro-inflammatory pathway (NF-
κB, TNFα) and apoptosis (Gzmb, Bcl-2) were up-regulated [15]. RXRα
is known to heterodimerise with a number of nuclear receptors
including TR, RAR, PPAR, VDR, LXR, FXR and several orphan
receptors [2,16,17]. So, RXRα ligands (agonists and antagonists) have
the potential to affect the signaling of numerous other pathways. Many
recent reviews have described the mechanisms of RXRα as
heterodimerization partners in various circumstances including
development, metabolic diseases, and cancer [18-25]. Here we will
discuss the latest insights into these various mechanisms how RXRα
interacts with other nuclear receptors in cancer and other diseases in
order to develop improved target-based drugs for cancer and other
disease therapy.

RXRα Regulates TR3-Dependent Apoptosis by
Modulating Its Nuclear Export and Mitochondrial
Targeting

TR3 (also known as Nur77 or NGFI-B), an orphan member of the
nuclear receptor superfamily [26-28], is an immediate-early response
gene whose expression is rapidly induced in response to a variety of
extracellular stimuli [29], including growth factors, the phorbol ester
12-O-tetradecanoyl-13-phorbol acetate (TPA) and cyclic-AMP-
dependent pathways. The expression of TR3 is rapidly induced during
apoptosis of immature thymocytes, T-cell hybridomas and various
cancer cell types [28,30-34]. The apoptosis-associated translocation of
TR3 from the nucleus to the cytoplasm has been observed in a lot of
cancer cells such as lung cancer, ovarian cancer, colon cancer, gastric
carcinoma and breast cancer [35-46]. RXRα is essential for nuclear
export and mitochondrial targeting of TR3 through their dimerization
interfaces located in their DNA-binding domain [43]. A nuclear export
sequence (NES) present in RXRα’s carboxyl-terminal region is
required for the efficient nuclear export of RXRα/TR3 heterodimers
[43]. RXRα has two dimerization interfaces, which are located in the
DBD and the LBD [5,29]. The formation of the RXRα/TR3
heterodimer is mediated by dimerization interfaces in their DBDs,
suggesting that the RXRα NES situating in the LBD is in its active
conformation, resulting in the RXRα/TR3 heterodimer nuclear export
[43]. Here RXRα, acting as a helper factor, facilitates the translocation
of TR3 from the nucleus to the mitochondria, inducing cytochrome c
release and cell apoptosis (Figure 2).

Figure 2: The actions of RXRα. RXRα heterodimerises with other
nuclear receptors to regulate target genes. The cytoplasmic tRXRα
through its interaction with p85α subunit of PI3K regulates cell
survival, inflammation, and apoptosis. In addition, RXRα can target
mitochondria through heterodimerization with TR3 to modulate
mitochondria-dependent apoptosis.

RXRα ligands suppress apoptosis by preventing of TR3 and RXRα
mitochondrial targeting. RXRα ligands 9-cis-RA and SR11237, for
instance, effectively inhibited the release of cytochrome c induced by
TPA or SR11453 in LNCaP cells [43]. Ligand binding can favor RXRα/
Nur77 interaction to DNA binding and transactivation. The inhibition
of RXRα/Nur77 DBD-mediated dimerization is related with the
induction of heterodimer DNA binding and transactivation by 9-cis-
RA. Ligand binding allows RXRα to interact with Nur77 through their
LBD dimerization interfaces, silencing the RXRα NES. The nuclear
export of the RXRα/TR3 heterodimer may be suppressed by 9-cis-RA
through its induction RXRα homodimerization or modulation of
RXRα/TR3 heterodimerization interfaces [43]. Accumulating evidence
that RXRα ligands regulate apoptosis by modulating RXRα/TR3
heterodimer nuclear export in response to different apoptosis stimuli
represents a novel approach for developing RXRα-based apoptosis
regulators.

Therapeutic Applications of RAR/RXR Heterodimer
Modulators in Cancer

Retinoic acid receptors (RARs) are ligand-inducible transcription
factors that function as heterodimers with retinoid X receptors (RXRs)
to regulate cell growth, differentiation, survival and death [47]. RXRs
heterodimerizing with RARs in various tissues come into play mainly,
if not exclusively [48]. These heterodimers have two distinct functions:
First, they modulate the frequency of transcription initiation of target
genes after binding to retinoic acid receptor response elements
(RAREs) in their promoters; and second, they affect the efficiency of
other signaling pathways (‘crosstalk’) [10]. RARs and RXRs form
heterodimers, which are “non-permissive”, that is unresponsive to RXR
ligands on their own, but these agonists super activate transcription by
synergizing with RAR ligands [21]. It is assumed that in these
processes RAR heterodimerizes with RXR responding to RXR-selective
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ligands, which are inactive alone, strengthening by RAR-selective
ligands [49].

Having a better understanding of the biological role of RARs and
RXRs is beneficial in the design of selective receptor modulators that
might overcome the limitations of current drugs. The panRAR–RXR
agonist, 9-cis-retinoic acid (9cRA), an active metabolite of vitamin A,
has a higher affinity to RXRα [50]. PanRXR-agonists can induce
higher-order RXRα/RARs fusion hetero-oligomeric oncogenic
complexes aberrantly recruit transcriptional co-repressors to
downstream targets which are essential for transformation in acute
promyelocytic leukemia [51], suggesting the pathological significance
of their potential value as a therapeutic target. RXRα/RAR
heterodimers play a role in the retinoid-stimulated increase in steroid
sulfatase activity which was blocked by pharmacological inhibition of
the RAF-1 and ERK MAP kinases [52]. Accumulating evidence that
ligand-induced promoter activity of RXRα/RAR heterodimer is
significantly suppressed by high glucose (HG) which promoted protein
destabilization and serine-phosphorylation of RAR and RXR is
mediated through oxidative stress/JNK signaling [53]. The impaired
RXRα/RAR signaling and oxidative stress/JNK pathway forms a
vicious circle, which significantly contributes to cardiomyocyte
apoptosis induced by hyperglycemia [53]. The RXRα/RAR signaling
pathway plays critical roles in hippocampal synaptic plasticity and
greatly contributes to memory performance, and long-term
potentiation (LTP) in the hippocampus in the adult brain [54].
RXRα/RAR signaling pathway also improves axonal regeneration and
modulate reactions of glia cells in physiological reactions after spinal
cord injury [55]. So the modulators of RXRα/RAR promise to be a
useful target after spinal cord or brain lesions. A large amount of RAR-
and RXR-selective ligands have been designed and the corresponding
structural and functional analyses have provided deep insight into the
molecular basis of ligand action, which is useful for drug discovery.

Delineation of the molecular mechanisms that regulate RXR
specification and function should be important for understanding a
number of diseases. The post-maturation apoptosis of HL60 leukaemia
cells requires both retinoids and rexinoids via RXRα/RAR signaling
pathway [8]. Retinoids inhibit the progression stage during chemical
skin carcinogenesis. Structural overlap of a retinoic acid response
element with these retinoid X response elements led to a high affinity
of RXRα/RAR heterodimer to the retinoic acid response element in the
p21 promoter, resulting in the prevention of RXR ligand-mediated p21
transactivation whose up-regulation facilitated G(1) arrest [56]. Recent
studies revealed that LG1506, a selective RXR modulator, had a
distinct mechanism of action in that it facilitated the co-repressors
recruit to the RXRα/RAR heterodimer complex at target gene
promoters, inhibiting the differentiation of hematopoietic stem cells
(HSCs) in culture [57]. So, studies on the molecular basis and
selectivity of the RXRα/RAR complexes that modulate various events
during tumorigenesis, and their effect on differentiation and
apoptogenic pathways, might provide ideas about promising avenues
for efficacious cancer therapies. Further investigations will clarify the
RXRα/RAR-dependent antitumor activity or the receptor-independent
anticancer action.

Modulation of Permissive PPAR/RXR Heterodimers
Peroxisome proliferator-activated receptors (PPARs) are ligand-

dependent transcription factors, which can regulate gene expression by
binding to peroxisome proliferator-responsive element (PPRE) located
in the promoter region of their target genes as heterodimers with the

RXRs after ligand binding. PPARs that are involved in the regulation of
energy homeostasis have recently drawn much attention as therapeutic
targets. PPARs are comprised of three closely related isotypes (a, β/δ
and γ), which are encoded by different genes. Recent studies have
shown that PPARγ agonists can regulate differentiation and induce
growth arrest and apoptosis in a variety of cancer types [58,59], which
require RXRs as an obligate heterodimeric partner [60].

RXRα forms a permissive heterodimeric complex with PPARγ
which activates PPAR regulated gene expression [61-63].
Thiazolidinediones (TZDs), which is one of the most important PPARγ
agonists, inhibited cell proliferation of human bladder carcinoma cell
lines by increasing cyclin-dependent kinase inhibitor expression and
induced cell death [64], which also needs RXRα co-expressed. It has
been reported that a number of combinations of the RXRα agonists
with the PPARγ agonists are useful for treating various cancers. The
combined treatment with the PPARγ ligand Rosiglitazone (BRL) and
the RXR ligand 9-cis retinoic acid (9cRA) induces human breast
cancer cells apoptosis [65]. The combination of the PPARγ ligand
ciglitazone and the RXRα ligand 9-cis-retinoic acid (9cRA) by
activation of the RXRα/PPARγ heterodimer is useful on inhibition of
cell growth of human colon cancer cells [66]. The combination of
rexinoids (synthetic retinoids specific for RXR) with PPAR ligands may
enhance the antiproliferative effects [67], arguing for the evaluation of
combination therapies. The combination of RXR agonists rexinoids
and PPARγ agonists thiazolidinedione (TZD) represents novel
therapeutic targets in melanoma [68]. The combination of the RXRα
agonist, bexarotene, with the PPARγ agonist, rosiglitazone, has greater
efficacy in growth inhibition than either single agent in colon cancer
[69], suggesting a potential role for utilizing a combination regimen of
an RXRα and PPARγ agonist for colon cancer. Combination therapies’
advantage is that one drug may reverse a cancer-selective block of an
antiproliferative signaling pathway, thus allowing the second to
become active in cells that are otherwise resistant [70,71]. Therefore,
the combined use of RXRα and PPARγ ligands may offer therapeutic
strategies in the treatment of cancer.

Beyond the treatment of a variety of cancers, targeting RXRα/
PPARγ heterodimer opens the way to novel therapeutic opportunities
of other diseases. PPAR and RXRα play crucial role in transcription
regulation of inflammation response. The expression of PPARγ and
RXRα which have been recognized as crucial players in the
pathogenesis of atherosclerosis was associated with a more
pronounced disease progression in patients with advanced carotid
atherosclerotic lesions [72]. More targeted modulation of function
through ligands design has been proposed as a strategy to possibly
overcome observed rexinoids side effects that have limited the use of
these compounds in the treatment of metabolic diseases [21,73]. It is
exciting options that the therapy of metabolic diseases originating
from the synthesis of heterodimer-selective rexinoids for PPARγ/RXRα
combining with PPARγ agonists. It also deserves to be mentioned that
co-administration of a rexinoid with a TZD produces enhance anti-
diabetic activity without the increase in triglycerides associated with
rexinoid administration [74-76]. Anti-inflammatory properties of
targeting PPARγ/RXRα are well documented in the periphery [55].

Further studies are required to investigate the molecular
mechanisms by which PPARγ/RXRα heterodimer ligands inhibit cell
growth and induce differentiation. Extension of these results into the
clinic may provide an opportunity to find a potentiated treatment
effect of cancer, as well as other diseases, produced by the combination
of PPARγ ligands with RXRα ligands.
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RXR Dominates the Nuclear Import and Export of the
Unliganded Vitamin D Receptor

Liganded and unliganded vitamin D receptors (VDRs) carry out
distinct functions, both of which require heterodimerization with
retinoid X receptors (RXRs) [77]. Ligand-dependent functions of
VDRs heterodimerizing with RXR regulate calcium homeostasis,
immune functions, endocrine functions, vitamin D metabolism, and
cellular differentiation [77]. Ligand binding induces conformational
changes in the VDR, which promote heterodimerization with retinoid
X receptor (RXR) and recruitment of a number of nuclear receptor co-
activator proteins [78]. Ligand-independent activation of VDR/RXR
heterodimers activates a reporter driven by the prolactin promoter,
which is in the presence of Ets-1 that induces a conformational change
in the receptor, which creates an active interaction surface with co-
activators even in the AF2-defective mutants [79].

Many nuclear proteins shuttle between the cytoplasm and the
nucleus. The steady-state nuclear localization of RXR and liganded
VDR is mediated by means of the molecular mechanisms that the
receptors shuttle between cytoplasm and nucleus, but the residence
time in the nucleus is longer than in the cytoplasm [77]. After synthesis
in the cytoplasm the import process of RXRs which can be promoted
by liganded VDR is dependent on a nuclear localization sequence
(NLS) in the DNA-binding domain (DBD) of RXR. RXRα increases
the ligand-independent nuclear import of VDR. Both RXRα and VDR
export require proteins of the export machinery. Unliganded VDR
distributed evenly between the cytoplasm and the nucleus. VDR/RXR
heterodimers through dimerization interfaces in the DNA-binding
domain (DBD) of RXRα are formed in the cytoplasm and translocate
together to the nucleus upon calcitriol (VDR ligand) binding [77].

In view of the above molecular mechanism that RXR dominates the
nuclear import and export of the unliganded vitamin D receptor, it’s
worth noticing that the VDR/RXR heterodimer also plays a role in
cancer. The effect that VDR ligand 1,25-dihydroxyvitamin D3
(1,25(OH)2D3) and its non-hypercalcemic analog, EB1089, decrease
parathyroid hormone-related protein (PTHrP) mRNA and cellular
protein levels which increase the growth and osteolytic potential of
prostate cancer cells, is mediated via a negative Vitamin D response
element (nVDRE) within the human PTHrP gene and involves an
interaction between nVDREhPTHrP and the Vitamin D receptor
(VDR) [80]. RXRα which is a frequent heterodimeric partner of the
VDR forms part of the nuclear protein complex that interacts with
nVDREhPTHrP along with the VDR in prostate cancer cells [80].

The Interaction of RXR and Other Nuclear Receptor
As the promiscuous partner of heterodimeric associations, RXRs

play a key role within the Nuclear Receptor (NR) superfamily. The
RXR contributes to the regulation of diverse biological pathways via its
role as a heterodimeric partner of several nuclear receptors. Steroid
and xenobiotic receptor (SXR) dimerizes with retinoid X receptor
(RXR) and regulates the transcription of genes encoding xenobiotic-
metabolizing enzymes such as CYP3A4, which is activated by retinoids
[81]. The human pregnane X receptor (hPXR) is an orphan nuclear
receptor that binds to its response elements present in steroid-
inducible cytochrome P-450 gene promoters, which requires the
participation of RXRα [82]. It has been reported that a nuclear location
of both hPXR and RXR in infiltrative breast cancer which is associated
with an increased risk of recurrent disease [82]. Rexinoid bexarotene, a
clinically used antitumoral agent, modulates triglycerides metabolism

in plasma whose increase, the most frequent side-effect, is an
independent risk factor of cardiovascular disease, but not cholesterol
metabolism via a selective permissivity on target genes of the
RXRα/LXR heterodimer in the liver [83]. The antitumoral agent
bexarotene (Targretin, Bexarotene) regulates target genes by binding to
the nuclear RXRα. The evidence has proven a favorable
pharmacological effect of bexarotene on atherosclerosis despite the
induction of hypertriglyceridemia, likely via a beneficial action on
intestinal absorption and macrophage efflux [84]. RXRα/LXR
heterodimer might contribute to the beneficial effects of rexinoids on
atherosclerosis and warrant further evaluation of RXRα/LXR agonists
in prevention and treatment of atherosclerosis. RXRα function as
heterodimers with liver X receptors (LXRs), which are involved in
glucose/lipid metabolism. All these findings indicate that RXRα is
central to the regulation of many important physiological functions in
the organism. This expands the number of possible pharmaceutical
targets for intervention with RXRα agonists or antagonists.

Regulation of tRXRα Production and Its Function
RXRα regulates diverse biological functions. Except its well-known

action in the nucleus, RXRα also have extranuclear actions. RXRα
exists in the cytoplasm at different stages during development in
certain cell types [85]. In response to differentiation [86],
inflammation [87,88] and apoptosis [43], RXRα transfers from the
nucleus to the cytoplasm. The truncated RXRα (tRXRα) proteins, only
existing in the cytoplasm, are produced through limited proteolytic
cleavage of RXRα in cancer cells [89,90]. The cytoplasmic fraction but
not in the nucleus [89] was shown to contain proteases like cathepsin
L-type protease and m-calpain [89-93] that cleaves RXRα at its amino
terminus. The truncated RXRα is produced in tumor tissues but not in
normal tissues [94] is in line with other findings that RXRα is cleaved
in tumor but not in premalignant or normal tissues from patients with
malignant human prostatic tumor [90] or thyroid cancer [93]. The 54
kDa full-length RXRα (fl-RXRα) protein level is often reduced in
cancer cells and tumor tissues [93,95], which is in part due to limited
proteolytic processing of RXRα. Proteolytic processing of RXRα is an
important mechanism in the regulation of the phosphatidylinositol-3-
OH kinase (PI3K)/Akt signaling pathway and provides its potential
value as a therapeutic target.

The N-terminally truncated 44 kDa RXRα protein and the 54 kDa
fl-RXRα protein play significant roles in various tissues with different
effects. The extensive cytoplasmic tRXRα interacts with the p85α
subunit of phosphatidylinositol-3-OH kinase (PI3K) to activate the
PI3K/AKT survival pathway and induce anchorage-independent cell
growth in vitro and tumor growth in animals (Figure 2) [94],
conforming that tRXRα provide a therapeutic advantage in cancer
treatment. Due to deletion of the N-terminal sequences, RXRα in
several cancer cell lines and primary tumors confers its ability to
interact with p85α. The p85α-binding motifs in RXRα are probably
masked by the N-terminal end sequences. The region, amino acids
from 80 to 100 in RXRα critical for tRXRα binding to p85α [94], is
enriched with proline resides, can presumably form several polyproline
helices (PPII helix) known to bind to the SH3 domain [96] present in
p85α. Cleavage of RXRα may represent a mechanism that triggers
tRXRα signaling by removing the inhibitory N-terminal domain,
allowing tRXRα to expose its p85α-binding motif. The tRXRα detected
in the cytoplasm of cancer cells to modulate carcinogenesis acts
nongenomically to activate the PI3K/AKT pathway to promote cancer
cell growth and survival [94]. Hence, agents targeting tRXRα-mediated
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pathway can be effective. Nonsteroidal anti-inflammatory drugs
(NSAIDs) sulindac could inhibit the tRXRα-dependent PI3K/AKT
activation [94], suggesting that Sulindac stands for a type of anticancer
drugs targeting this pathway. The tRXRα was critical for AKT
activation by TNFα that could also activate PI3K/AKT signaling
[97,98]. Transfection of RXRα siRNA, which inhibited both the
expression of the fl-RXRα and the 44 kDa tRXRα, significantly
impaired the ability of TNFα to activate AKT [94]. Sulindac can lower
tRXRα-mediated activities that tRXRα contributes to the growth and
survival of cancer cells by activating AKT, suggesting that tRXRα
serves as an intracellular target mediating the apoptotic effect of
Sulindac. The fact that sulindac and TNFα synergistically reduce
tRXRα-mediated AKT activation [94] provides new understanding of
the crosstalk between retinoid receptor and TNFα signaling pathways,
implying the further tRXRα-based development for cancer therapy.

Conclusion
RXRs are obligatory DNA-binding partners for a number of nuclear

receptors, broadening the spectrum of their biological activity to the
corresponding nuclear receptor-signaling pathways. Unliganded RXRα
self-associates into tetramers and that each dimer within these
tetramers can separately bind to an RXRα response element which may
bring about distant genomic effect. Ligand binding induces the
dissociation of RXRα tetramers into dimers, which can alter gene
expression by modulating the DNA structure. Many other nuclear
receptors require RXRα as heterodimerization partner for their
function. This places RXRα in the crossroad of multiple distinct
biological pathways. The emerging roles of RXRα in the RXRα
signaling network and possible implications are helpful for our
understanding of nuclear receptor biology and pharmacology. Thus the
multiple roles that RXRα plays in all kinds of cells have turned RXRα
into an attractive drug target. The priority is to change a tumor-
promoting microenvironment to a tumor-inhibiting state and to
understand the signaling mechanisms involved, finding a potential
target for cancer prevention.

The unique property of RXRα dimerization interfaces allows cross
talk among RXRα heterodimerization partners with respect to their
subcellular localization and function. The RAR/RXR and PPAR/RXR
signaling pathways have recently been implicated in the progression of
neurodegenerative and psychiatric diseases, suggesting that the
activation of PPAR/RXR and RAR/RXR transcription factors has been
proposed as a therapeutic strategy in disorders of the central nervous
system [99]. Overexpression of dominant negative RAR mutants may
lead to repression of genes that are not normally targeted by co-
repressor-associated unliganded RAR/RXR heterodimers [100] and/or
interfere with functions of other RXR heterodimeric partners through
sequestration of RXRs. RXR-selective ligands (rexinoids) are valuable
in the treatment of atherosclerosis, other cardiovascular indications
and inflammatory diseases via pathways including the PPARs, the liver
X receptors and the farnesoid X receptors [101-103]. RXRα ligands are
attractive candidates for clinical application because of their activity
against tamoxifen-resistant breast cancer, taxol-resistant lung cancer,
metabolic syndrome, and allergy. This then led to investigation of the
mechanism in which these compounds inhibited growth and the
effects of combination treatment on essential cell growth and
differentiation parameters in cancer. A detailed understanding of the
multiple physiological effects elicited by various ligands through
nuclear receptors is obviously good for drug discovery.

RXRα has been implicated in several neoplastic diseases. Ligands
that activate the nuclear RXRα display potent anti-carcinogenic
activities through the mechanisms by which these ligands inhibit
carcinoma cell growth and promote apoptosis. The case that RXRα
ligands inhibit mammary carcinoma cell growth stems from the ability
of these ligands to regulate the state of RXRα and is independent of the
direct intrinsic transcriptional activity of the receptor [104]. Some
combined compounds that target RAR/RXR, RXR/TR3, PPAR/RXR,
VDR/RXR, RXR/LXR, RXR/FXR, etc. heterodimers are powerful
anticancer drugs. An improved understanding of the mechanism of
these heterodimers pathway should enable the rational design of more
selective modulators in general. Combinatorial treatments might lead
to synergistic effects on growth control or induction of apoptosis,
thereby allowing the use of lower concentrations as well as maintaining
efficacy and reducing side effects. It has been reported that RXRα
ligands such as 9-cis-RA, Targretin, Etodola and Sulindac play a
significant role in a lot of cancer therapy, whether alone or combing
with its partners’ ligands. RXRα and its partner present main targets
for pharmacologic interventions, allowing development of therapies
targeting different receptors with high efficiency. The combined use of
several compounds that act on different signalling pathways also
represents an interesting approach in curing cancer. The combination
of retinoids and T-cell-based immunotherapy has efficacy in
neuroblastoma. The reason why addition of the HDAC inhibitor
sodium phenyl butyrate in the treatment of a patient with multiple
relapsed RAresistant APL resulted in complete remission [105], is that
HDAC inhibitor sensitized the RAinsensitive cells to the differentiative
action of RA by restoring retinoid signaling [70].

RXRα plays a central role in controlling multiple hormonal
pathways through heterodimerization. Despite their promiscuity in
heterodimer formation and activation of multiple pathways, RXRα is a
target for drug discovery. Recent studies have shed light on the
molecular mechanisms underlying tRXRα action, which has made it
possible to design appropriate modulators for cancer therapy. Further
studies are required to understand the regulation of tRXRα in all kinds
of tissues in order to have far insight in the pathological function of
tRXRα. It has been shown that the presence of tRXRα in breast and
liver cancer tissues but not in tumor surrounding tissues or distant
normal tissues from the same patients. The RXRα-selective Sulindac
derivative K-80003 could effectively inhibit the tRXRα pathway and
the growth of cancer cells in vitro and in animals, providing an
important new treatment for cancer patients.

The accumulated knowledge of the mechanistic, molecular and
pharmacological actions of RXRα ligands is the basis for the
development of efficient anticancer therapies. Indeed, it has been
shown that retinoid agonists can autonomously induce rapid apoptosis
under certain conditions [106]. RXRα is an attractive molecular target
for drug development. The rational drug design can develop new
RXRα selective ligands rexinoids with improved biological properties,
warranting further development for cancer therapy. This can be
achieved only by interdisciplinary efforts that combine in vivo analysis
using genetically engineered animals with in vitro cell and molecular
biological analyses to elucidate the detailed mechanisms that drugs
promote cancer cells apoptosis by RXRα signaling pathways. This
unique class of RXR ligands will provide a means to control distinct
target genes at the level of transcription and allow the development of
retinoids with a new pharmacological action.

Additional mechanisms to regulate RXRα might also exist. It will be
interesting to examine the significance of RXRα signaling pathway. The
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complete understanding of RXRα-dependent mechanism and drugs
design targeting RXRα signaling for various diseases is therefore a
major challenge for future research. There is no doubt that RXRα is
important to cancer biology and treatment in the 21st century. It is
going to continue investigating the possible involvement of various
RXRα regulators in cancer cells and the molecular mechanisms that
are involved. Such studies will provide useful information for the
design of therapeutic drugs. Obviously, studies on the regulation of
RXRα signaling will remain both challenging and exciting in years to
come.
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