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Introduction
The interplay between prostate epithelial cancer cells and 

the surrounding stromal tissue is vital for tumour progression 
and metastasis. Prostate cancer cells require a sustainable 
microenvironment to survive and continuously grow. In the early 
stages, this is dependent on androgens where prostate epithelial cells 
express high levels of the corresponding androgen receptor (AR). Once 
the AR is activated, a cell signalling cascade is triggered, leading to the 
necessary transactivation of prostate genes specific to tumor growth. 
Accordingly, androgen ablation therapy is the mainstay treatment for 
prostate cancer. This form of therapy however only provides short-
term success in patients particularly those with more advanced stages 
of the disease. Unfortunately, a very high number of patients treated 
for prostate cancer will eventually relapse as resistance to hormone 
treatment inevitably follows, culminating in castration-resistant 
disease. Several molecular mechanisms have been proposed to explain 
this process [1-3], but the precise events that contribute to this is still 
largely unknown. What is clear is that the tumor microenvironment, 
which includes normal stromal cells as well as transformed cells, plays 
a pivotal role in cancer progression, metastasis, and resistance to 
therapy. The survival and proliferation of primary or metastatic cancer 
cells is largely influenced by an intricate network of cell signaling 
within the tumour milieu; thus understanding the inner workings of 
this microenvironment remains essential in order for better and more 
targeted therapies to be developed. This review will identify important 
soluble growth factors and cytokines essential to the development of the 
prostate tumour microenvironment (local and metastatic), describing 
their functions, and highlighting their paracrine and autocrine actions 
on prostate cancer cells including their regulation of the androgen 
receptor (AR).

The Primary Tumour Microenvironment
The elements that are crucial for establishing a nourishing 

microenvironment within a primary prostate tumor site includes 
stromal cells, blood cells, stem cells, the extracellular matrix, and soluble 
factors. The array of growth factors and cytokines secreted by both the 
prostate epithelial cancer cells and stromal cells largely determines 
the fate of the disease. These soluble factors perform paracrine and 
autocrine functions in addition to behaving as chemoattractants in 
the microenvironment thus dramatically enhancing tumor growth 
and metastasis. This effect is further exacerbated by soluble factors 

which communicate bidirectionally (with both the cancer cells and 
the stromal cells), coordinating positive and negative feedback loops 
to create a continuous synergistic interaction between prostate cancer 
cells and the surrounding tissues. The androgen receptor (AR) is 
expressed in both normal and abnormal prostate epithelial cells. Upon 
ligand activation, the AR translocates into the nucleus to activate all 
the necessary genes responsible for normal functioning of the gland 
[4]. The normal prostate microenvironment consists of prostatic 
ducts, epithelial cells, stem cells, and neuroendocrine cells along with 
the stromal components including fibroblasts, vascular endothelial 
cells, nerve cells, immune cells, the extracellular matrix and soluble 
factors such as growth factors and cytokines. These components 
interact either directly or indirectly by secreting autocrine or paracrine 
signalling molecules [5]. During the progression of prostate cancer, the 
homeostatic interaction between these components becomes severely 
disorganized leading to aberrant cell growth. The natural progression 
of prostate cancer varies greatly and involves multifaceted pathologies 
such as increased sensitivity to androgens and non androgenic steroids; 
and ultimately progression towards steroid independent growth. The 
various histological changes observed reflect this dysfunction within 
the tumor microenvironment where the epithelial/stromal interaction 
is significantly compromised and altered, favoring not only tumor 
survival but also metastatic growth (Figure 1). Fibroblasts within 
the stromal tissue also contributes to this dysfunction through the 
production of growth factors, cytokines and matrix metalloproteases 
[6-8]. This ultimately increases cell proliferation to prime the tumour 
cells for metastasis to secondary sites. Soluble factors are pivotal 
components of the tumor microenvironment and key mediators in 
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Abstract
Maintaining a balanced prostate microenvironment is pivotal for normal development and homeostasis of the 

prostate gland. This balance however is severely disrupted during the progression of prostate cancer where the local 
microenvironment becomes compromised. The cellular components associated with the microenvironment, including 
stromal cells, immune cells, blood vessels, and the extracellular matrix, interact cooperatively with prostate cancer 
cells through paracrine and autocrine actions of soluble growth factors and cytokines thus creating a modified tumour 
microenvironment. Understanding how paracrine and autocrine factors interact in this microenvironment may lead to 
improved understanding of prostate cancer progression and to the development of drug combinations that might target 
both the primary and metastatic prostate cancer tumour microenvironments.
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tumor development and progression. These factors are secreted by 
many cell types including cancer cells to collectively have a profound 
effect on many biological functions such as proliferation, apoptosis, 
angiogenesis, differentiation, immune regulation, and survival. Because 
of their diverse biological roles, growth factors and cytokines have 
been excellent targets for developing novel therapeutic drugs against 
autoimmune disease and tumor growth. 

In the early stages of prostate cancer, growth factors and cytokines 
that are secreted by the stroma greatly contribute to the severity and 
unpredictable behaviour of the disease by enhancing activity of the 
AR and ultimately increasing tumour mass [1,9-11]. Eventually, the 
presence of androgens no longer becomes a necessity to activate the 
AR as parallel signaling networks from the tumour microenvironment 
converge to support a hormone independent pathway involving 
MAPK (mitogenic activated protein kinase) and AKT (protein kinase 
B) amongst others [1,11].

There are several important growth factors and cytokines essential 
to prostate cancer development, including epidermal growth factor 
(EGF), insulin-like growth factor-1 (IGF-1), stromal-derived factor-1 
(SDF-1), interleukin 6 (IL-6), and transforming growth factor beta 
(TGF-b). Studies have demonstrated that these soluble factors are 
able to maintain AR activity in order to propagate cell survival and 
proliferation within the primary tumour microenvironment. This 
review will discuss how these factors contribute to communication 
across the tumour microenvironment [1,12-14]. Other important 
growth factors such as bFGF, PDGF and VEGF have been extensively 
reviewed elsewhere [15,16]. EGF is an abundant growth factor present 
in prostate tissue, where its primary function is in promoting cell 
proliferation and invasion [17,18]. A recent study showed that EGF 
could activate and phosphorylate the AR at key functional residues 

independent of hormone stimulation [19]. Moreover, in patients 
undergoing androgen ablation therapy, the expression level of the 
EGF receptor (EGFR) increases as castration-resistant prostate cancer 
develops. This observation suggests that EGF plays a crucial role 
within the primary tumor microenvironment where its production 
is amplified through both paracrine and autocrine pathways. This 
regulatory mechanism possibly promotes prostate tumour growth and 
expansion by maintaining activity of the AR even in the absence of 
androgen stimulation [20-23].

Another important growth factor involved in prostate cancer 
development is transforming growth factor b (TGF-b). TGF-b is part 
of a superfamily of secreted proteins of which the members include 
inhibins, activin, anti-mϋllerian hormone and bone morphogenetic 
protein. Expressed in normal as well as malignant prostate tissues 
[24], TGF-b is highly conserved and is involved in multiple biological 
effects including angiogenesis [25], synthesis of components within the 
extracellular matrix [26], and immune T cell regulation [27]. Similar to 
EGF, TGF-b also cross-talks with the AR axis to promote development 
of androgen independent cancer growth [28]. Since TGF-b regulates 
cell cycle progression, apoptosis and modulation of immune T cells 
[5,29,30] its expression levels could be indicative of the fate the local 
tumour mass might take. In addition to inducing angiogenesis TGF-b 
also works with membrane metalloproteases and collagenase to induce 
tissue remodeling [4]. The overall effect thus involves enhanced TGF-b 
levels and its accessory protein endoglin [31] within the prostate tumour 
microenvironment to maintain deregulated AR signalling in epithelial 
cells [28] and to facilitate tumour growth and metastasis to secondary 
sites [29,32]. Since the most common site of prostate cancer mestastasis 
is the skeleton, it is now recognized that TGF-b also plays a strong part 
in promoting osteoblastic lesions. In vivo experiments with nude mice 
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Figure 1: Primary tumour and and bone tumor microenvironments. Similar soluble growth factors and cytokines (highlighted in red colour) are used in the two 
different tumour microenvironments.
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have demonstrated that targeted knockdown of TGF-b significantly 
decreases osteoblastic bone formation and tumour incidence [33]. 
Since the prostate tumor microenvironment constantly changes during 
progression of the disease, these associated changes in autrocine and 
paracrine signalling are reflected by how cancer cells respond to this. 
Whilst EGFR signaling potentially enhances aberrant growth factor 
induced hormone-independent activation of the AR; TGF-b is believed 
to contribute to prostate cancer induced bone metastasis.

In addition to TGF-b, stromal-derived factor 1 (SDF-1) also 
participates in facilitating bone metastasis. SDF-1 belongs to the 
chemokine family known as chemokine (C-X-X motif) ligand 12 
or CXCL12. CXCL12 is known for is strong chemoattraction for 
lymphocytes during embryogenesis where it directs migration of 
hematopoietic cells from the foetal liver to the bone marrow for the 
formation of large blood vessels [34,35]. In adults, SDF-1/CXCL12 
maintains a similar role in angiogenesis and this is observed in prostate 
cancer cell metastasis to the bone where CXCL12 initiates its signaling 
through the CXCR4 receptor to activate expression of alpha-vb3- 
integrins (cell surface receptors that play a role in adhesion, migration, 
invasion, growth and angiogenesis) [36] and CD164 (an adhesive factor 
involved in haematopoiesis) [37]. This causes down regulation in the 
expression of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) 
and angiostatin in parallel to secretion of VEGF and tissue inhibitor of 
metalloproteases 2 (TIMP2) via the PI3K/Akt pathway [38]. Secretion 
of interleukin-6 (IL-6) and interleukin 8 (IL-8) is then initiated via the 
MAPK/Erk pathway to collectively promote growth of the cancer cells 
within the bone microenvironment [38]. The contribution of CXCL12 
in this setting is highlighted when inhibition of its signalling almost 
completely stops the growth of prostate cancer in bone [39].

The cytokine interleukin-6 (IL-6) is an interesting molecule 
because of its diverse biological roles in many diseases. Its importance 
in cell proliferation, inhibition of apoptosis, inflammatory response, 
and osteoclast resorption of bone reflects the ubiquity of its expression 
in many tumor cells including prostate cancer [40-42]. Studies have 
shown that IL-6 can induce AR activity independent of androgens 
[43-45] where it is able to induce the AR to activate several androgen 
response promoters including PSA in the absence of steroidal hormones 
[43]. Since EGF, TGF-b and CXCL12 appear to contribute towards 
regulation of IL-6 secretion within the tumor microenvironment 
[46,47], a pattern of synergistic interaction between these factors 
and perhaps many more will eventually emerge to give us a better 
understanding of the key players involved in maintaining activity of 
the AR and promotion of tumour growth along a non-conventional 
signaling pathway.

Insulin-like growth factor-1 (IGF-1) is an endocrine hormone with 
similar molecular structure to insulin. Its primary action is mediated 
by binding to its receptor, the insulin like growth factor-1 receptor 
(IGF-1R), a receptor tyrosine kinase present on many cells that initiates 
intracellular signalling. Since IGF-1 is a strong activator of the Akt 
signaling pathway and an inhibitor of apoptosis, there are numerous 
studies being undertaken to elucidate the effects of inhibiting its 
signaling pathway for cancer therapy [48-53]. Epidemiological 
studies have established a link between high circulating serum IGF-
1 levels and the risk of developing advanced prostate cancer [50,54]. 
IGF-1 has been shown to stimulate proliferation of human prostate 
epithelial cell by enhancing activity of the AR [55,56]. Accordingly 
evidence also suggests that IGF-1R is highly expressed in prostate 
cancer cells [57-59] where it plays an important role in AR mediated 
progression towards androgen independent progression of the disease 

by compartmentalizing the AR into the nucleus [60]. Taken together, 
these numerous studies show that IGF-1 has an important functional 
role in AR signaling by potentiating the transcriptional activity of 
the AR in the face of androgen ablation, through recruitment of co-
activatiors and intracellular mediators such as the phosphoinositide 
3-kinase (PI3K) signaling pathway. Collectively these signals invoke 
the action of other growth factors and cytokines from the primary and 
secondary tumour microenvironment for progression of the disease 
(Figure 1).

The Bone Tumor Microenvironment
Greater than 90% of patients with metastatic prostate cancer 

will have bone metastases [61-63]. In these cases, fractures, spinal 
cord compression, debilitating bone pain, and other severe bone 
complications result [61]. By secreting soluble factors that directly 
affect the function of osteoblasts and other important cellular and 
tissue components, prostate cancer cells can severely alter bone 
homeostasis and establish conditions favorable not only for cell survival 
but also for continuous cancer growth. Some of the growth factors 
and cytokines secreted by prostate cancer cells within the primary 
tumour microenvironment are able to remodel the bone tissue where 
the tight regulation of osteoclasts and osteoblasts operating under 
normal conditions undergoes severe disruption [64,65]. The important 
paracrine and autocrine factors that are involved with this include 
parathyroid-hormone-related peptide (PTHrP), prostaglandins, bone 
morphogenic proteins (BMPs), TGF-b, IGF-1, endothelin-1 (ET-
1) and IL-6 [66]. During alteration of the bone microenvironment, 
the propagation of these growth factors and cytokines attract other 
components including osteoblasts, osteoclasts, and stromal cells to 
facilitate angiogenesis and infiltration of the cancerous cells [67]. 
A major function of these growth factors is to stimulate osteoblasts 
to express RANKL, an important protein that regulates bone and 
stimulates growth factor secretion from osteoclasts. These secreted 
growth factors which include IL-6 and IGF-1 then stimulate prostate 
cancer cells to proliferate and expand from the primary tumour site, 
resulting in a perpetual cycle of interaction that creates a severely 
dysfunctional bone tumour microenvironment (Figure 1, Right Panel). 
Studies have shown that in bone metastases, osteoblasts can promote 
prostate cancer progression through cross-talk between prostate cancer 
epithelial cells and the various stromal components within the bone 
microenvironment [68,69]. Some of the secreted factors are unique to 
and more abundant in the bone, including PTHrP, BMPs, and ET-1. 
These factors play a central role in osteoblast development and bone 
infiltration of prostate cancer cells by stimulating prostate cell derived 
PTHrP to induce expression of nuclear factor-κβ ligand (RANKL) [70-
72] and inhibit the expression of osteoprotegerin (OPG), which acts as 
a decoy receptor for osteoclasts [73]. This mechanism also explains why 
very high levels of PTHrP is observed in prostate cancer induced bone 
lesion sites [74,75]. The activation of RANKL on osteoblasts allows 
direct interaction with osteoclasts, which express its corresponding 
receptor RANK. This osteoblast-osteoclast interaction is then amplified 
by other soluble factors including IL-6 and TGF-b (both of which are 
also secreted by osteoclast cells), enabling continuous cross-talk with 
prostate cancer cells. 

ET-1 is another important bone remodeling soluble factor secreted 
by prostate cancer cells to act as a mitogenic factor for osteoblasts at 
metastatic sites resulting in dysfunctional bone formation [76-78]. 
Interestingly, some of the gene targets of ET-1, including IL-6 and 
RANKL are also upregulated and collectively may perpetuate the 
synergistic interaction of TFG-β, IGF-1, IL-6, SDF-1/CXCL12, and 
EGF between the bone matrix and prostate cancer cells.
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In summary, enhancing our understanding of the cooperative 
interaction between the stromal cells and cancer cells within the tumor 
microenvironment may lead to new therapeutic combinations of agents 
to disrupt them. It is evident that cancer cells are able to constantly 
interact and acquire adaptive and survival changes within the tumor 
microenvironment. Mechanistically, paracrine and autocrine actions 
of soluble factors released within this microenvironment are crucial 
in maintaining a perpetual interaction between the various cellular 
components of the surrounding tissues. Selectively targeting these 
growth factors and cytokines associated with the both the primary and 
secondary tumor microenvironment will undoubtedly produce better 
improved overall survival outcome for solid tumours such as prostate 
cancer.
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