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 The prevalence of diabetes has been increasing steadily in the United 
States and in many parts of the world. In 2010, 25.8 million individuals 
in the United States were diagnosed with diabetes, a figure almost 
double that of ten years previously [1]. Diabetes frequently occurs with 
other diseases, including dislipidemia, hypertension, cardiovascular 
disease and obesity. Common complications of diabetes include 
heart disease, blindness, kidney disease and peripheral neuropathy, 
often leading to amputation. People with type 2 diabetes are typically 
sedentary, overweight, and have decreased physical fitness [2], and the 
Center for Disease Control and Prevention and the American Heart 
Association consider lack of physical activity as a risk factor for heart 
disease [3]. 

Currently the first treatment prescribed for type 2 diabetes is 
lifestyle modification, including diet and exercise, though drugs are 
used when lifestyle changes are not sufficient. Weight loss is a primary 
recommendation in overweight or obese patients, particularly those 
with type 2 diabetes, and can show many short term benefits, such as 
improvements in glycemic control, reduction of cardiovascular risk 
factors, and resolution of coexisting illnesses. Lifestyle intervention 
alone can cause significant weight loss and at least a partial remission 
of diabetes [4].

The contribution of exercise to weight loss specifically is 
controversial, and studies have shown only an incrementally greater 
weight loss by exercise and diet over diet interventions alone. However, 
weight loss is not required for resolution of diabetes, and some drugs 
increase body weight while improving insulin sensitivity, such as the 
thiazolidinediones [5]. Thus obesity and increased fat mass are not 
always directly linked to diabetes: while the majority of those with type 
2 diabetes are overweight, a large proportion of obese individuals are 
not diabetic. Yet obesity is a major risk factor for developing diabetes. 
The location of fat tissue is a major determinant of insulin resistance, as 
visceral fat is associated with insulin resistance [6], and subcutaneous 
fat deposition confers a protective effect against diabetes [7]. Obesity 
and increased fat mass can determine diabetes and cardiovascular risk 

[8], thus an intervention to reduce body fat will also reduce diabetes 
risk. Exercise can reduce fat mass independently of changes in total 
body weight [9].

Exercise is also associated with significant improvements in 
other aspects of disease, such as the reduction of complications, 
associated metabolic diseases, and other risk factors [9]. The metabolic 
syndrome, typified by high blood pressure, high triglyceride levels, 
low HDL-cholesterol levels, high fasting glucose, and central obesity, 
is recognized to predispose individuals to the development of diabetes 
and atherosclerosis. Interestingly, most of the criteria of the metabolic 
syndrome pertain to blood measurements, and can therefore affect 
blood vessels. Further, many of the complications of diabetes, including 
retinopathy, kidney disease and peripheral neuropathy, also have a 
vascular basis. In their review, Joyner and Green note that exercise is 
much more protective against cardiovascular disease than would be 
expected based on changes in traditional risk factors, including BMI, 
blood lipids and blood pressure [10]. They suggest a vicious cycle 
between autonomic dysfunction and endothelial dysfunction leading 
to cardiovascular disease, which can be prevented by exercise [10]. 
Here, the role of the endothelium and microvasculature in exercise and 
diabetes is reviewed. 

Exercise as Treatment for Diabetes
Type 2 diabetes occurs when the body cannot maintain normal 

blood sugar levels. In the early stages of the disease insulin is unable 
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Abstract
The rising incidence of diabetes and the associated metabolic diseases including obesity, cardiovascular 

disease and hypertension have led to investigation of a number of drugs to treat these diseases. However, lifestyle 
interventions including diet and exercise remain the first line of defense. The benefits of exercise are typically 
presented in terms of weight loss, improved body composition and reduced fat mass, but exercise can have many 
other beneficial effects. Acute effects of exercise include major changes in blood flow through active muscle, an 
active hyperemia that increases the delivery of oxygen to the working muscle fibers. Longer term exercise training 
can affect the vasculature, improving endothelial health and possibly basal metabolic rates. Further, insulin sensitivity 
is improved both acutely after a single bout of exercise and shows chronic effects with exercise training, effectively 
reducing diabetes risk. Exercise-mediated improvements in endothelial function may also reduce complications 
associated with both diabetes and other metabolic disease. Thus, while drugs to improve microvascular function in 
diabetes continue to be investigated, exercise can also provide many similar benefits on endothelial function and 
should remain the first prescription when treating insulin resistance and diabetes. This review will investigate the 
effects of exercise on the blood vessel and the potential benefits of exercise on cardiovascular disease and diabetes. 
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to stimulate glucose storage in appropriate tissues. To compensate, 
the pancreas releases more hormone, but eventually fatigues, leading 
to insulin deficiency. Skeletal muscle [11] and liver insulin resistance 
[12] have both been proposed as the primary defect in type 2 diabetes, 
and the implication is that cellular insulin resistance is the major issue. 
There have been many studies investigating insulin signaling cascades 
in skeletal muscle [13-15] and a variety of other cell types [16,17], and 
both receptor defects and post-receptor signaling defects have been 
observed [18] yet insulin must get to the cells before it can engage the 
receptors, and relies on a functioning microvasculature for access. In 
the vasculature both endothelial [19-21] and vascular smooth muscle 
cells [22] have shown insulin signaling defects, and functional vascular 
impairments are also evident. In healthy individuals insulin signaling 
in the endothelium can increase perfusion of muscle, improving the 
delivery of nutrients and hormones to muscle [23]. Insulin sensitivity 
is strongly related to the ability of insulin to access muscle: this access 
is impaired in cases of both acute and chronic insulin resistance 
[24,25], and is likely due to impaired endothelial function. Endothelial 
dysfunction is evident in diabetes and even pre-diabetes [26,27], and 
men with diabetes have both impaired endothelium-dependent and 
endothelium-independent vasodilation [28]. Further, endothelial 
dysfunction is associated with a family history of diabetes [29], even in 
otherwise healthy individuals. 

Vascular Effects of Exercise
Muscle is the focal point during exercise, but is also a major 

metabolic organ, and the primary site for insulin-mediated glucose 
metabolism. Incremental changes in exercise intensity are matched 
by the amplitude increase in blood flow specifically to muscle, with 
only small effects or even decreases observed in other tissues [30]. 
This increase in blood flow to active tissue is termed active hyperemia, 
or functional hyperemia. Bulk blood flow to muscle can change 
significantly, particularly with exercise [31], but the distribution of 
blood through the muscle can be altered even with no changes in total 
flow [32]. Light exercise in humans causes a short term increase in 
forearm blood flow within 5 seconds of contraction. However, exercise 
also has a major effect also on microvascular blood volume, even 
when blood flow effects had returned to normal [32]. At rest, a low 
proportion of capillaries are exposed to blood flow at one time, with 

a rapid increase in the number of perfused capillaries after exercise 
[31], thus increasing functional capillary density. The microvasculature 
in the working muscle is selectively recruited [33], and those areas 
with lowest perfusion in the working muscle are recruited first [34]. 
Different muscle fibers serve different roles in the body, with highly 
oxidative muscle being engaged during exercise, and glycolytic muscle 
fibers performing more of a postural or structural role. Blood flow is 
closely coupled with the contraction of the muscle fibers [35], such that 
the magnitude of flow in each muscle fiber type reflects activity and 
oxidative metabolism of the muscle[36]. The mediators responsible 
for controlling muscle blood flow during exercise can arise from the 
muscle, nerves and the endothelium of blood vessels [34,37]. Vascular 
smooth muscle cells are located around the arterioles and some venules, 
and can constrict to change blood flow patterns, while capillaries do not 
typically contribute to blood flow changes [30] (Figure 1). Blood flow 
through capillaries is controlled upstream by small arterioles at rest, 
and the rapid recruitment of unperfused capillaries by exercise could 
suggest that nerves are responsible for this action [34]. The sympathetic 
nervous system is mainly responsible for the vasoconstrictor responses, 
and as the arterioles and larger vessels are innervated [38] the majority 
of sympathetic nervous system activity is localized to that area of the 
vascular tree. Physical exercise can enhance sympathetic nerve activity 
[39] to maintain arterial pressure, and may be involved in maintaining 
exercise tolerance, as reviewed by Thomas and Segal [38]. More recent 
studies have suggested organ specific differences in sympathetic nervous 
system activity with weight loss [40]. While exercise training has short 
term effects to improve sympathetic response [39], addition of aerobic 
exercise to a weight loss program did not augment any sympathetic 
changes [41], thus exercise training effects on the sympathetic nervous 
system may be due purely to a reduction in body weight. We suggest that 
short term effects of exercise on the sympathetic response are evident, 
but the contribution of the sympathetic nervous system activity to the 
beneficial effects of a long-term exercise intervention is uncertain, and 
instead functional improvement of the blood vessels remains a likely 
contributor to the benefits of exercise. 

Insulin relies on endothelium-dependent vasodilation to enhance 
perfusion, thus endothelial dysfunction reduces insulin-mediated 
increases in muscle perfusion, which can contribute to the metabolic 
deficit in diabetes. As exercise-mediated changes in perfusion are 
typically endothelium-independent, exercise is still able to recruit 
capillaries and thus increase muscle perfusion in obesity and type 2 
diabetes, even in the face of endothelial dysfunction. Numerous studies 
have now shown that while insulin’s vascular effects may be blocked in 
diabetes, exercise still maintains its ability to increase the distribution of 
blood flow through muscle [42]. While physical inactivity is associated 
with impaired microvascular function [43] training programs improve 
endothelial function [44]. However, while uncomplicated type 2 diabetic 
patients show normal capillary recruitment responses to exercise, in 
type 2 diabetic patients that also have microvascular complications 
this response is impaired [45], likely due to a functional impairment of 
blood vessels rather than morphological changes. The reduced exercise 
capacity observed in type 2 diabetics can be overcome with an exercise 
training program, though even when matched for physical activity and 
weight, diabetic patients have decreased physical fitness [2].  

Nitric oxide (NO) is the main vasodilator from the endothelium 
specifically involved in blood flow and blood distribution, and while 
reduction in nitric oxide synthesis lowered total blood flow, exercise-
mediated capillary recruitment was not affected [46]. In fact, inhibition 
of NO formation enhances both resting and exercise-mediated muscle 
oxygen uptake [47]; despite a reduction in total flow, microvascular 

Figure 1: Structural differences between artery, arteriole and capillary.  No 
vascular smooth muscle is located on the capillary; therefore flow through 
capillaires is modified by pre-capillary arterioles.  Cessation of flow through 
arterioles will prevent flow through a portion of the muscle. 
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flow was not affected, suggesting that NO is not involved in the vascular 
response to exercise. However, other studies have shown that exercise 
training required nitric oxide for improvements in flow-induced 
dilation [44]. It is therefore possible that while NO is not involved 
in the acute response to exercise, exercise training restores general 
endothelial health, as evidenced by a restored endothelium-dependent 
vasodilation in response to flow. Thus, as well as the acute effects of 
exercise which may be independent of NO, an exercise regimen may 
improve endothelial function. 

Metabolic Effects of Exercise
The distribution of blood through muscle increases the capacity 

for nutrient exchange. In exercise the primary purpose of functional 
hyperemiais for oxygen delivery, as the oxygen required by exercising 
muscle is much higher than resting muscle (reviewed in [37]). 
Recruitment of capillaries can decrease the velocity of blood flow 
by increasing the cross-sectional area of the capillary bed and the 
time available for exchange. Recruitment also increases surface area 
for exchange and decreases perfusion distances to promote oxygen 
delivery to tissues with exercise [34] (Figure 2). While in exercise the 
main metabolite required at the working muscle is oxygen, distribution 
of other nutrients can also be affected, including glucose, fats, other 
hormones and cytokines. Muscle metabolism can therefore be altered 
by perfusion of the tissue [48,49]. While there can be regulated 
transport of certain larger hormones across the vasculature [50,51], 
smaller molecules can diffuse across the endothelium easily, possibly 
making muscle perfusion a more important player in the delivery of 
glucose and oxygen to the tissue. 

Skeletal muscle is the main site of basal glucose uptake, and is the 
tissue most associated with exercise; therefore the effect of exercise 
would likely be localized in muscle. A single bout of exercise in 
sedentary men increases glucose uptake and glucose effectiveness, 
and it was suggested that the increased blood flow and distribution 
enhanced glucose delivery to the tissue [52]. Capillary recruitment 
with exercise contributes to glucose uptake, but NO is not required for 
exercise mediated capillary recruitment [46]. Instead, NO augments 

glucose uptake in high intensity exercise [46], but not low intensity 
exercise, and may be involved in a partitioning of fuel utilization 
[53]. Longer term, mild exercise training improves glucose disposal, 
even with no change in body composition [54]. This sustained effect 
was independent of the metabolic benefits of a single bout of exercise. 
Changes of insulin-specific glucose transporter expression have been 
detected after exercise training [55,56], as have changes in DNA 
methylation [57], but it is also possible that general improvements in 
endothelial function increase delivery, and thus metabolism, of glucose.

Fat deposition in muscle is often thought to be associated with insulin 
resistance [58,59], and selective reduction of intramyocellular lipid 
restores normal insulin signaling, reverting to a healthy metabolic state 
[60]. Thus, rather than intramuscular or total body fat, intramyocellular 
fat is related to muscle insulin resistance. However a paradox is noted 
when athletes are considered, as they often have very high levels of 
intramyocellular lipid, yet high insulin sensitivity [61]. Intramyocellular 
lipid content is increased after exercise intervention and diet change, 
coinciding with an increase in insulin sensitivity, suggesting that 
intramyocellular lipid content may not directly impair cellular insulin 
sensitivity [62]. Exercise can prevent lipid-induced insulin resistance 
[63], and the form the lipid is stored in may contribute to insulin 
resistance, asceramide or diacylglycerol [64-66] are more detrimental 
to cellular insulin action than triglyceride. Another component of the 
divergent effects of intramyocellular lipid on insulin action could be the 
site of storage of excess fat. Lipid droplets within the muscle cell may 
regulate insulin action [67] and possibly mitochondria such that lipid-
droplet derived fats can be used as fuel by exercising muscle [68]. In 
contrast, nutrient overload can alter the lipid droplet coat proteins and 
change the interaction of the lipid droplet with other organelles, causing 
inflammation and oxidative stress. Thus, while fat deposition in muscle 
may not directly affect vascular function, the resulting inflammation 
[69] and oxidative stress [70] from intramyocellular lipid can lead to 
endothelial dysfunction. Further, fat deposition in endothelial cells has 
not been directly measured, and may occur in a similar fashion as in 
muscle and directly affect vascular function.

Muscle is composed of oxidative and glycolytic fiber types, with 
oxidative fibers typically having more mitochondria, and being actively 
recruited during exercise. The density of capillaries is greater in 
oxidative muscle, reduced oxidative activity in type 2 diabetic patients is 
most likely due to a reduction in slow oxidative fibers [71]. The decrease 
in oxidative activity and increase in glycolytic activity in these patients 
was closely linked to the fraction of each fiber type present in muscle, 
suggesting that type 2 diabetic patients show both changes in fiber 
composition and fiber-specific metabolism. Mitochondrial dysfunction 
has been proposed to be both a cause [72] and a consequence [73] 
of insulin resistance, and may contribute to endothelial dysfunction 
[74]. If oxygen delivery is a component of mitochondrial health and 
biogenesis, it is possible that impaired perfusion may contribute to 
fiber type switching, where an oxidative fiber, which is typically highly 
vascularized and contains mitochondria, switches to a glycolytic fiber 
with less vascularity and mitochondria. As exercise can improve 
oxidative capacity, increase mitochondria content [75], and also 
increase muscle perfusion [31,32,34,45,76], the relationship between 
muscle perfusion, fiber type and mitochondrial function needs to be 
clarified.

Exercise training may or may not have effects on basal metabolic 
rate. In older adults, 26 weeks of training increased resting energy 
expenditure, and also improved lipid oxidation rates [77]. Habitually 
active women were also found to have a higher resting metabolic rate 

Figure 2: Vasodilation affects delivery, and thus metabolism.  The rate of 
transfer across the endothelium is dependent on surface area, permeability 
of the endothelium, diffusion distance, and concentration difference (Fick’s 
first law of diffusion).  Vasodilation increases surface area in arterioles for 
exchange, but will also recruit downstream capillaries, which will reduce 
diffusion distance and increase surface area for exchange.  Working muscle 
increases oxygen utilization, increasing the concentration difference from the 
blood vessel to the tissue.
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than matched sedentary controls, associated with lower body fat levels 
[78]. However, there are a variety of studies that show no effect of 
exercise intervention on basal metabolic rate, such as one that used a 
26 week training program investigating a mix of aerobic and resistance 
training [79]. These individuals were previously sedentary, and had a 
history of type 2 diabetes. Many aerobic training studies fail to show 
an improvement in resting metabolic rate, and Jennings et al. [79] note 
that resistance training intensity or frequency may increase fat-free 
mass, which is the primary cause of resting metabolic rate changes [80]. 
Thus, the lack of improvement in basal metabolic rate may be due to no 
significant change in fat free mass [79] or the reduced exercise capacity 
of diabetic patients [2]. 

Treating Metabolic Disease
Aside from improvements in endothelial function, exercise can also 

affect metabolism, and this can be exploited in metabolic disease such 
as diabetes. Systemic vascular improvement can also improve insulin 
sensitivity [81], so targeting the endothelium in diabetes is a valid 
option for treating metabolic disease [82]. The relationship between 
vascular action and metabolism has been previously reviewed [83], and 
impaired vascular function has been implicated as the link between 
obesity and diabetes [84]. Essentially, without appropriate blood flow, 
distribution of blood through tissues, or transport from the vessels, 
metabolic function is limited due to reduced nutrient and hormone 
availability.

Exercise training improves insulin sensitivity [54] and while this 
can be due to an increase in insulin specific glucose transporters after 
exercise [85] blood flow distribution changes may also indirectly 
improve metabolism. In rodent models of obesity that show a failure of 
insulin to increase muscle perfusion, muscle contraction can still cause 
capillary recruitment and glucose uptake [42]. Insulin and exercise have 
an additive effect on glucose uptake in muscle, and the authors discuss 
the potential contribution of blood flow and capillary surface area 
to their results [86]. In obese patients the defect in insulin-mediated 
skeletal muscle perfusion was restored by exercise, yet cellular insulin 
resistance was still evident [87]. Thus while exercise does increase 
the effect of insulin on glucose metabolism in both lean and obese 
individuals, it does not normalize the cellular deficit due to obesity. 
The increased insulin-mediated glucose uptake observed with exercise 
training is likely due to improved hemodynamic effects in muscle [76]. 

Complications
Insulin resistance per se may underlie the development of other 

aspects of the metabolic syndrome [81] and many of these can have a 
vascular basis. Targeting endothelial dysfunction is therefore a viable 
treatment for preventing vascular complications associated with 
diabetes [70]. The vascular component of exercise may well be linked to 
the reduction of diabetic complication such as retinopathy, peripheral 
neuropathy and nephropathy, as there is a vascular basis to many of 
these complications. The endothelium has been implicated in diabetic 
nephropathy [88], and the blood vessels formed in response to reduced 
perfusion in retinopathy show abnormal structure and function [89]. 
Endothelial dysfunction is evident in hypertension and cardiovascular 
disease, and is also noted in many cardiovascular risk factors, including 
abnormal blood lipid levels, and hyperglycemia. Treatment of those 
risk factors typically restores endothelial function. Therefore systemic 
vascular protection has been proposed as a treatment for type 2 
diabetes, that would prevent complications, but also improve insulin 
sensitivity [81].Physical exercise is anti-atherogenic [90], but also 

confers general vascular protection, and as such could prevent many of 
the complications associated with diabetes. 

Negative or Neutral Outcomes of Exercise
Lifestyle interventions such as diet and exercise are the first 

recommendation for treatment of diabetes and obesity, yet drug 
treatment is a very common therapy. While diabetic patients have 
defects in exercise capacity [2], this can be improved by either exercise 
training, or agents that improve insulin sensitivity. Certain hormones 
can be upregulated in metabolic disease, such as endothelin-1 in 
hypertension, and excessive levels of endothelin-1 can reduce aerobic 
capacity of muscle, and impair metabolism [91], most likely through 
impaired blood flow. Investigations are ongoing into certain drugs 
that are designed to mimic exercise. For example, sildenafil [92] and 
AICAR [93] have been shown to increase peripheral microcirculation. 
However, there can be adverse effects of various drugs in combination 
with exercise too. For example, rosiglitazone usage may improve 
exercise capacity, but may contribute to heart failure [94].

The Look AHEAD study shows diet and exercise as part of an 
intensive lifestyle intervention have no significant effect to lower 
cardiovascular events in overweight or obese individuals, which could 
suggest that exercise has no long term cardiovascular benefit [4], and 
complete remission of type 2 diabetes is rare [95]. However, the control 
group in this study was assigned to diabetes support and education, and 
no measure of physical activity or diet changes was performed in this 
group. Thus while 6 kg weight loss was achieved by diet and exercise 
after nearly ten years, the control group also showed weight loss of 4 kg 
[4]. The use of drugs in the Look AHEAD study may also explain the 
apparent lack of improvement in cardiovascular outcomes with lifestyle 
intervention [4], based on potential drug interactions listed above. 
However, the same study did show partial remission of type 2 diabetes 
[95], and noted that improvements in glycemic control by exercise were 
dependent on the blood glucose level prior to beginning the intervention 
[96]. A similar study investigated lifestyle intervention in overweight 
people with impaired glucose tolerance, and similarly showed no 
effect of intervention to decrease cardiovascular morbidity after 10 
years. However this study showed a decrease in the incidence of type 2 
diabetes in the lifestyle intervention group, thus exercise and diet was 
able to reduce type 2 diabetes incidence [97]. Therefore, exercise should 
be an early intervention to prevent type 2 diabetes and obesity, as it is 
more effective after a shorter duration of diabetes [96], and can prevent 
at-risk individuals from progressing to type 2 diabetes [97]. Further, 
short term exercise interventions have caused weight loss, restored 
insulin sensitivity, as well as improved cardiometabolic risk factors [98]. 
Therefore, exercise is an effective intervention early in the progression 
of disease, and has some benefits even in established diabetes. Further, 
the lifestyle intervention has documented improvements on other 
quality of life measures, including sexual functioning in women and 
obstructive sleep apnea, likely through weight loss. 

Perspectives
Exercise is an important part of a healthy lifestyle, particularly as part 

of disease prevention rather than cure. Aerobic activity is recommended 
by the American Heart Association and the American College of Sports 
Medicine to promote and maintain health, particularly in respect to 
cardiovascular disease, stroke, hypertension, type 2 diabetes, obesity, 
and other common diseases [3]. Further, incorporation of resistance 
training may have additional benefits [80]. Exercise has reduced 
efficiency in established type 2 diabetes [2] and the duration of diabetes 
may also be responsible for the lack of improvement in resting energy 
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expenditure in diabetic patients [79]. The clinical applicability of 
exercise in established diabetes will still improve factors discussed 
above such as improving atherosclerosis [90] and insulin sensitivity 
[54]. In spite of reported negative results [4], exercise may also improve 
cardiovascular risk factors, and prevent the progression to diabetes 
[97]. Early adoption of an exercise regimen will therefore provide best 
results in cardiovascular and metabolic outcomes.

Conclusion
Due to the rising incidence of diabetes, and the associated metabolic 

diseases such as obesity, cardiovascular disease and hypertension, 
lifestyle interventions including diet and exercise are the first line of 
defense. The benefits are typically thought of in terms of weight loss, 
improved body composition and reduced fat mass, but exercise can 
have many other beneficial effects independent of this. Exercise can 
affect the vasculature, improving endothelial health. Further, insulin 
sensitivity is improved, and the treatment of endothelial dysfunction 
may also reduce complications associated with both diabetes and other 
metabolic disease. While the use of drugs to improve microvascular 
function in diabetes has previously been reviewed [83], exercise can also 
provide many of the same benefits on endothelial function, and should 
remain an early intervention and the first prescription in combination 
with diet when treating insulin resistance and diabetes.
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