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Introduction
Diabetic retinopathy (DR) is considered as a disease of the 

microvasculature of the retina. The pathophysiology involves the 
loss of pericytes [1], vascular leakage, retinal angiogenesis [2], and 
alterations in structure and function of glial cells [3,4]. The progression 
of microvascular disease has been divided into two stages: an early 
stage (non-proliferative DR (NPDR), and later stage (proliferative DR 
(PDR)) [5]. NPDR, currently diagnosed by ophthalmic examination, 
is based on the presence of retinal vascular abnormalities, including 
microaneurysms, intraretinal microvascular abnormalities, obliterated 
capillaries, retinal hemorrhages, edema and exudates. All these signs 
indicate failure of regional retinal microvascular circulation, which 
probably results in ischemia. The new vessels are the main factors causing 
vitreous hemorrhage and a decrease in visual acuity in diabetics. They 
can also contribute to retinal detachment. Retinal edema is another 
factor causing visual impairment in diabetes [6], which implies the 
rupture of the blood-retina barrier and leakage of plasma from small 
blood vessels. The macula, the central part of the retina responsible for 
high acuity visual function, is particularly sensitive to this thickening of 
the retina, leading to vision loss. 

Many animal models have been used in research for diabetes 
mellitus (DM) and its complications. Streptozotocin (STZ) or Alloxan 
induced DM models are the most widely used [7], but also genetic 
models such as Nonobese diabetic (NOD) mice [8], Bio-Breeding 
(BB) rats [9], ob/ob mice [10], db/db mice [11], Goto-Kakizaki (GK) 
rats [12], Zucker diabetic fatty (ZDF) rats [13], and Otsuka Long-
Evans Tokushima fatty (OLETF) rats [14] are common. Although these 
animal models develop either type 1 or type 2 diabetes and subsequent 
ocular complications, the severe retinal lesions frequently observed in 
human diabetes patients such as preretinal neovascularization or retinal 
detachment are not found; at most, early pathological changes such as 
pericyte loss [15,16], retinal leukostasis [17], and abnormal patterning 
in electroretinograms (ERG) [18] are observed. In these models, the 
pattern of progression and symptoms closely mimic those of diabetes 
mellitus in humans and play a significant role in diabetes research, even 

though any single model may be inadequate for clarifying all the issues 
related to the disease. We established a new DR animal model, the 
desert sand rat (Psammomys obesus), which is long known to develop 
metabolic stress syndrome in captivity. In contrast to individuals 
maintained on a natural plant-rich diet, when reared on a high calorie 
regimen many animals exhibit hallmark features of type 2 diabetes 
[19]. The similarities between metabolic, physiological and endocrine 
changes in this species and those occurring in human type 2 diabetes 
make it a highly relevant animal model to understand pathogenesis of 
this disease [20]. Aside from a single study on tyrosine hydroxylase 
levels during diabetes [21], retinal modifications occurring in this 
species have not been reported. We demonstrated recently that the sand 
rat P. obesus has a remarkably cone-rich retina [22], as seen in other 
diurnal rodents, and represents a useful adjunct to available animal 
models of central vision. As a result of chronic severe hyperglycemia, P. 
obesus develops DR [23]. In addition, severe alterations such as cataract, 
microaneurysms, loss of pericytes, blood-retinal barrier breakdown 
and profound alterations in glial and neural cells are seen in P. obesus 
[23]. In the present review, we describe pathophysiology of ocular 
complications in diabetic P. obesus and make a structural comparison 
with other animal models of DR.

Vascular Changes 
Pericyte

Vascular abnormalities in P. obesus retina are characterized 
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Abstract
Psammomys obesus is an animal model of type 2 diabetes, which develops diabetic retinopathy as a result of 

chronic hyperglycemia after a high caloric diet. Distinctive features of induced diabetes in P. obesus are vascular 
structural abnormalities, elevated ratios of pro- to anti-angiogenic growth factors in the vitreous, blood-retinal barrier 
breakdown, neural and glial changes. Although many existing diabetic animal models develop ocular complications, 
retinal lesions frequently observed in diabetic patients such as preretinal neovascularization, retinal detachment 
and neovascular stages are only rarely observed in these models. Nevertheless, existing animal models are useful 
because preventing progressive capillary obliteration from occurring in the retina is likely to be a more beneficial 
therapeutic goal than merely inhibiting neovascularization in an already damaged and ischemic retina. This review 
highlights recent observations regarding the histological changes seen in blood–retinal barrier breakdown, the 
alterations of macroglial and neuronal pattern in diabetes, and how these changes lead to vision loss. Although, the 
P. obesus will be a useful model in studies of the pathogenesis and treatment of diabetic retinopathy.

Advantages of Psammomys obesus as an Animal Model to Study Diabetic 
Retinopathy
T. Saidi1*, R. Ben Chaouacha-Chekir2 and D. Hicks1

1Département de Neurobiologie des Rythmes, CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
2UR Ecophysiologie et Procédés Agroalimentaires, Institut Supérieur de Biotechnologie, Sidi Thabet 2020 Ariana, Université de la Manouba, Tunisie

Jo
ur

na
l o

f D
iabetes & Metabolism

ISSN: 2155-6156
Journal of Diabetes and Metabolism



Citation: Saidi T, Chaouacha-Chekir RB, Hicks D  (2012) Advantages of Psammomys obesus as an Animal Model to Study Diabetic Retinopathy. J 
Diabetes Metab 3: 207. doi:10.4172/2155-6156.1000207

Page 2 of 10

Volume 3 • Issue 6 • 1000206
J Diabetes Metab
ISSN:2155-6156 JDM, an open access journal

primarily by the loss of pericytes described among the first symptoms 
of early stages of retinopathy [1,24]. It is considered as one of the 
initial changes before the onset of vascular lesions in DR, such as the 
formation of acellular capillaries [1]. Loss of pericytes in the retinal 
microvasculature contributes to the development of retinopathy and 
onset of hyperpermeability of blood vessels. Their loss, coupled with 
endothelial cell apoptosis, seems to lead to the formation of acellular 
capillaries [1], a phenomenon that could contribute to increased 
permeability of blood vessels. Loss of pericytes was studied previously 
in Wistar rats injected with STZ after 3 months of induced diabetes 
[25]. Similar changes were observed in P. obesus after 5 months of 
induced diabetes [23].

Pericyte migration represents a new mechanism for the loss of 
pericytes in DR. The mechanism is still unclear but seems to be regulated 
by signaling along the Ang-2/Tie-2 pathway [26]. Many reports have 
shown increase in the proportion of endothelial cells/pericytes (E/P) 
in the retina of patients with diabetes, as well as animal models [24,27], 
and some studies attributed this change to the loss of pericytes induced 
by diabetes.

Pericytes, retinal Muller glial cells (RMG) and endothelial cells 
form the blood-retinal barrier. Pericyte degeneration is one of the 
earliest pathological changes seen in DR, and this loss disrupts the 
cellular metabolism of endothelial cells [28,29]. Reasons for pericyte 
death are thought to include over-activation of the protein kinase C 
(PKC) pathway, and by increased production of advanced glycation end 
products (AGEs) [30]. 

Among the other changes of blood vessels in DR, the presence 
of acellular capillaries indicates non-functional and degenerated 
capillaries, and is considered as non-perfused [31]. The blockage of 
the capillaries observed in humans, P. obesus and other animal models, 
occurs first in diabetes but has no clinical significance. The existence of 
such acellular capillaries is not enough to signify the presence of DR; 
however, the pathology is confirmed when the lesions become more 
important [32].

Structural abnormalities

Another vascular lesion characteristic of DR in humans is 
microaneurysms. These lesions are not reported in C57BL/6 or 
Ins2Akita mouse [33,34]. We reported the presence of microaneurysms 
in diabetic P. obesus. In other species such as KK mice, microaneurysms 
are found in older individuals [35]. Moreover, the study in db/db mice 
has shown an increase in capillaries of the retina in the inner nuclear 
layer (INL) [36] without extending into the vitreous body.

Pro-angiogenic factors

Vascular endothelial growth factor (VEGF): Western blot 
analysis showed up-regulation of the pro-angiogenic factor (VEGF), 
and down-regulation of the anti-angiogenic factor pigment epithelium 
derived factor (PEDF) in the vitreous of P. obesus. VEGF represents 
an important indicator of neovascularization, which will contribute 
to both microaneurysms and formation of new retinal blood vessels 
leading to vascular ischemia and hemorrhages, respectively. In most 
species studied, the major sources of VEGF are the retinal pigment 
epithelium (RPE), neuronal cells (especially the retinal ganglion cells 
(RGC)) and RMG [37]. VEGF and its high affinity receptor are found in 
the retina and may be important to maintain the homeostatic balance 
of the vascular tissue. It is known that VEGF increases in the retina of 
diabetic patients during the early phase of the disease [38]. This factor 
may be involved in the increase of permeability of retinal blood vessels 

observed in the preclinical stage of DR [39]. Indeed, since its discovery 
VEGF is considered the most powerful factor to increase permeability 
of vascular tissues in diabetes [40]. In addition, VEGF pathways 
increase the expression of nitric oxide synthase mRNA (NOS) and NO 
production [41].

To determine the pathogenic mechanisms of micro-vessel disease, 
Cukiernik and his colleagues examined the role of VEGF and its 
interaction with other factors in diabetic STZ mice [42]. VEGF may 
interact with intercellular adhesion molecule (ICAM-1), to increase 
permeability of blood vessels in diabetes [43].

Another important mechanism leading to an increase of VEGF 
in diabetes is the activation of the PKC pathway [43,44]. Other routes 
concern polyols that can also regulate the expression of VEGF, as well 
as non-enzymatic glycation and oxidative stress [45]. The inhibition 
of VEGF reduces vessel growth in rodent models (rat, mouse) of 
cancer, rheumatoid arthritis and eye diseases [46,47]. VEGF causes 
uncontrolled neovascularization that damages the retina, but also 
encourages the leakage of blood vessels and hemorrhage that lead to 
blindness. In human retina, the expression of this factor is elevated in 
patients with diabetes, as is seen in other models of DR and in P. obesus 
[23].

Pigment epithelium derived factor (PEDF): The concentration of 
angiogenic vascular factor VEGF is balanced by the synthesis of several 
anti-angiogenic factors, such as PEDF, angiostatin, endostatin and 
thrombospondin. In therapy, steroids, monoclonal antibodies, blocking 
of VEGF receptors, inhibitors of signal transduction and antagonists of 
the extracellular matrix have all been tested [48].

PEDF is an important inhibitor of proliferation and migration of 
endothelial cells, it suppresses ischemia caused by neovascularization 
of retinal blood vessels [49,50]. This anti-angiogenic factor is a 
glycoprotein of 50 kDa synthesized by RPE, it belongs to the superfamily 
of inhibitors of neuronal serine protease activity [50]. In human eyes, 
PEDF is decreased in the vitreous of patients with proliferative DR 
(PDR) [51]. The same observation was made with our spontaneously 
diabetic animal model P. obesus but not with other animal models of DR 
such as rats injected with STZ [52], and spontaneously diabetic rat Torii 
(SDT) [53], which show high levels of PEDF. Low levels of PEDF were 
associated with angiogenesis of blood vessels, leading to proliferative 
DR according to Ogata et al. [54]. Therefore, PEDF is considered as 
a therapeutic target for eye diseases that involve oxidative stress, such 
as PDR [55]. The balance between pro-angiogenic and anti-angiogenic 
factors is critical to determine the development of PDR. The study 
of the ratio of VEGF/PEDF reveals that the PDR has highest ratio in 
human [56] similar to those obtained in our results in P. obesus vitreous 
(Figure 1) and unlike other DR animal models [53,57,58].

PEDF protects cells such as pericytes and neuronal cells against 
oxidative damage [59]. PEDF inhibits AGEs and hyperpermeability in 
the retina and blood vessels in vitro [59]. PEDF induces endothelial cell 
apoptosis in new blood vessels, causing the inhibition of proliferation 
of these cells [60]. Nonetheless, the inhibitory mechanism action of 
PEDF on blood vessels, resulting from AGE and retinal endothelial cells 
apoptosis, remains to be clarified [61].

The different DR studies found in the literature do not clarify 
whether PEDF has a direct effect on the permeability of blood 
vessels, or inhibits the production of VEGF. Further investigations are 
necessary to determine the interaction between PEDF and VEGF in the 
pathogenesis of DR in diabetic P. obesus individuals. 



Citation: Saidi T, Chaouacha-Chekir RB, Hicks D  (2012) Advantages of Psammomys obesus as an Animal Model to Study Diabetic Retinopathy. J 
Diabetes Metab 3: 207. doi:10.4172/2155-6156.1000207

Page 3 of 10

Volume 3 • Issue 6 • 1000206
J Diabetes Metab
ISSN:2155-6156 JDM, an open access journal

VEGF and PEDF are important factors to maintain the retinal 
blood barrier. This latter is composed of tight junctions located 
between the endothelial cells of the retinal vessels and RPE and protects 
the retina against circulating molecules and cells, to confer immune 
privilege to the eye, and to limit the penetration of drugs into the retina. 
RPE cells are responsible for the hydro-ionic exchanges between the 
choriocapillaries and outer retina [62,63].

Tight junction proteins

Occludin is an important tight junction protein responsible for 
retinal-blood barrier formation [64]. This tight junction protein 
is reduced during the first weeks of diabetes in STZ injected mice, 
in correlation with increased permeability to serum albumin [65], 
reflecting the relationship between the tight junction protein and 
permeability of endothelial cells [65]. Similarly, the results in vivo 
have shown a reduction of tight junction proteins associated with the 
permeability of blood vessels [66].

The immunoreactivity of occludin in normal mice is more intense 
in blood vessels and arteries, but less intense in the postcapillary 
venules [67]. This protein is colocalized with zonula-occludin in the 
RPE of P. obesus, but also in the retina (horizontal cells and outer 
limiting membrane (OLM)) [22]. It can be disrupted in OLM as part of 
the blood-retinal barrier in pathological conditions, which contribute 
to fluid accumulation in the macula [63]. These tight junction proteins 
are altered in diabetic P. obesus (Figure 2), mice and monkeys [63].

Blood vessels and glial cells of the retina are in close contact and 
are able to communicate directly with each other [68]. Diabetes may 
increase the permeability of blood vessels in the retina and can change 
components of the optic nerve [69,70], disrupt interactions between 
neurons, glial and endothelial cells [71]. Therefore, integrity of blood-
retinal barrier (vascular permeability degree) depends on factors 
released by glial cells [72]. Increased expression of tight junction 
proteins is due to factors secreted by astrocytes. The redistribution 
of glial fibrillary acidic protein (GFAP) in the astrocytes and RMG 
of diabetic rats was reflected in changes by occluding in vascular 

endothelial cells. Diabetes reduced occludin immunoreactivity in the 
capillaries and induced redistribution from continuous cell border to 
interrupted, punctate immunoreactivity in the arterioles. Therefore, the 
astrocytes increase both vascular endothelial cell barrier function and 
tight junction protein (Zonula occludens (ZO-1)) synthesis [67,73]. 
This mechanism is related to the integrity of the blood-retinal barrier 
in vivo [74].

Changes in the Neural Retina
Structural changes

It is acknowledged that structural and functional damage also 
occurs in non-vascular cells in the retina of diabetic patients [75]. 
Delayed reduction of latency and amplitude of the oscillatory 
potential of the ERG have been often seen in diabetic patients [1]. 
Immunohistochemical analyses of the human retina are of poor quality 
because of the long post-mortem delays, but the results obtained 
with other species, especially rodents, show loss of RGC, horizontal, 
amacrine and photoreceptor cells by apoptosis, a few weeks after 
the onset of diabetes [76,77]. Diabetes leads to dysfunction and 
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Figure 1: Vitreal Proangiogenic and Antiangiogenic Growth Factor ratio as a 
function of total vitreal protein content in ND and HDD P. obesus.  Solid line is 
the result of correlation (linear) analysis. A statistically significant relationship 
was found between total vitreal protein content and VEGF/PEDF ratio. The 
correlation coefficient (r) was 0.23.
Abbreviation: ND: Natural Diet; HDD: High-protein Diet Diabetic [23].
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Figure 2: Immunoreactivity of tight junctions protein (Occludin) in P. obesus 
retina. Occludin is expressed as a discrete line at the level of the outer limiting 
membrane (OLM) in normal P. obesus (A, A’), but is almost absent in diabetic 
animals at this level (B,B’).  Quantitative densitometric measurement of band 
densities compared to α-tubulin confirmed the decreases in HDD (**p<0.01, 
ANOVA) samples (C, C’). Triplicate blots of occludin and α-tubulin are shown 
above each corresponding column. Bar in B =50 µm for all panels.
Abbreviation: GCL: Ganglion Cell Layer; INL: Inner Nuclear Layer; IPL: Inner 
Plexiform Layer; ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; OS: 
Outer Segments; ND: Natural Diet; HDD: High-protein Diet Diabetic.
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degeneration of cells by apoptosis in post-mortem of human and 
animal retina. However, some results in mice are not in agreement with 
those obtained in rats [78].

Recent studies of retinal thickness in diabetic mice showed a 
reduction in the layers [33,79]. There was reduced thickness of retinal 
layers of Ins2Akita mice after 22 weeks of hyperglycemia [33], and 
in some studies of diabetic C57BL/6 mice injected by STZ [78-80]. 
Our results show that P. obesus retina has a thinned and scalloped 
appearance after 5 months of diabetes. However, this reduction seems 
more related to obesity rather than the diabetic state itself, since the 
differences were also seen in the strain that gains weight without 
exhibiting hyperglycemia [23]. Spontaneous diabetes induces the loss 
of RGC of Ins2Akita mice [33]. Five to six months of hyperglycemia 
leads to a significant decrease in the number of cell bodies of RGC layer, 
accompanied by a significant decrease in the thickness of the internal 
plexiform layer. Gastinger et al. have shown that diabetes causes a loss 
of 16% of RGC in the peripheral retina [81], whereas the central region 
is not affected. The number of dopaminergic and cholinergic amacrine 
cells in the retina are decreased in diabetic patients [82]. We noted 
the loss of cell number at different cell layers in the retina of P. obesus 
including ganlion cells [23]. We reported in this study the increase of 
immunohistochemical staining of tyrosine hydroxylase in amacrine 
cells of diabetes animals in comparison with control (Figure 3).

Many studies of RGC cultured in vitro with glucose-rich medium 
showed an increase of synaptic terminals length. Total density and a 
number of synaptic terminals and structural reorganization of dendrites 
were affected [77,87]. These changes are mainly related to the ON-
type RGC but not the OFF-type [81]. Similar morphological changes 
have been observed in vivo in human diabetic retina and rats injected 
with STZ [88,89]. Moreover, the axons of RGC observed by NF200 
immunostaining have many varicosities in P. obesus and rats injected 
with STZ [88]. These data indicate that there are morphological changes 
of retinal RGC subtypes in diabetes condition, revealing the alteration 
of function of these cells. 

Glial cells

Expression of glial fibrillary acidic protein (GFAP): Glial cells are 
an important element connected directly with retina and retinal blood 
vessels. Over-expression of GFAP has been often observed in the retina 
of diabetic rats [3,4], diabetic patients [90], and diabetic P. obesus [23]. 
RMG are associated with astrocytes, endothelial cells and neurons, 
and play a regulating role in blood-retinal barrier [91]. Under normal 
conditions, GFAP is expressed only by astrocytes [92]. In ischemic 
conditions, our results in diabetic P. obesus retina have shown over-
expression of GFAP by astrocytes and RMG [23]. Barber [93] found 
that the increased expression of GFAP appears to be produced only in 
the RMG and preceded by reduced expression in astrocytes, indicating 
that the sub-type occluding glia has differential response to diabetes 
[67]. The activation of glial cells is not found in the retina of diabetic 
C57BL/6 mice [78,84] or in diabetic Ins2Akita mice [33]. Diabetic db/
db mice and animals without aldose reductase (an enzyme involved in 
glucose metabolism [36]) have shown an inhibition of GFAP expression 
in glial cells during diabetes. Structural changes are observed in the 
microglia of diabetic rat retina by alloxan [85]. The reasons for these 
changes are not yet known.

The effect of glial activation on capillaries degeneration and 
neurodegeneration of the retina during diabetes are not well studied. 
The glial activation and loss of RGC does not seem to occur in all 
diabetic animal models studied, indicating that changes in retina can 
be controlled by different ways involved in the diabetic vascular lesions 
[69]. 

Expression of glutamate: Other changes in glial cells function 
suggest that the metabolism of glutamate could be affected in the retina 
by diabetes. Glutamine synthetase and glutamate aspartate transporters 
are reduced in diabetic P. obesus retina, indicating alterations in 
glutamate metabolism [23]. Decreased levels or activity of both 
proteins are observed in other rodent models [94,95]. Elevated levels of 
glutamate are also detected in the vitreous of diabetic animals [3] and 
humans [96], indicating disturbed glutamate metabolism.

Many studies have shown that glutamate excitotoxicity is 
responsible for the loss of neurons in DR [97,98]. Some of them suggest 
that diabetes increases glutamate level in the vitreous body [3,96]. DR 
also reduces the ability of the retina to convert glutamate. Diabetes 
leads to dysfunction and degeneration of cells by apoptosis in post-
mortem human and animal retina. [14 C] was converted to glutamine 
[14 C], presumably due to reduced glutamine synthetase [3]. These data 
suggest that diabetes disrupts the metabolism of glutamate through two 
different enzymes. These changes may be preceded by reduction in 
the activity of glutamate transporter in RMG, which may increase the 
glutamate concentration in extracellular medium [94].
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Figure 3: Immunodetection of tyrosine hydroxylase and parvalbumin in the 
retina of P. obesus. Tyrosine hydroxylase immunostaining was intense in 
plexiform layers in control (B, arrow) but it was reduced in diabetic animals 
(E, asterisk). Histological sections of P. obesus retina immunostained with 
parvalbumin antibody were very similar in control (C) and diabetic animals (F). 
Bar in F=50 µm for all panels.
Abbreviation: GCL: Ganglion Cell Layer; INL: Inner Nuclear Layer; IPL: Inner 
Plexiform Layer; ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; OS: 
Outer Segments; ND: Natural Diet; HDD: High-protein Diet Diabetic.

Ganglion cells 

There was a reduction of 20% to 25% of RGC in C57BL/6J mice at 
14 weeks of diabetes [83]. In our study, diabetic P. obesus retina showed 
a significant reduction (44%) of RGCs. Other studies in rats and mice 
have shown no loss of RGC during one year of diabetes [77,78,84,85]. 
The apoptosis of RGC and other cells of the retina in the db/db mice 
increased [36]. Similarly, after one month of diabetes, the number of 
apoptic RGC and internal nuclear layer is higher in diabetic KKAy mice 
compared with the control group, as the rate of cell death increased 
during diabetes [86].
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Amacrine cells

Several studies have demonstrated neuroprotective effects of 
dopamine against glutamate neurotoxicity [99]. The dopamine 
production is reduced in the diabetic retina [82]. This decrease is mainly 
due to a reduction in quantity and/or activity of tyrosine hydroxylase, the 
enzyme constituting the rate limiting step of dopamine biosynthesis. In 
addition, the precursor quantity in diabetic retina could be low, leading 
to reduced tyrosine hydroxylation efficiency. Tyrosine hydroxylase 
levels are lower than normal in diabetic rat retina [100]. The same result 
was observed in P. obesus retina by Larabi et al. [21]. Our results have 
shown that the staining of amacrine cells with anti-tyrosine hydroxylase 
is not intense in diabetic animals in comparison with control animals 
(Figure 3). Amacrine cells, acting as integrators of signals from cone-
bipolar cell to RGC, use parvalbumin as a cytosolic sensor via a Ca2+ 
dependent mechanism [101]. In rat retinas, parvalbumin is found in 
amacrine cells [102]. A-II type amacrine cells, the most frequent sub-
class, are responsible for transmitting signals from RGC to bipolar 
cells [102]. In P. obesus retina we did not observe a difference in the 
expression of parvalbumin in different groups (Figure 3), despite the 
several changes of retinal neurons such as cones and bipolar cells [23]. 
Reduced expression of dopamine by diabetic retinal amacrine cells is 
linked to that of RGC [103]. The expression of parvalbumin is increased 
in cone bipolar cells in diabetic rat retina injected by STZ [104].

Bipolar cells

Bipolar cells are also affected by diabetes. Activated bipolar cells 
express several isoforms of PKC. The localization of α, β, γ, ε and ζ PKC 
isoforms was shown in the rabbit retina by immunohistochemistry 
[105]. The sub-types α, β, γ of PKC sensitive to Ca2+ are located in 
different populations of neurons. The isoform ζ, which does not need 
Ca2+ to be activated, is co-localised with PKC-α [105]. Among the 
different isoforms, PKC-α is the most abundant [106]. 

The activation of PKC by hyperglycemia can change the action 
of insulin on blood vessels [107]. There are many reports about the 
effect of PKC activation on secretion, resistance and action of insulin. 
Das Evcimen and King have shown that isoforms β II, ε, α and β I are 
more activated in diabetes in vitro [107]. Multiple studies have shown 
that the activation of atypical ζ isoform of PKC plays an important 
role in pathological mechanisms of diabetes. Insulin can activate 
phosphatidylinositol 3-kinase (PI3K), 3-phosphoinositide-dependent 
kinase-1 (PDK-1), and PKC ζ [108]. The activation of PKC ζ by insulin 
has a significant impact on protein synthesis [109]. However, many 
studies suggest the activation of PKC isoforms, indirectly by PI3K, 
prevents insulin action [110].

Our results in P. obesus retina show decreased expression of both 
PKC α and ζ isoforms in diabetes [23]. These two isoforms are Ca2+ 
independent and co-localised in rod bipolar cells. This decreased 
expression may be related to photoreceptor alterations in diabetic P. 
obesus retina [23]. Molecular and cellular mechanisms of PKC in DR 
have not yet been fully clarified. The beta-II isoform of PKC is the most 
studied among the other isoforms in different animal models of DR 
[111]. This isoform is over-expressed in the retina of diabetic P. obesus 
(Figure 4), as is the case in the vast majority of animal models of DR 
[111].  

Stimulation of PKC is necessary to activate VEGF [112], which was 
identified as one of the main mediators of DR [113]. Most studies show 
that the activation of PKC can reduce blood flow in the retina with less 
than 10 years of diabetes [114]. After 10 years of diabetes, blood flow 

in the retina appears to be increased [115]. Blood flow anomalies and 
retinal ischemia contribute to vessel dysfunction. Retinal ischemia is 
the result of increased expression of vascular growth factors such as 
VEGF, leading to macular edema and PDR [116].

The decrease in PKC phosphorylation can reduce Na+/K+ ATPase 
phophorylation in vascular and neuronal tissues of diabetic patients 
and animals [117,118]. It can lead to lowered neuronal conduction 
and nerve regeneration [119]. The activation and expression of 
different growth factors by PKC activation [116,120] may indirectly 
affect capillary permeability. High expression of VEGF and vascular 
permeability factor (VPF) is seen in diabetic patients and animal 
retinas, and participates in neovascularization of PDR [116].  

Expression of presynaptic proteins

Other alterations were detected in diabetic retina, including the 
synaptic terminals. Diabetes reduces the expression of presynaptic 
proteins and reduces basal synapsin phosphorylation in rat retina [121]. 
We also noted an increase in synaptic proteins such as synaptophysin 
(SVP 38) in P. obesus [23]. Functional disability in rodent’s retina 
may be the result of deficit of specific presynaptic proteins. Studies 
by VanGuilder et al. [121] showed that the ability of retinal synapses 
to conduct regulated neurotransmission is considerably reduced by 
one month of experimental diabetes in the rat. The retinal content of 
the synaptic proteins synaptophysine, synapsin I, Vesicle-associated 
membrane protein 2 (VAMP2), Synaptosomal-associated protein 25 
(SNAP-25) and Postsynaptic density protein 95 (PSD-95), as well as the 
basal phosphorylation of synapsin I is reduced within this short period 
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of diabetes. These changes indicate that diabetes has a wide effect on 
retinal synapses, and needs early intervention to prevent or reverse the 
neuronal dysfunction in DR.

Photoreceptor cells 

Glucose is necessary for the maintenance and function of all 
animal cells. For cells that do not require insulin to increase glucose 
transport, such as photoreceptor cells, increased extracellular glucose 
concentrations lead to increased intracellular levels by diffusion 
through the cell membrane. This metabolism can generate several 
abnormalities, such as increased consumption of oxygen and high 
concentrations of sorbitol, decreased concentrations of Myo-inositol 
[122,123]. Phipps et al. [124] have shown that photoreceptor function 
is altered by two parameters (contrast sensitivity and color sensitivity) 
in diabetic patients. The amplitude of the current generated in the dark 
by the photoreceptor and measured by the ERG a-wave was reduced. 
The decreased current amplitude rate ranged from 16% to 24% after 12 
weeks in diabetic rats injected by STZ. The response of photoreceptors 
was not affected by diabetes, while dark adaptation occurred faster in 
diabetic animals compared to controls [124-126]. In diabetic patients, 
changes in photoreceptor sensitivity were shown by the presence of 
abnormal amplitudes [127]. 

Mechanisms to explain these effects include the loss of rod 
photoreceptors [128], and reduced density of Na+/K+ ATPase 
dependent channels. Diabetes induces changes in Na+/K+ ATPase 
activity [129,130] and can also reduce the b-wave. Histological and 
neurodegenerative anomalies of cones represent about 60% and 30% 
respectively, in zebrafish retina treated with glucose [131]. Similar 
results were observed in diabetic P. obesus retina [23]. This concurs with 
epidemiological studies in human, in which severity of DR is related to a 
longer period of diabetes [131,132]. The disturbances of photoreceptors 
have been reported only in rods but not in cones of some rodent models 
of DR [2,133,134]. For humans, disordered functional activity of cones 
(blue or short wavelength sensitive (S) cones) has been shown in several 
studies in diabetic patients [135,136]. Decreased numbers of S cones 
were reported in fovea of diabetic post-mortem patients, but rods were 

not altered [137]. These results are in agreement with those obtained in 
P. obesus [23]. 

We observed loss of photoreceptor cells in the outer nuclear layer 
(ONL) and a significant decrease of M and S cone opsin expression 
in diabetic animals [23]. This reduced expression of cone opsins may 
be related to cell loss, in contrast to rhodopsin expression. Alvarez et 
al. [131] have observed in zebrafish, an animal model of DR, some 
morphological alterations in cones. However, studies in nocturnal 
rodents (rats and mice) have not clearly identified changes mentioned 
and observed in cones. It can be explained by the scarcity of cones (2-
3%) [138]. It would be easier to explore these changes in P. obesus retina 
because it is rich in cones (41%) [22]. 

The number of cones broadly varies in animal species according 
to their activity pattern: nocturnal species (rats and mice) of rodents 
contain only 2 to 3% of cone photoreceptors [138], whereas those 
diurnal species which have been studied possess 30 to 40% (Arvicanthis 
ansorgei, Lemniscomys barbarus and Psammomys obesus) [22,139,140]. 
Kim et al. [125] showed changes in the phototransduction of rat retina 
in early stage of diabetes. Diabetic animals showed increased expression 
of rhodopsin kinase (RK) in retina; however expression of transducin 
(Gαt) and recoverin was decreased. Changes in the RK, transducin 
and recoverin can induce dysfunctional phototransduction in the early 
stages of diabetes [141]. In P. obesus retina, immunohistochemical 
studies appear to be insufficient to confirm the results of the expression 
of these proteins (Gαt and recoverin) obtained in diabetic and control 
animals (Figure 5).

Recent studies indicate that the responses of RK and Gαt are caused 
by oxidative stress [67,142] and vascular changes [65]. In addition, the 
level of Gαt2 declines rapidly in photoreceptors, participating in loss 
of color sensitivity [143,144]. Changes of RK and Gαt could induce 
visual dysfunction and vascular abnormalities in blood-retinal-barrier 
and abnormal phototransduction in diabetes patients [65,67,145-147]. 
The limited action of RK or Gt on phototransduction has been well 
studied in vitro [148-150]. Regeneration of rhodopsin is sensitive to 
extracellular glucose concentrations [151], and prevented by oxygen 
deficiency [152]. A reduction of rhodopsin is observed in diabetes [153] 
and may explain the concomitant reduction of arrestin. Deactivation of 
the photo-response begins with phosphorylation of rhodopsin activated 
by RK, followed by the binding with arrestin [154,155].

Conclusion
In conclusion, P. obesus represents a very interesting animal model 

to study DR. High-calorie diet induces type 2 diabetes very similarly 
to the condition observed in humans. Some structural and molecular 
changes observed in P. obesus retina have not been observed in other 
animal models, and appear relatively quickly, showing the advantages 
of using this animal model compared to others. The cone-rich retina 
of these animals is an excellent model to study macular responses of 
the human retina. Finally, it could be used for screening of therapeutic 
treatments of diabetes complications.
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