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Review Article

Diabetic Osteoporosis

Abstract
Type 1 and type 2 Diabetes mellitus are associated with a decrease in bone quality that leads to an increase 

in low-stress fractures, a condition called diabetic osteopathy. A growing body of evidence strongly indicates that 
one of the main pathological mechanisms of diabetic osteopathy is an excess accumulation of advanced glycation 
end products (AGEs) on collagen of bone extracellular matrix. This accumulation increases exponentially during 
ageing, and is further increased in conditions of substrate carbonyl stress such as chronically uncompensated 
Diabetes mellitus. AGEs can form covalent crosslinks throughout collagen fibrils, progressively increasing bone 
fragility and decreasing bone post-yield strain and energy, fracture resistance and toughness. In addition, bone 
marrow mesenchymal cells, osteoblasts and osteoclasts express receptors such as RAGE that can bind AGEs with 
high affinity, altering normal cellular homeostasis. Binding of AGEs by RAGE diminishes the osteogenic potential 
of mesenchymal cells, inhibits osteoblastic bone-forming capacity and induces a long-term decrease in osteoclastic 
recruitment and bone-resorbing activity. Altogether, these cellular effects of AGEs depress bone turnover, and 
thus induce an even greater accumulation of AGEs. Recent in vivo, ex vivo and in vitro evidence indicates that 
anti-diabetic and anti-osteoporotic treatment may prevent the deleterious effects of AGEs on bone cells, providing 
alternative options for the pharmacological treatment of diabetic osteopathy.
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Introduction
Diabetes mellitus (DM) and osteoporosis are highly prevalent 

global diseases and represent an increasing burden for health care 
systems. There is a growing body of clinical and experimental 
evidence reporting the association of type 1 and type 2 DM with 
bone abnormalities, including osteopenia, osteoporosis and/or an 
increased incidence of low-stress fractures, in what has been termed 
diabetic osteopathy [1]. Many adult patients with type 1 DM show mild 
osteopenia. Although their decrease in bone mineral density (BMD) is 
frequently around 10% [2] and this would be expected to double hip 
fracture risk [3], in actual fact the incidence of low-stress fractures is 
7-12 times that of age-matched non-diabetic individuals [4,5]. On the
other hand, people with type 2 DM usually have normal or moderately
elevated BMD that would be expected to be associated with a reduced
incidence of osteoporotic fractures, however they actually show an
approximately 2-fold increase in hip, extremity and vertebral fractures
[3-7]. These clinical observations have been put forward as evidence
for a significant decrease in the material properties of bone tissue (i.e.,
bone quality) associated with both types of DM [8].

Although not completely elucidated, several mechanisms have 
been implicated in diabetic osteopathy, such as disturbed glucose 
metabolism, systemic and local (bone) low-grade inflammation, 
alterations in levels of growth factors and/or cytokines, increased 
oxidative stress and excess accumulation of advanced glycation 
endproducts (AGEs) in bone. A chronic pro-inflammatory state 
develops during the early stages of DM, suggesting a loss of defence 
mechanisms. Thus, inflammation-associated cytokines such as TNFα 
are elevated and can directly affect the growth and apoptosis of 
bone cells [9]. Increased levels of reactive oxygen species (ROS) are 
also observed in DM, and they have been shown to induce cellular 
alterations in various tissues. Several mechanisms can contribute to 
this Diabetes-induced oxidative stress, such as AGEs accumulation, 

increased polyol pathways, activation of protein kinase C isoforms, 
glucose oxidation and/or superoxide overproduction [10].

Chronic hyperglycaemia in uncompensated diabetes leads to an 
excessive non-enzymatic glycosylation of proteins with accumulation of 
AGEs, especially on long-lived proteins such as collagen present in the 
extracellular matrix of connective tissues (e.g., cartilage, bone, tendon, 
and skin) [11-13]. AGEs accumulated on extracellular matrix (ECM) 
proteins, as well as circulating AGEs, can interact with cell-surface 
AGEs-specific receptors. Three classes of receptors for AGEs have been 
described: AGER1, which is involved in the clarification of AGEs and in 
the suppression of ROS and inflammation induced by AGEs; AGER2 or 
Galectin-3; and RAGE (receptor for AGEs) [14]. RAGE is a member of 
the immunoglobulin receptor superfamily and binds multiple ligands, 
including high mobility group box 1 protein (HMGB1), S100 proteins, 
certain variants of amyloid β protein, and AGEs-modified proteins 
and lipids. The binding of AGEs to RAGE generates intracellular ROS 
production and pro-inflammatory responses, up-regulation of RAGE 
and a cascade of signal transduction pathways, which in pancreatic 
beta cells leads to impaired insulin secretion and in peripheral insulin-
dependent tissues can induce insulin resistance and micro-vascular 
complications. The binding of several ligands to RAGE on different cell 
types activates various signalling pathways including p38, JNK MAP 
kinases, Rho GTPases, PI3K, JAK/STAT, as well as NF-κB signalling 
which induces ROS generation and oxidative stress. Thus, activation of 
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RAGE further increases ROS and inflammation in Diabetes and other 
chronic diseases [14].

In bone ECM, excess accumulation of AGEs occurs as a function 
of ageing and duration of Diabetes, and has been found to impair the 
mechanical properties of bone [15]. We and other researchers have 
demonstrated the expression of RAGE on bone cells, and found several 
deleterious effects of AGEs-RAGE interaction on the physiology of 
these cell types [16] (Figure 1). In addition, we have shown that anti-
diabetic and anti-osteoporotic drugs can be useful to prevent in vivo, 
ex vivo and in vitro deleterious effects of AGEs on bone cells, and thus 
could provide useful options for the treatment of diabetic osteopathy 
[17-19].

Enzymatic and Non-enzymatic Crosslinks in Bone 
Collagen

The mechanical properties of bone are influenced by different 
factors, including the degree of mineralization of its individual basic 
structure units, micro-damage accumulation and formation of collagen 
cross-links [15]. In particular, collagen cross-links differ in their origin 
and localization, and have been classified in two categories: enzymatic 
and non-enzymatic.

Enzymatic cross-links are formed in a site-specific and closely 
controlled process by the combined action of the enzymes lysyl 
oxidase and lysyl hydroxylase. Initially these enzymes induce the 
formation of immature intra-fibrillar divalent keto-imines, which can 
then spontaneously form mature inter-fibrillar trivalent pyridinium 

cross-links [20]. Since a deficit in their enzymatic formation leads 
to a decrease in bone strength, these finely regulated divalent and 
trivalent cross-links are considered to have a beneficial effect on bone 
mechanical properties [21]. However, divalent cross-links are more 
prevalent in bone collagen and have thus been proposed to be more 
important in maintaining the mechanical properties of bone [15].

On the other hand, non-enzymatic intra- and inter-fibrillar cross-
links are a sub-class of AGEs that include fluorescent structures such as 
pentosidine, and non-fluorescent moieties such as the more abundant 
glucosepane. These AGEs form intra- or inter-molecular covalent 
bonds in long-lived proteins such as collagen. Non-enzymatic cross-
links can potentially be formed on any site in which there is an amino 
acid with appropriate side-chains (such as lysine or arginine), and their 
abundance relative to collagen depends on bone turnover (i.e. collagen 
half-life) and on the concentration over time of carbohydrate or lipid 
substrates that give rise to reactive carbonyl compounds (i.e., “carbonyl 
stress”). Thus, in clinical conditions with carbonyl stress such as DM, 
AGEs cross-links tend to accumulate at a far greater rate than in non-
diabetic individuals [22]. As this accumulation is not controlled by 
cellular processes and is non-site-specific, it is generally believed to 
deteriorate the mechanical properties and biological functions of bone 
[23].

Excess Formation of AGEs in Bone is a Hallmark of 
Diabetes and Ageing

There is a growing body of evidence confirming the accumulation of 
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Figure 1: AGEs accumulation on bone collagen is a central mechanism for Diabetic osteopathy. Uncompensated Diabetes mellitus elevates circulating reactive oxygen 
species, glucose and/or carbonyl stress, which can induce excess AGEs formation on bone extracellular matrix. Accumulation of collagen-AGEs reduces bone quality, 
strength and post-yield properties. Additionally, collagen-AGEs interact with the receptor for AGEs expressed by bone cells, inhibiting their functionality and decreasing 
bone turnover. This induces an even greater accumulation of AGEs in bone with development of diabetic osteopathy, thus increasing fracture risk. AGEs: Advanced 
Glycation End Products. RAGE: Receptor for AGEs.
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AGEs in bone ECM and in the articular cartilage of ageing individuals. 
Almost 20 years ago, collagen non-enzymatic glycosylation and 
AGEs-associated fluorescence was shown to increase in the cortical 
bone of ageing and/or diabetic rats [24-26]. Several authors have also 
described a progressive accumulation of AGEs in human cortical 
and trabecular bone as a function of ageing. The levels of AGEs in 
aged human bone have been estimated both by measurement of 
collagen-associated fluorescence [27,28] and by determining levels of 
pentosidine in bone ECM as a marker of cross-linking AGEs [29-31]. 
Given that glucosepane has been shown to be the most prevalent AGEs 
structure in skin ECM and glomerular basement membrane collagen 
[32], this non-enzymatic cross-link would also be expected to play an 
important role in the ageing of mineralized tissues. However, to date its 
accumulation in bone ECM has not yet been evaluated.

In the study reported by Odetti and co-workers, pentosidine was 
measured in femoral and knee cortical bone samples obtained from 
104 non-diabetic individuals. The concentration of this AGEs collagen 
cross-link was found to increase exponentially with patient age, with a 
doubling time of around 20 years [29]. Interestingly, these authors also 
found a significant positive correlation between pentosidine levels in 
serum and in cortical bone.

In articular cartilage the turnover of ECM is very low. Articular 
cartilage is thus a candidate tissue for progressive accumulation of 
AGEs with ageing. This has been demonstrated for human individuals 
by different authors [33,34] and has been proposed to be one of the 
causal factors of ageing-associated osteoarthritis [35]. However, 
recent studies have found that in vivo AGEs formation on cartilage by 
intra-articular injection of ribose as a glycating agent was not able to 
enhance disease progression in an animal model of spontaneous knee 
osteoarthritis [36].

In theory, the effect of Diabetes on the accumulation of AGEs in bone 
should be even greater than that of physiological ageing. Surprisingly, 
this effect of Diabetes has been studied in animal models but not yet 
in humans. A significant increase in non-enzymatic glycosylation 
of bone collagen was found in alloxan- and streptozotocin-induced 
models of type 1 Diabetes, in both young and ageing rats [8,24-26]. 
The accumulation of AGEs in bone was found to correlate positively 
with the duration of Diabetes and with the level of hyperglycaemia. 
Recently, bone AGEs content has also been evaluated in partially 
insulin-deficient spontaneously diabetic rats [37]. These authors found 
that as Diabetes evolved over time there was a progressive increase 
in pentosidine (AGEs) cross-links of bone collagen, together with a 
significant decrease in divalent immature enzymatic cross-links, which 
coincided with impaired bone mechanical properties.

Accumulation of AGEs on bone ECM impairs its 
mechanical properties

Bone is a two-phase composite material with an organic phase 
of cross-linked type 1 collagen molecules, and an inorganic phase 
of hydroxyapatite nanocrystals. The mechanical properties of bone 
(toughness, strength and stiffness) are derived from its structural 
properties at multiple length scales in its microarchitecture, ranging 
from nanometric covalent and non-covalent molecular interactions to 
near-millimetric osteonal organization [28]. The mineral phase provides 
stiffness whereas collagen fibres provide tensile strength, ductility and 
toughness. Thus, changes in enzymatic and non-enzymatic collagen 
cross-links can affect bone mechanical properties.

In physiological conditions, formation of divalent (immature) 

enzymatic cross-links and their maturation to trivalent moieties is 
closely regulated by bone collagen turnover, by the expression of lysyl 
hydroxylases and lysyl oxidases, and possibly also by interaction with 
proteoglycans and collagen-binding proteins such as periostin [38], in 
order to optimize the mechanical properties of collagen fibres within 
a narrow beneficial range. Indeed, the ratio of divalent to trivalent 
enzymatic crosslinks in bone is usually very close to 2:1. In pathological 
situations this balance can be altered, affecting post-yield properties 
of bone. For example, in partially insulin-deficient rats, before their 
spontaneous development of Diabetes (i.e., in their pre-diabetic phase) 
a decrease in bone strength was observed which was attributed to a 25% 
reduction in divalent cross-links, while trivalent cross-links and AGEs 
remained unchanged [37].

On the other hand, formation of AGEs cross-links on bone collagen 
fibres is a non-regulated and accumulative process, believed to be an 
important determinant of the age- and Diabetes-related deterioration 
of bone post-yield properties such as ductility and toughness. This has 
been demonstrated by the in vitro induction of AGEs in bone samples, 
and determination of changes in their mechanical properties as a 
consequence of glycation. Several studies have found that the in vitro 
formation of AGEs cross-links on bone collagen generates an increase 
in bone fragility and a decrease in bone post-yield strain, energy, 
fracture resistance and toughness, in this last case due to multiple 
changes in bone tissue micro-damage mechanisms that lead to an 
overall reduction in its ability to dissipate energy [27,39,40]. AGEs have 
been proposed to stiffen the collagen matrix so that its fibrils dissipate 
less energy, and this would allow for an increase in the formation 
and propagation of micro-damage throughout bone ECM [41]. In 
a recent study, in vitro AGEs formation on bovine bone samples on 
one hand induced inferior cortical post-yield strain and flexural 
toughness, but on the other hand correlated positively with measures 
of strain accommodation and energy absorption before failure [42]. 
These results suggest that the increase in AGEs cross-linking cannot 
completely explain the embrittlement of bone associated with ageing 
and Diabetes.

In vivo, many AGEs can be formed between lysine and arginine 
side-chains within the helical (non-telopeptide) domain of collagen. 
They would be expected to increase the resistance of collagen to 
enzymatic breakdown and thus its half-life, further promoting the 
accumulation of AGEs. This has been demonstrated in alloxan-
induced type 1 Diabetes in rats [25]. In addition, Diabetes-induced 
AGEs accumulation in bone ECM has been associated with a decrease 
in femoral trabecular bone volume and cortical width [8,25], and with 
a decrease in long-bone stiffness, energy absorption, elastic modulus, 
maximum load and fatigue life [8,37].

Excess levels of AGEs in bone ECM have also been associated with 
incident and prevalent osteoporotic fractures in ageing non-diabetic 
human individuals [43,44]. In particular, Saito and co-workers have 
found an increase in pentosidine cross-links and a decrease in enzymatic 
cross-links in bone ECM from ageing patients with intra-capsular hip 
fracture versus gender- and age-matched post-mortem controls [44]. 
These results are similar to those found by the same authors in a rat 
model of spontaneous insulin-deficient Diabetes [37]. In combination, 
both studies suggest that absolute and/or relative changes in the levels of 
enzymatic and non-enzymatic collagen cross-links could be important 
determinants of bone quality in osteoporosis and diabetic osteopathy. 
Interestingly, in a recent study the accumulation of AGEs in skin was 
evaluated by non-invasive trans-cutaneous auto-fluorescence, and 
found to correlate negatively with calcaneal ultrasound osteo-sono 
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assessment index suggesting an inverse correlation between AGEs 
accumulation and bone strength [45]. Although both determinations 
used in this study were surrogate markers (for bone AGEs and 
mechanical properties respectively) the results suggest that this method 
could be useful for long-term prospective studies.

Turnover of AGEs-modified collagen generates low molecular 
weight AGEs-peptides, which localize to plasma prior to their renal 
excretion in urine [46]. Based on these considerations, different 
authors have evaluated the correlation between plasma or urine levels 
of AGEs moieties such as pentosidine and bone alterations such 
as osteoporosis, diabetic osteopathy and/or incident and prevalent 
fractures. As mentioned above, plasma pentosidine has been shown 
to have a significant linear correlation with cortical bone pentosidine 
[29]. In an interesting study by Hein and colleagues, serum pentosidine 
concentrations were found to be significantly higher in patients with 
osteoporosis than in age- and gender-matched controls [47]. However, 
the authors were only able to find a significantly positive correlation 
between serum pentosidine levels and participant age for the group 
of healthy controls, suggesting that osteoporosis could involve a more 
intensified generation of AGEs. Yamamoto and co-workers recently 
showed that in postmenopausal women with type 2 Diabetes, increased 
serum pentosidine was independently associated with prevalent 
vertebral fractures [48]. In a 5-year observational study with elderly 
non-diabetic women, prevalent and incident vertebral fractures were 
positively correlated with elevated levels of urinary pentosidine [49]. 
However, in another observational cohort study with elderly men and 
women with or without type 2 Diabetes, urine pentosidine levels were 
found to be independent predictors of clinical incident fractures and 
prevalent vertebral fractures in patients with type 2 Diabetes, but not in 
non-diabetic individuals [50].

As discussed above, the excess accumulation of AGEs on bone 
ECM that can be observed in ageing and Diabetes alters its mechanical 
properties and can thus predispose to increased fracture incidence. 
However, formation of AGEs such as pentosidine or glucosepane 
irreversibly alters the side-chains of arginine residues, and could 
thus also interfere with integrin-mediated interactions between RGD 
sequences of the ECM and bone cells. In order to prove this hypothesis, 
we demonstrated that the in vitro modification of type 1 collagen 
by AGEs decreased its free arginine residues, and thus significantly 
inhibited the attachment of osteoblasts via integrin receptors [51]. 
These effects, together with other specific actions of AGEs on bone-
derived cells that will be described below, can further affect bone 
metabolism and contribute to osteoporosis, diabetic osteopathy and 
their clinical consequences including low-stress fractures.

AGEs Modulate Bone Cell Metabolism via Specific 
Receptors

In many cell types, AGEs exert their deleterious actions via binding 
to specific receptors such as AGE-receptor 1, RAGE and Galectin-3 
[14]. The presence of receptors for AGEs has also been demonstrated 
in bone cells. Osteoblasts express RAGE [52,53] and Galectin-3 
[54], with receptor levels that depend on the stage of osteoblastic 
differentiation [55]. RAGE expression has also been shown in bone 
marrow mesenchymal/progenitor cells [56,57] and in osteoclasts [58].

After its discovery 20 years ago as a receptor for AGEs, RAGE has 
since been found to recognize certain proteins with high affinity, and so 
AGEs are currently considered to be accidental ligands for this member 
of the immunoglobulin superfamily of receptors. A physiological 
ligand for RAGE is the chromatin protein high mobility group box 

1 (HMGB1), which is considered an “alarmin”, i.e. an endogenous 
molecule released by dead and dying cells that acts as a signal for tissue 
damage indicating the need for repair. HMGB1 has been shown to 
be released by apoptotic osteoblasts and osteocytes in vitro, and thus 
could act as an osteocyte alarmin to mediate normal bone remodelling 
and/or pathological bone loss [59]. In addition, HMGB1 can trigger 
the differentiation of human bone marrow mesenchymal cells into an 
osteoblastic phenotype [60]. Another family of physiological ligands 
that have been described for RAGE are the S100 proteins. Through 
in vitro studies these proteins have been found to inhibit osteoblast 
mineralization and increase osteoclast recruitment and differentiation, 
via binding to RAGE [61]. A pathological ligand for RAGE appears 
to be the Swedish mutation of amyloid precursor protein (APPswe, 
associated with early-onset Alzheimer’s disease). APPswe has been 
found to promote osteoclast activation in vivo and in vitro via RAGE, 
providing a potential mechanism underlying the increased bone 
fracture rate in patients with Alzheimer’s disease [62]. Interestingly, in 
RAGE-knockout mice [10,63] an increase in bone mineral density and 
a decrease in osteoclast development and function have been observed.

The effect of AGEs on bone cells was first observed 20 years ago 
[64]. In this study de-mineralized bone particles were modified in vitro 
with AGEs prior to their sub-cutaneous implantation in rats, as a model 
for endochondral bone formation. The presence of AGEs induced a 
90% decrease in osteoblastic differentiation determined by alkaline 
phosphatase activity (ALP), in vivo calcium uptake and histological 
analysis. These results encouraged further studies to determine the 
direct effect of AGEs on individual bone-derived cells such as bone 
marrow mesenchymal cells, osteoblasts and osteoclasts.

Kume and co-workers found that AGEs increased the apoptosis 
and thus decreased the viability of human mesenchymal cells in vitro. 
AGEs, via interaction with RAGE and up-regulation of this receptor, 
also decreased the adipogenic, chondrogenic and osteogenic potential 
of mesenchymal cells [56]. However, most studies with bone cells have 
focused on the actions of AGEs on osteoblasts in culture.

In our laboratory we have found that AGEs (soluble or attached to a 
collagen matrix) decrease the attachment, proliferation, differentiation 
and mineralization of osteoblastic cells in culture [51,65,66] via 
an increase in intracellular reactive oxygen species (ROS), in the 
expression of nitric oxide synthase [66] and in the activation of 
extracellular-regulated kinases (ERK) [52]. In addition, we have shown 
that exposure to AGEs (a) modifies the secretory pattern of IGF-1 and 
its binding proteins inducing a decrease in the levels of free IGF-1 [67], 
(b) increases osteoblast apoptosis and (c) up-regulates the expression 
of RAGE and Galectin-3 to exacerbate the receptor-mediated effects 
of AGEs in these cells [68]. We have recently found that the AGEs-
mediated increase in osteoblast apoptosis is secondary to a disruption 
of its actin cytoskeleton with formation of geodesic domes [69]. 
Similarly, other authors have also found that AGEs stimulate osteoblast 
apoptosis via MAP kinase pathways [70] and up-regulate osteoblastic 
expression of RAGE [53,71-73].

Simultaneously with our first studies, other researchers reported 
coincident anti-osteogenic effects of AGEs on primary osteoblasts of 
rat [24] and human origin [74], and additionally found that AGEs 
can stimulate osteoblastic interleukin-6 secretion suggesting their 
involvement in the modulation of bone remodelling. All in all, these and 
our results are in agreement with the immunohistochemical findings of 
Hein and co-workers in trabecular bone biopsies from patients with 
osteoporosis. These authors described a positive association of bone 
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AGEs levels with patient age, and an inverse association with relative 
osteoblast-covered bone surface [47].

Recently, additional signal-transduction mechanisms have been 
described for RAGE-dependent anti-osteogenic effects of AGEs on 
osteoblasts. RAGE activation was found to consecutively suppress Wnt, 
PI3K and ERK signalling, thus inhibiting osteoblastic proliferation 
[75]. In another study, AGEs increased the apoptosis and inhibited 
the proliferation and differentiation of osteoblasts by decreasing the 
expression of Runx2 and Osterix, two transcription factors that are 
essential for osteoblastic progression [76].

In osteoclasts the effects of AGEs have been poorly defined, and 
published reports are controversial [58,77]. Using unfractionated 
mouse bone marrow cultures that included osteoclasts among other 
cell types, Miyata and co-workers found an increase in resorption pits 
(but not in osteoclast number) when the cultures were incubated for 
4 days on AGEs-modified dentin slices [77]. In the other published 
report on this issue, Valcourt et al. found that both human and rabbit 
osteoclasts expressed significant levels of RAGE, and that when 
cultured on ivory slices modified with the AGEs cross-link pentosidine, 
osteoclasts transiently increased their resorptive action after 3 days but 
were greatly inhibited if cultures were extended to 8 days [58]. Thus, it 
appears that although the presence of AGEs may initially increase the 
activity of osteoclasts, exposure to AGEs for longer (and more clinically 
relevant) periods of time greatly diminishes their recruitment and 
activity. While further research is necessary to confirm these results, 
they are in agreement with the vision of diabetic osteopathy as an 
adynamic bone disease.

Bone healing also appears to be affected by the presence of AGEs. 
In an interesting study by Santana and co-workers, craniotomy defects 
healed significantly less (and expressed greater levels of RAGE) in 
streptozotocin-induced diabetic mice than in non-diabetic animals. 
A similar decrease in bone healing was observed when AGEs were 
applied locally to defects in non-diabetic mice [78]. Thus, AGEs-
RAGE interaction appears to modulate the process of bone repair, 
although this must be confirmed in studies with weight-bearing bones 
of endochondral formation. Recently, a unifying mechanism has been 
proposed suggesting that inflammatory signalling secondary to excess 
AGEs and ROS increases osteoblast and chondrocyte apoptosis, as well 
as initial osteoclast survival, thus inducing impaired bone regeneration 
in Diabetes [9].

Pharmacological Treatment can Modulate the 
Deleterious Effects of AGEs on Bone

In recent years our research group has tested the hypothesis that 
pharmacological treatment may prevent the deleterious effects of AGEs 
on osteoblasts by mechanisms related to a decrease in the generation 
of oxidative stress, and by modulation of survival signals and of RAGE 
expression. In particular we have evaluated whether an anti-diabetic or 
anti-resorptive treatment can prevent or reverse the deleterious actions 
of AGEs on osteoblastic cells. This novel aspect of pharmacological 
treatment had not been previously investigated by other research 
groups and introduces an interesting perspective regarding possible 
beneficial side effects of widely used treatment options for Diabetes 
and osteoporosis.

We first demonstrated in vitro direct pro-osteogenic actions 
of metformin on osteoblastic proliferation, differentiation and 
mineralization [79]. We later found that metformin treatment could 
also prevent the in vitro AGEs-induced decrease in osteoblastic 

differentiation and induction of apoptosis, in this last case by decreasing 
caspase-3 activity and intracellular oxidative stress [80]. Interestingly, 
in recent in vivo and ex vivo studies with rats we found that orally 
administered metformin improves bone regeneration and femoral 
microarchitecture, and increases the osteogenic potential of bone 
marrow progenitor cells via an increase in the expression of Runx2 and 
in the phosphorylation/activation of AMPK, a well-known sensor of 
energetic balance. Metformin can additionally prevent the in vivo and 
ex vivo anti-osteogenic effects of the insulin-sensitizer rosiglitazone in 
rats [19,81].

Following our line of research, other investigators have also found 
in vitro and in vivo osteogenic effects of metformin in most [82-84] 
but not all studies [85]. It has recently been demonstrated that AMPK 
activation increases intracellular antioxidant defences and decreases 
the mitochondrial production of reactive oxygen and nitrogen species 
[86]. Activation of AMPK in other cell systems has been shown to 
reduce TNF-alpha-induced activation of caspase-3, and consequently 
inhibit cell apoptosis [87].

As an additional mechanism for metformin action, we also 
demonstrated that it curbs the up-regulation of RAGE induced by 
AGEs [80]. Although AGEs are not the only ligands for RAGE, AGEs-
RAGE interaction has been shown to generate ROS, induce osteoblast 
apoptosis and activate inflammatory signalling cascades such as TNF-
alpha, IL-1beta and IL-6 that affect bone homeostasis [17,53,67,88,89].

More recently we have demonstrated that the development of 
partially insulin-deficient Diabetes in rats induces deleterious effects 
on long-bone micro-architecture that are associated with an inhibition 
of bone marrow progenitor cell (BMPC) osteogenic potential. This 
in turn is mediated by a decrease in the Runx-2/PPAR-gamma ratio 
and up-regulation of RAGE in BMPC. All of these Diabetes-induced 
alterations can be totally or partially prevented by oral administration 
of metformin [57]. Although we did not directly measure AGEs levels 
in diabetic bone ECM, they would be expected to be elevated. Thus 
we speculate that metformin could be exerting its preventive effect on 
diabetic osteopathy in our rat model, in part by inhibiting the deleterious 
effects of bone AGEs. Interestingly in a nation-wide observational case-
control study in Denmark, use of metformin in patients with type 2 
Diabetes was associated with a significantly decreased fracture risk [90].

A presently unresolved issue is the precise effect in Diabetes 
of currently used anti-osteoporotic treatments. At present their 
prescription in patients with diabetic osteopathy has not been 
firmly recommended, since results of clinical studies tend to be 
contradictory [91-93]. In an attempt to shed light on this issue, our 
group demonstrated for the first time the preventive effects of anti-
osteoporotic drugs such as strontium ranelate and the N-containing 
bisphosphonate alendronate, on the deleterious actions of AGEs on 
osteoblasts [17,18,69]. Other authors previously demonstrated that the 
bisphosphonates incadronate and minodronate were able to supress 
anti-angiogenic effects of AGEs in vitro [94,95].

For both strontium ranelate and alendronate, the initial mechanism 
of action against AGEs-induced cytotoxicity is activation of L-type 
calcium channels. However, the downstream cascades appear to be 
different. On one hand, low doses of alendronate prevent intracellular 
oxidative stress and in consequence revert morphological changes 
and apoptosis induced by AGEs, but do not affect expression of ERK 
[18,69]. On the other hand, strontium ranelate prevents the osteoblastic 
secretion of IL-1beta and TNF-alpha induced by AGEs, an effect that is 
downstream to the activation of ERK. In addition, strontium ranelate 
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also prevents the AGEs-induced decrease of beta-catenin activation, a 
key regulator of osteoblastic function [17].

In vivo studies are currently under way in our laboratory to evaluate 
the possible preventive effects of orally administered alendronate or 
strontium ranelate, on bone alterations induced in models of type 1 
and type 2 Diabetes.

Conclusions and Perspectives
Chronically elevated ROS, glucose levels and/or carbonyl stress 

associated with uncompensated Diabetes mellitus induce an excess 
accumulation of AGEs on long-lived proteins such as bone collagen. 
Excess AGEs in bone ECM reduce bone quality, strength and post-
yield properties. In addition, collagen AGEs can interact with RAGE 
expressed by bone cells, impairing the homeostasis and activity of 
mesenchymal cells, osteoblasts and osteoclasts. This in turn decreases 
bone turnover inducing an even greater accumulation of AGEs with 
development of diabetic osteopathy, thus increasing fracture risk 
(Figure 1). Pharmacological treatment with anti-diabetic and anti-
osteoporotic drugs may prevent the deleterious effects of AGEs on 
bone cells.

The progressive accumulation of AGEs in diabetic bone would 
be expected to correlate with the deterioration in bone quality. This 
has been shown in animal models, but surprisingly has not been 
demonstrated yet in patients with Diabetes. Studies to prove this 
hypothesis are necessary in order to design specific strategies to prevent 
diabetic osteopathy and its associated bone fractures.
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