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Abstract
The biocatalytic activity of five species of Passiflora leaves (i.e. P. amethyst, P. incarnata, P. quadrangularis, P. 

edulis, P. cerulea) was tested in the reduction of the ketone “cocktail” (i.e. 5-hexen-2-one 1, acetophenone 2, cis-
bicyclo[3.2.0]hept-2-en-6-one 3 and 2-methylcyclohexanone 4) and in the oxidation of the corresponding alcohols 
“cocktail” (i.e. 5-hexen-2-ol 5, 1-phenylethanol 6, endo-bicyclo[3.2.0]hept-2-en-6-ol 7, exo-bicyclo[3.2.0] hept-2-en-
6-ol 8, trans-2-methylcyclohexanol 9 and cis-2-methylcyclohexanol 10). P. amethyst and P. incarnata show the best 
activity in the reduction, while P. quadrangularis affords low yield in reduction but gives appreciable results in oxidation 
towards a cocktail of model substrates. This simple screening permits to test the potential of parts of fresh plants that 
can be used as biocatalysts in more ecologically and economically promising transformations.

Keywords: Passiflora amethyst; Passiflora incarnate; Passiflora 
quadrangularis; Passiflora edulis; Passiflora cerulean; Enatioselective 
oxido-reduction; Biocatalytic activity 

Introduction
Asymmetric synthesis remains a challenge for synthetic chemists 

as the demand for enantiomerically pure compounds continues to 
increase. Several of these compounds are potential chiral building 
blocks of pharmaceutically important molecules, agrochemicals, 
flavours and asymmetric chiral ligands [1]. Moreover the enantiomers 
of a number of chiral drugs may exhibit great differences with regard to 
pharmacodynamics, pharmacokinetics and toxicological properties [2].

In this field the biotransformations, defined as chemical reactions 
catalysed by isolated enzymes, microorganisms or cell cultures [3], are 
a “green opportunity” to obtain enantiomerically pure building blocks. 
The use of purified enzymes [4], whole microorganisms [5] or plant 
cell cultures [6], mainly at industrial scale, is limited by cost and by the 
difficulty to handle them, due to their great sensitivity to changes in pH 
or temperature, requirements of additional cofactors, long and tedious 
procedures [7]. In order to overcome these limitations, the possible 
use of vegetable whole organs, as leaves, without any preliminary 
preparation or transformation, has been considered [8]. 

Since the biochemical potential of plant cell cultures to produce 
specific secondary metabolites such as drugs, flavours, pigments and 
agrochemicals is of considerable interest in connection with their 
biotechnological utilisation [9], plants have the potential to integrate the 
greening of organic chemistry with the use of cheap and effective reagents.

Moreover, this methodology offers numerous advantages both in 
terms of time-saving, since fastidious steps of preparation, extraction, 
purification and multiplication of the biocatalyst are not necessary 
thus promoting the preservation of a maximum catalytic activity of the 
enzymes [10], and in terms of environment-saving, since the reactions 
are performed in aqueous media, at room temperature, and generate 
only biodegradable waste [11].

In a green context, several reports have so far described the 
possibility of using parts of fresh plants as biocatalysts, i.e. the reduction 
of aromatic aldehydes using of fresh leaves of banana and maize plants 
[12], the stereoselective reduction of prochiral ketones by wild tissues 
of South American endemic plants [13] and the bioreduction of 
acenaphthenequinones by using peach and carrot [14]. 

Passiflora commonly known as passion fruit plant belongs to the 
family Passifloraceae, which comprises nearly 500 species. This genus, 

native to Tropical America and Brazil, and widely distributed all over 
the world [15], is principally popular for their fruits, but, traditionally, 
in American and European countries leaves are largely used for tea 
infusion [16]. Machado and co-workers have reported the use of fruit 
peel of Passiflora edulis for the reduction of aromatic aldehydes and 
ketones, obtaining very good yields and moderate enantioselectivity [17].

In this work, we have screened the biocatalytic activity of various 
Passiflora spp. leaves (i.e., P. amethyst, P. incarnata, P. quadrangularis, 
P. edulis, and P. cerulea) using a “cocktail” of ketones (i.e. 5-hexen-
2-one 1, acetophenone 2, cis-bicyclo[3.2.0]hept-2-en-6-one 3, and 
2-methylcyclohexanone 4) to check the reduction activity, and a 
“cocktail” of the corresponding racemic alcohols (i.e., 5-hexen-2-ol 
5, 1-phenylethanol 6, endo-bicycloheptenol 7, exo-bicycloheptenol 8, 
trans-2-methylcyclohexanol 9 and cis-2-methylcyclohexanol 10) to 
check the oxidation activity (Scheme 1). The use of substrate cocktail 
has been reported in the activity fingerprint of various hydrolytic 
enzymes [18] and also the biological activity of thousands natural 
products and natural product-like molecules have been screened in 
silico [19-22]. 

The final research objective was to find new biocatalysts readily 
accessible from both wild and commercially available natural resources, 
as a sustainable alternative to traditional chemical methods.

Materials and Methods

General

5-Hexen-2-one 1, acetophenone 2, cis-bicyclo[3.2.0]hept-2-en-6-
one 3, 2-methyl-cyclohexanone 4, 5-hexen-2-ol 5, 1-phenylethanol 6, 
trans-2-methylcyclohexanol 9, and cis-2-methylcyclohexanol 10 are 
commercially available (Sigma Aldrich®, Germany). endo-Bicyclo[3.2.0]
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Results and Discussion
The biotransformation procedure was very simple owing the easy 

availability of plants, the use of water without carbon source and the 
simple work up, because no emulsion has formed.

Reduction with Passiflora spp. leaves

The results of the reduction of the ketone cocktail are reported 
in Table 1. After 21 days of reduction with all Passiflora ssp. at 34°C 
the weight loss was quite high. The percentage of recovered mixture 
for 5-hexen-2-one 1 was only 30-57%, higher (52-68%) for cis-
bicyclo[3.2.0]hept-2-en-6-one 3 and 2-methylcyclohexanone 4, and 
good (67-95%) for acetophenone 2.

P. amethyst (1 g) reduced all ketones with good yields (70-94%) 
but showed poor or no enantioselectivity. Surprisingly the reduction 
to alcohols decreased (41-71%) with the same leaves (5 g) but the 
loss of yield is interestingly balanced by the increasing of the ees of 
the (R)-5-hexen-2-ol 5 (ee 27%) and (S)-1-phenylethanol 6 (ee 52%). 
Regarding the reduction of ketones 3 and 4, only the enantiomeric 
excesses of the (1R,5S,6S)-exo-bicycloheptenol 8 and (1R,2R)-trans-2-
methylcyclohexanol 9 were determined because the acetylation of the 
mixture, that permits the enantiomer separation of compounds 7 [23] 
and 10 [24], has not been carried out in this preliminary phase.

P. incarnata (1 g) reduced significantly only 5-hexen-2-one 1 
and 2-methylcyclohexanone 4 giving the (S)-5-hexen-2-ol 5 (52%, ee 
46%) and (1R,2R)-2-methylcyclohexanol 9 (39%, ee 29%), and cis-2-
methylcyclohexanol 10 (36%), respectively. On the other hand (S)-
methylphenyl carbinol 6 (10%, ee 67%), endo-bicycloheptenol 7 (15%) 
and (1R,5S,6S)-exo-bicycloheptenol 8 (17%, ee 12%) were obtained 
with low yields. Higher conversion but lower enantioselectivity was 
obtained with 5 g of the same leaves. Only exception was the reduction 
of acetophenone 2 that afforded (S)- 1-phenylethanol 6 (28%, ee 62%).

P. cerulea leaves (1 g) did not reduce 5-hexen-2-one 1 and 
bicyclohepetenone 3 and afforded very low yield of alcohols 6 and 9 
(6% and 9%, respectively), while the biotransformation of the ketone 

hept-2-en-6-ol 7 and exo-bicyclo[3.2.0]hept-2-en-6-ol 8 are obtained 
by reduction of the corresponding ketone 3 with NaBH4. 

Gas chromatographic analyses were performed on a Carlo Erba 
GC 6000 Vega series 2 with dual Flame-Ionization Detector (FID) 
(Shimadzu®, Japan). The analysis of the reaction mixture was achieved 
on Megadex DETTBS β column (25 m × 0.25 mm) containing diethyl-
tert-butylsilyl β-cyclodextrin in OV 1701; carrier gas: helium 70k 
Pascal; injector temperature 200°C; detector temperature 250°C; heater 
temperature 75-80°C (0.5°C/min), 80-100°C (2°C/min), 100-200°C 
(10°C/min); retention time: 1, 4,39; (S)-5, 6,86; (R)-5, 7.17; (S)-4, 11.37; 
(R)-4, 11.71; (1R,2R)-trans-9, 13.09; (1S,2S)-trans-9, 13.30; (1S,5R)- 3, 
13.87; ( ± )-cis-10, 14.08; (cis)-3, 16.29; 2, 18.62; ( ± )-endo-7, 20.14; 
(1S,5R,6R)-exo-8, 21.14; (1R,5S,6S)-exo-8, 22.06; (R)-6, 23.61; (S)-6, 
23.79, biphenyl, 26.7. Biphenyl is used as internal standard (Figure 1).

The ketone cocktail (compounds 1-4) and the racemic alcohol 
cocktail (compounds 5-10) were prepared mixing equal volumes of the 
solutions (0.1 g in 1 mL of DMSO) of the various compounds.

Biotransformation’s with plant leaves general procedure

Five species of fresh Passiflora ssp. leaves (P. amethyst, P. incarnata, 
P. quadrangularis, P. edulis, and P. cerulea) were collected. Samples were 
rapidly cooled to -80°C to ensure a correct preservation and avoiding 
foliar tissue degradation, and changes in chemical composition up to 
be used in the laboratory. Then, leaves were finely cut with a sterilised 
cutter under a sterile hood, washed with 5% sodium hypochlorite 
(Sigma Aldrich®, Germany) and ethanol, and resuspended in water. To 
50 mL of the suspension (1 g or 5 g of leaves), 15 mg of chloramphenicol 
(Sigma Aldrich®, Germany), 1 mL of the appropriate reagent mixtures 
in DMSO (Merck®, Germany) and 0.25 mL of a solution (0.1 g in 1 
mL of DMSO) of biphenyl, used as internal standard, were added. The 
reaction mixtures were stirred on a reciprocator shaker at 150 rpm 
in the dark at 34°C. An aliquot of each reaction mixture (1 mL) was 
withdrawn and, after extraction with diethyl ether, analysed by GLC 
periodically (2, 4, 7, 10, 14, and 21 days). The results of the reduction 
and of the oxidation are reported in Tables 1 and 2 respectively.

 
Scheme 1: Biocatalytic activity of various Passiflora spp. Leaves.
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Figure 1: Gas chromatographic analysis of ketone and alcohol cocktail.

Passiflora ssp. g/L days ketone
cocktail

recovered
mixturea

5-hexen-
2-ol
5b

1-phenyl-
ethanol

6 b

endo-
bicyclo-
heptenol

7c

exo-bicyclo 
heptenol

(1R,5S,6S)-8b

trans-2-methyl-
ciclohexanol

(1R,2R)-9b

cis-2-methyl-
ciclohexanol

10c

P. amethyst 1 21 1
2
3
4

30
95
52
57

92 (0)
94 (0)

57 26 (21)
45 (5) 25

5 21 1
2
3
4

56
72
68
53

53 (27-R)
41 (52-S)

10 47 (32)
58 (10) 13

P. incarnata 1 21 1
2
3
4

53
68
55
60

52 (46-S)
10 (67-S)

15 17 (12)
39 (29) 36

5 21 1
2
3
4

57
75
61
61

86 (9-S)
28 (62-S)

22 42 (0)
46 (9) 38

P. cerulea 1 21 1
2
3
4

30
63
48
46

--
6 (100-S)

-- --
9 (48) --

5 21 1
2
3
4

54
78
65
64

14 (25-R)
45 (88-S)

12 11 (41)
44 (30) 18

P. edulis 1 21 1
2
3
4

43
74
62
60

13 (4-S)
3 (60-S)

4 1 (0)
16 (40) 12

P. quadrangularis 1 21 1
2
3
4

49
67
65
61

11 (48-S)
23 (90-S)

8 19 (67)
36 (34) 24

a Recovered weight percentage of the ketone-alcohol mixture; b Yields % and ee% in parenthesis, c Yield %

Table 1: Reduction screening of the “cocktail” of the ketones 1-4 with Passiflora ssp. Leaves. 
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Passiflora ssp. g/L days alcohol
cocktail

recovered
mixturea

ketoneb 5-hexen-
2-ol
5c

1-phenyl-
ethanol

6c

endo-
bicyclo-
heptenol 

7d

exo-bicyclo 
heptenol

(1R,5S,6S)-8c

trans-2-methyl-
ciclohexanol

(1R,2R)-9c

cis-2-methyl
ciclohexanol

10d

P. amethyst 1 14 5
6

7/8
9/10

59
82
56
52

1 (--)
2 (8)

3 (25)
4 (13)

100 (0)
92 (6-S)

52 23(23)
59 (5) 28

5 14 5
6

7/8
9/10

84
73
49
56

1 (38)
2 (23)
3 (46)
4 (14)

62 (16-S)
77 (29-R)

17 37(25)
60 (49) 26

P. incarnata 1 10 5
6

7/8
9/10

80
76
60
67

1 (50)
2 (7)

3 (41)
4 (11)

50 (47-R) 
93 (8-R)

29 30 (7)
49 (39) 40

5 10 5
6

7/8
9/10

71
64
49
64

1 (35)
2 (24)
3 (52)
4 (17)

65 (28-S)
76 (20-R)

13 35(4)
51 (40) 32

P. cerulea 1 10 5
6

7/8
9/10

53
50
43
44

1 (--)
2 (10)
3 (56)
4 (27)

100 (0)
90 (0)

24 20 (9)
55 (40) 18

5 10 5
6

7/8
9/10

50
46
42
39

1 (9)
2 (10)
3 (21)
4 (8)

91 (4-R)
90 (0)

62 17 (25)
62 (38) 29

P. edulis 1 10 5
6

7/8
9/10

63
80
68
53

1 (15)
2 (4)

3 (24)
4 (8)

85 (15-R)
96 (3-R)

59 17 (11)
56 (43) 36

P. quadrangularis 1 10 5
6

7/8
9/10

58
73
54
58

1 (26)
2 (40)
3 (49)
4 (31)

74 (8-S)
60 (55-R)

21 30 (49)
43 (48) 26

aRecovered weight percentage of the ketone-alcohol mixture; bYields in parenthesis; cYields % and ee% in parenthesis, dYield %

Table 2: Oxidation screening of the “cocktail” of the alcohols 5-10 with Passiflora ssp. Leaves.

cocktail with 5 g of the same leaves produced (S)-1-phenylethanol 6 
(45%, ee 88%), (1R,2R)-2-methylcyclohexanol 9 (44%, ee 30%) and cis-
methylcyclohexanol 10 (18%) together with low yield of (R)-5-hexen-
2-ol 5 (14%, ee 25%), endo-bicycloheptenol 7 (12%), and (1R,2R)-2-
methylcyclohexanol 9 (11%, ee 41%).

Practically no reduction products were obtained with P. edulis 
leaves (1 g). The only appreciable result was the reduction of 
2-methylcyclohexanone 4 to (1R,2R)-alcohol 9 (16%, ee 40%) and cis-
alcohol 10 (12%). 

Finally, P. quadrangularis (1g) gave low yields but good 
enantiomeric excesses of (S)-1-phenylethanol 6 (23%, ee 90%), 
(1R,5S,6S)-exo-bicycloheptenol 8 (19%, ee 67%) and (S)-5-hexen-2-
ol 5 (11%, ee 48%), together with endo-bicycloheptenol 7 (8%). The 
more interesting result was obtained with 2-methylcyclohexanone 4 
that afforded (1R,2R)-trans-alcohol 9 (36%, ee 34%) and cis-alcohol 10 
(24%).

Oxidation with Passiflora spp. leaves

The results of the oxidation of the alcohol cocktail are reported in 
Table 2. In the case of the oxidation, the weight loss took place, as well. 
After 10-14 days, the weight of recovered mixture was 50-84% for the 
alcohols 5 and 6, and lower (39-67%) for the alcohols 7, 8, 9 and 10.

P. amethyst (5 g) oxidized, after 14 days incubation, the racemic 
alcohols 5, 7 and 8 to the corresponding ketones 1 (38%) and 3 
(46%), respectively, leaving the (S)-5-hexen-2-ol 5 (62%, ee 16%), 
bicycloheptenols 7 (17%) and (1R,5S,6S)-exo-bicycloheptenol 8 (37%, 

ee 25%). Low yields (< 25%) were obtained with the other alcohols (6, 
9 and 10) and in all cases using 1g of the same leaves.

Also P. incarnata (1 g) oxidized with good yields 5-hexen-2-ol 5 
and the mixture of bicycloheptenols 7 and 8 to give the corresponding 
ketones 1 (50%) and 3 (41%) with only a good kinetic resolution of the 
R-alcohol 5 (50%, ee 47%). Similar or worst results were obtained with 
5 g of the same leaves.

P. quadrangularis oxidized all the alcohols to the corresponding 
ketones (26-49% yields) leaving the unreacted (R)-1-phenylethanol 
6 (60%, ee 55%), (1R,5S,6S)-exo-bicycloheptenol 8 (30%, ee 49%) 
and (1R,2R)-trans-2-methylcyclohexanol 9 (43%, ee 48%). No 
enantioselectivity was obtained in the oxidation of the alcohol 5. 
Finally, the oxidations carried out with P. cerulea (1 g) and (5 g), and 
P. edulis (1 g) gave low yields of ketones 1-4 (0-27%) and as much low 
enantiomeric excesses.

Conclusions
The use of a cocktail of ketones and alcohols allows preliminary 

information of oxido-reduction potential of Passiflora leaves using a 
simple and fast methodology that permits to test the potential of parts 
of fresh plants that can be used as biocatalysts in more ecologically 
and economically promising transformations. P. amethyst and P. 
incarnata appear to have a higher inclination towards the reduction 
with respect to other species, while towards the oxidation there is a 
greater regularity of behaviour (low yields and enantiomeric excesses) 
even if P. amethyst, P. incarnata and P. quadrangularis show a higher 
activity towards the substrate cocktail.
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