
Open Access

Toniolo et al., J Diabetes Metab 2014, 5:4 
DOI: 10.4172/2155-6156.1000357

Volume 5 • Issue 4 • 1000357
J Diabetes Metab
ISSN: 2155-6156 JDM, an open access journal 

Research Article

Hemopressin an Inverse Agonist of Cb1 Cannabinoid Receptors Reverses 
Mechanical Sensitivity on Diabetes-Induced Neuropathy in Mice
Elaine FlamiaToniolo1,2, Adriano CardozoFranciosi1,2 and Camila SquarzoniDale2*
1DepartamentofPharmacology, Universityof Sao Paulo, Sao Paulo, Brazil; Hospital Sirio-Libanes, Brazil
2Laboratory of Neuromodulation and Experimental Pain, Department of Anatomy, University of Sao Paulo, Brazil

Keywords: Hemopressin; Diabetic neuropathy; Cannabinoid
receptor; Mechanical allodynia; Thermal sensitivity; Mice

Abbreviations: Hp: Hemopressin; STZ: Streptozotocin; Sal: Saline;
DPN: Diabetic Neuropathy

Introduction
Diabetic peripheral neuropathy (DPN) caused by diabetes mellitus 

is one of the most common complications of diabetes affecting about 
50% of patients with the disease [1,2]. Among the many symptoms 
of this neuropathy, the development of chronic pain is one of the 
major complications on ceits emergence depends on multifactorial 
components, which are still poorly understood [3]. This neuropathic 
pain typically involves the extremities and is characterized by 
spontaneous and evoked pain stimuli with changes in pain perception, 
increased sensitivity to noxious stimuli (hyperalgesia) and sensitivity 
to light stimuli or stimuli that previously were not painful (allodynia). 
These factors strongly affect the quality of life of patients with this 
syndrome [4-7].

A precise cellular mechanism for the hyperalgesia and allodynia 
in the DPN is not yet known thus, the existing treatments, including 
anticonvulsant drugs or tricyclic antidepressant drugs  [8-11], are 
still ineffective and unsatisfactory and only a few patients with DPN 
benefit from some pain relief [1,4,12,13]. An alternative therapy that 
has gained clinical acceptance is the use of compounds that modulate 
cannabinoid receptors, once these receptors are expressed in both 
neurons and microglia of rats with diabetic neuropathy, at both spinal 
and supraspinall evels [11,14-16].

The use of derivatives from Cannabis sativa (Δ9-THC) for the 
treatment of various neurological disorders, including chronic pain, 
is supported by experimental and clinical data [17-20]. Although 
they are seen as promising target for the development of medications, 
clinical and preclinical studies have shown that Δ9-THC and other CB1 
ligands generally produce undesirable effect in the Central Nervous 
System. CB1 agonists are generally at risk for psychoactive effects and 
dependence, limiting the optimization of doses in clinical trials and 

preclinical studies [21-23]. Thus, the development of drugs capable 
of binding to the cannabinoid receptors without psychoactive effects 
provides therapeutic potential without the risk of adverse effects [22]. 

Hemopressin (Hp), a nonapeptide (PVNFKFLSH) derived from 
the hemoglobin α1 chain was previously shown to target CB1 receptor, 
and to modulate its signaling [24-26]. Hp exhibits antinociceptive 
effect in inflammatory pain models [26,27]. Hp inhibits carrageen 
an-induced hyperalgesia only at the injured paw; without presenting 
antinociceptive effect in the contralateral, uninflamed paw, indicating 
that the effect of Hp is limited to tissue injury induced pain [26]. Also, 
intrathecal administration of Hp induces significant antinociception 
in the first and second phases of the formalin test [27]. The effects of 
Hp on carrageenan-induced hyperalgesia are independent of route 
of administration (oral, local, or intrathecal) [26]. More interesting is 
the fact that neurological side effects that are typically associated with 
antinociceptive doses of CB1 receptor ligands, including hypothermia, 
catalepsy and hypoactivity, were not reported with antinociceptive 
doses of Hp [26]. This, taken with the fact that the effects of Hp on 
carrageenan-induced hyperalgesia were found to be independent 
of route of administration, raises the possibility that Hp could be 
developed as a novel class of drug that modulates CB1 receptor for 
the treatment of pain. This study aimed to examine the effect of Hp 
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Abstract
Peripheral neuropathy is one of the most common complications of diabetes affecting about 50% of patients with 

the disease. The most prominent symptoms involve the extremities and occur as both an exaggerated response to 
noxious stimuli (hyperalgesia), mild or non-painful stimuli (allodynia). Hemopressin (Hp) is a non apeptide first found 
in rat brain extracts, which selectively binds CB1 cannabinoid receptors (CB1R) and exerts antinociceptive actions in 
experimental inflammatory and neuropathic pain models. However there is no data about its efficacy in neuropathic 
metabolic-related disease, like diabetes mellitus. The aim of this study was to investigate the role of Hp on mechanical 
and thermal sensitivity of mice submitted to an experimental model of type 1 diabetes mellitus-induced neuropathy. 
Mechanical allodynia and thermal sensibility were assessed by von Frey filaments or plantar test, respectively, 7, 14, 
21 and 28 days after streptozotocine injection (STZ; 200 mg/kg). Body weight and blood glucose were monitored 
once a week. Hp was administered orally, once a day (2.5 mg/kg) for 28 days. Hp reversed mechanical allodynia in 
diabetic mice without changing blood glucose levels or body weight. No effects were observed for thermal sensitivity. 
These results make hemopressin an attractive approach for the development of cannabinoid-based therapies for the 
treatment diabetic neuropathic pain.
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treatment on mechanical and thermal sensitivity in a mouse model of 
diabetic neuropathy induced by streptozotocin (STZ).	

Materials and Methods
Animals

Male C57BL6 mice weighing 20-25 g, age-matched, were used 
throughout this study. Animals were maintained under controlled light 
cycle (12/12 h) and temperature (21 ± 2°C) with free access to food and 
water. Throughout the experiments, animals were managed using the 
principles and guidelines for the care of laboratory animals in studies 
involving pain and were approved by the Ethics Committee on the 
Use of Animals at University of São Paulo (CEUA, protocol number 
157/2011). Animals were divided in four groups: control saline group 
(Sal+Sal), streptozotocin group (STZ+Sal), Hp group (Sal+Hp) and 
STZ/Hp group (STZ+Hp)

Diabetic Neuropathy(DPN)

Mice received a single intraperitoneal injection of streptozotocine 
(STZ; 200 mg/Kg, body weight; Sigma, St. Louis, MO) dissolved in sterile 
0.9% saline after 4 hours of food restriction. Control animals received 
only sterile 0.9% saline injection. The fasting blood glucose levels were 
measured, after a fasting period of 4 h, by glucometer (ACCU-CHEK, 
Roche Diagnostics)before STZ or Sal injection and again on days 7, 14, 
21 and 28 after STZ. Mice whose blood glucose levels exceeded 300 mg/
dl were considered diabetic [28].

Behavioral analysis

Mechanical allodynia - von Frey test: Testing for mechanical 
allodynia (Von Frey filaments - Touch-Test® Sensory Evaluators - 
North Coast Medical) was performed according to the method of 
Chaplan [29]. Mice were placed individually in plastic cages with a 
wire bottom, which allowed access to their paws. To reduce stress, mice 
were habituated to the experimental environment one day before the 
first measurement. At the day of the test, the animals were placed in 

the cages 30 min before the beginning of each measurement. The area 
tested was the mid-plantar left paw. 

Thermal sensitivity - Plantar test:  Assessment of sensitivity to 
the thermal stimulus was based on the method of Hargreaves et al. 
[30] with instrumentation provided by IITC Life Science. Animals 
were placed for 30 minutes in compartments of 15 cm2 surface with 
a transparent glass for the habituation process. To reduce stress, mice 
were habituated to the experimental environment one day before the 
first measurement. The glass allows the passage of the light beam, which 
can lead to painful thermal stimuli, adjusted to 30% of the maximum 
intensity of heating. Test was conducted after a pre-habituation thermal 
sensitivity baseline. The beam was directed to the plantar surface of the 
left hind paw (the thermal stimulus was applied for a maximum period 
of 20 sec to prevent tissue damage in the animal’s paw). Latency in 
seconds to withdraw the paw was considered as nociceptive response. 
Three measurements were made for each hindpaw, with an interval of 5 
minutes between them. The mean of the measurements was used as the 
thermal nociceptive response.

Hemopressin

Hemopressin (Proteimax Biotechnology) was administered orally 
at the dose of 2.5 mg/kg [26,31], body weight diluted insterile 0.9% 
saline solution for 28 days. Control animals received only 0.9% saline 
solution injection. 

Statistics

Results are presented as the mean ± standard error of the mean 
(SEM). Statistical analyses of data were generated using GraphPad 
Prism, version 4.02 (GraphPad Software Inc., San Diego, CA, USA). 
Statistical comparison of more than two groups was performed using 
analysis of variance (ANOVA), followed by Bonferroni’s test. Statistical 
comparison for treatment over time was performed using two way 
ANOVA followed by Bonferroni’s test. In all cases, p ≤ 0.05 was 
considered statistically significant.

Results

Hp inhibits mechanical sensitivity on diabetic mice

STZ induced mechanical allodyniain mice from the 7th day after STZ 
injection up to 28 days(n=6) (Figure 1). Once confirmed the presence 
of neuropathic pain, at the 7th day groups of animals (n=6) received 
oral treatment with Hp for 28 days and presented a full reversion of 
mechanical sensitivity in all evaluated days, which was not observed in 
the group of mice treated with saline (n=6) (Figure 1). Furthermore, a 
control saline group that was also treated with Hp showed no changes 
on pain sensitivity when compared to the initial measurement or with 
the Saline+Saline group (n=6) (Figure1).

Treatment with Hp does not interfere with thermal sensitivity 
of diabetic mice 

Mice treated with STZ (n=5) showed a loss on pain sensitivity 
(hypoalgesia)to the thermal stimulation in all evaluated times when 
compared with Sal+ Sal group (n=5) (Figure 2). Also, treatment with 
Hp was not able to reverse STZ-induced thermal hypoalgesia (n=5) 
(Figure 2).

Thermal sensitivity of mice was measured before the injection 
of STZ or Saline (time 0), 7 days after STZ or Sal and 28 days after 
treatment with Hp or Sal. 	
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Figure 1: Effect of Hp on mechanical sensitivity of diabetic mice evaluated 
by von Frey filaments.
Animals were evaluated before any treatment (time 0), after 7 days of 
streptozotocin (STZ) or saline (Sal) injection, and after treatment with 
hemopressin (Hp) or Sal. HP was administered once a day, orally at a dose 
of 2.5 mg/kg for 28 days. Data are mean ± S.E.M. 6animals per group. *** p 
<0.001 vs Sal+Sal and Sal+Hp group. (Two-way ANOVA followed by Bonferroni 
post-test).
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Effect of HP treatment on blood glucose levels of diabetic 
mice

Serum glucose levels were checked before any treatment (time 0), 7 
days after STZ or Salinjection to verify the presence of hyperglycemia or 
normal glucose levels, and after 7, 14, 21 and 28 days of Hp treatments.

STZ (n=11) was effective in inducing diabetes on mice observed 
by the increase on blood glucose levels of animals when compared 
with Sal-treated mice(n=11). Hp treatment did not interfere with the 
increase on blood glucose levels of STZ mice (n=11). Furthermore, Hp 
by itself didn´t cause any changes in control animals (n=11) (Figure 3).

Monitoring of changes on body weight of diabetic mice 
treated with Hp

During the experiments, animalswere weighed before any treatment 
(time 0), 7 days after STZ or Sal injection and after 7, 14, 21 and 28 
days after HP or Sal treatment. STZ-injected mice (n=11) presented a 
decrease on body weight that was not modified by Hp-treatment (n=11) 
(Figure 4). Also, Hp did not compromise the weight gain in the control 
group (n=11) (Figure 4).

Discussion 
In this study, it was evaluated the antinociceptive effect of Hp, a CB1 

receptor ligand, Hp in a mice model of diabetic-induced neuropathy 
[28]. Results presented herein demonstrate that STZ-induced diabetic 
mice showed a decrease on mechanical pain threshold when compared 
to non-diabetic (saline) mice, in all evaluated times. This result is 
consistent with previous reports from literature demonstrating that 
diabetic mice show a low pain threshold, thus characterizing the diabetic 
neuropathy as a model of neuropathic pain [21]. We found that 28 days 
of oral treatment withHpcould completely block signs of mechanical 
pain from the 7th day after Hp administration, supporting the idea that 
Hp induces true antinociception in this neuropathic pain model. These 
data corroborate with data obtained by our group demonstrating that 
oral treatement with Hp completely blocks signs of pain (hyperalgesia 
and allodynia) in rats with neuropathic pain induced by the chronic 
constriction of the sciatic nerve [31]. In addition, the effect observed 
herein was maintained for 24 h after suspension of Hp, suggesting 
that a longer treatment with Hp, maintain a more lasting effect on the 
prevention of pain [31]. These results are consistent with data published 
in previous reports using carrageenan-induced hyperalgesia test and 
the writhing test where different doses of Hp were found to produce the 
same inhibitory effect on pain sensitivity [32] and that administration 
of Hp by oral or intraperitoneal or intraplantar route achieve similar 
level of analgesia [26] supporting its oral bioavailability. A possible 
explanation for this phenomenon is the tendency to aggregate in the 
Hp [33] which could protect the peptide from rapid degradation in an 
in vivo “environment” and thus maintain the analgesic effect observed.
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Figure 2: Effect of Hp on thermal sensitivity of diabetic mice evaluated 
by the plantar test.
Mice were evaluated before any treatment (time 0), after 7 days of streptozotocin 
(STZ) or saline (Sal) injection, and after treatment with hemopressin (Hp) or 
Sal. HP was administered once a day, orally at a dose of 2.5 mg/kg for 28 days. 
Data are mean ± S.E.M. 5animals per group. * p <0.05, ** p <0.01 and *** p 
<0.001 compared to group Sal+Sal and Sal+Hp. (Two-way ANOVA followed by 
Bonferroni post-test).
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Figure 3: Effect of Hp on blood glucose levels of diabetic mice.
Glucose levels were measured prior to any treatment (time 0), 7 days after STZ 
or Sal injection and after 7, 14, 21 and 28 days after Hp treatment. Data are 
mean ± S.E.M. 11animals per group. *** p <0.001 vsSal+SalorSal+Hp groups. 
(Two-way ANOVA followed by Bonferroni post-test).
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Figure 4: Monitoring of body weight of diabetic mice treated with Hp.
Body weight was monitored prior to any treatment (time 0), 7 days after STZ 
or Sal injection and after 7, 14, 21 or 28 days of HP treatment. Data are mean 
± S.E.M. 11 animals per group. ** p <0.01, *** p <0.001 (Two-way ANOVA 
followed by Bonferroni post-test).
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Conflicting data have been reported concerning the thermal 
nociceptive threshold in STZ-induced diabetes model. While some 
studies reported thermal hyperalgesia, others observed thermal 
hypoalgesia or normal thermal thresholds after STZ injections. This may 
be in part due to methodological details such as use of different species, 
limbs, and methods of heat application. In this sense it is demonstrated 
that insulin-deficient diabetic rats with the plantar surface of the 
hind paw exposed to a temperature ramp rising from 30°C at a rate 
of 1°C/s over 20 s, exhibit a transient thermal hyperalgesia during the 
first few weeks of diabetes. It progresses to thermal hypoalgesia within 
2–3 months [34]. This is also common in mice submitted to the STZ 
model. Some mice injected with streptozotocin (50–200 mg/kg) does 
not become hyperglycemic but exhibit a transient thermal hyperalgesia 
when evaluated in the hot plate test, that returned to normal within 
weeks. This contrasts with hyperglycemic mice that progressed 
from hyperalgesia to hypoalgesia [13,28]. In our present study, mice 
displayed thermal hypoalgesia 1 week after injection of streptozotocin 
and subsequent induction of diabetes. This phenomena was mantained 
up to 5 weeks of observation. This result is similar to data from 
human diabetic patients where there is a progression from painful to 
degenerative painless neuropathy, although at present it is not clear that 
thermal hypoalgesia in diabetic rats or mice coincides with any loss of 
epidermal thermal nociceptors, as appears to be the case in diabetic 
patients [35]. In this work we demosntrate that Hp treatment was not 
able to interfere with thermal hypoalgesia. However, Hp treatment 
didn´t modify thermal sensitivity on control mice injected with saline, 
thus reforcing that Hp is specific in treating mechanical hyperalgesia 
observed on diabetes. 

Another interesting finding was the fact that although treatment 
with Hp has been effective in reversing the painful picture , no changes 
were observed regarding the blood glucose levels or body weight of 
animals, which continued to progress with the development of diabetes. 
Moreover, Hp treatment by itself did not cause any change in the control 
group of animals, demonstrating that Hp is specific on treating painful 
neuropathy.

Recent data demonstrated that Hp treatement interfere with the 
transmission of neuropathic pain message to the central nervous 
system, reducing nociceptor activation in spinal cord [31]. Also, Hp 
inhibits calcium mobilization in dorsal root ganglia neurons from both 
normal and neuropathic rats, reinforcing the idea that Hp modulates 
primary afferent nociceptive signal by inhibiting sensory neurons 
[31]. Recent data showed that hemopressin activates distinct neuronal 
substrates within the brain, focused mainly on the feeding-related 
circuits of the mediobasal hypothalamus and in nociceptive regions of 
the periaqueductal grey (PAG) and dorsal raphe (DR). In contrast to 
AM251, there is a distinct lack of activation of the brain reward centres, 
such as the ventral tegmental area, nucleus accumbens and orbitofrontal 
cortex, which normally form a functional activity signature for the 
central action of synthetic CB1 receptor inverse agonists. Thus, 
hemopressin modulates the function of key feeding-related brain nuclei 
of the mediobasal hypothalamus, and descending pain pathways of the 
PAG and DR, and not higher limbic structures. Thus, hemopressin 
may offer behaviourally selective effects on nociception and appetite, 
without engaging reward pathways [36]. These data complement the 
existing data in the literature showing that that neurological responses 
that are typically associated with antinociceptive doses of CB1R 
ligands, including hypothermia, catalepsy and hypoactivity, were not 
reportedwithantinociceptive doses of Hp [26]. Another interesting 
point is that the effects observed for Hp depend on its aminoacid 
sequence, once it was demonstrated that central administration of 

an extended form of Hp, VD-PVNFKFLSH (VD-Hp) induces dose-
dependent antinociception in mice but also induces undesired effects 
on the Central Nervous System such as tolerance to antinociception 
and conditioned place aversion [37]. Taken together, these data raises 
the possibility that Hp could be developed as a novel class of drug that 
modulates CB1R for the treatment of pain.

In conclusion, our data demonstrates that Hp exhibits 
antinociceptive properties on diabetes-induced peripheral neuropathy. 
This effect is specific for the treatment of chronic neuropathic pain. 
Although the mechanisms involved in the effects of hemopressin need 
to be further characterized, the results obtained so far suggest a role for 
a cannabinoid-like compound in regulating chronic neuropathic pain 
that could be further explored to develop therapeutic drugs based on 
the hemopressin sequence.
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