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Abstract
Diabetes affects approximately 366 million individuals worldwide. Current pharmacological therapy is not perfect, 

and often is associated with adverse side effects. Acupuncture is used as an adjunctive treatment for a number of 
cardiovascular diseases. Chronic activation of the sympathetic nervous system has emerged as a key player in 
both the pathogenesis and progression of diabetes and metabolic syndrome. Recent evidence indicates that the 
down regulation of central nitric oxide system leads to an increased renal sympathetic neural activity in diabetic rats. 
Our experimental studies have shown that electroacupuncture stimulation exerts sympathoinhibitory effects through 
activation of neurons in the arcuate nucleus, ventrolateral gray, and nucleus raphe to inhibit the neural activity in 
the rostral ventrolateral medulla. This brief review will discuss current knowledge of the effects of acupuncture on 
central nervous system and provide a perspective on the future of treatment of diabetes with this alternative medicine 
technique.
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Introduction
Cardiovascular diseases are the most common cause of mortality 

worldwide. Diabetes and hypertension are the major risk factors in 
the development of cardiac hypertrophy, ischemic heart disease and 
cardiac failure. The prevalence of diabetes increases with age, the 
lifetime risk of developing diabetes approaches approximately 32.8% 
for males and 38.5% for females [1]. Although treatment strategies [2-4] 
targeting blood pressure, blood glucose, triglycerides, and low-density 
lipoprotein cholesterol levels, along with lifestyle modifications have 
been developed for this disease, treatment has not yet been perfected 
and often is associated with adverse side effects.

Acupuncture is increasingly being accepted as an alternative 
medical therapy in the United States. Manual acupuncture and its 
potent alternative, electroacupuncture (EA), have been used in Asia 
to treat a number of cardiovascular diseases including myocardial 
ischemia, hypertension, and diabetes [5-7]. Many western physicians, 
however, are reluctant to recommend acupuncture because its actions 
in the treatment of diabetes remain controversial and because the 
physiological mechanisms determining its response are largely 
unknown to practitioners of western medicine. This brief review will 
discuss current knowledge of the effects of acupuncture on central 
nervous system and provide a perspective on the future of treatment of 
diabetes with neuromodulation therapy such as EA.

Effects of Acupuncture on Diabetes in Experimental 
and Clinical Studies

Acupuncture is a 3000-year-old form of traditional Chinese 
medicine that involves inserting needles at specific points along specific 
meridians on the body to help treat diseases or pain that result from 
imbalances of energy flow – ‘Qi’. The old acupuncture needles were 
made of bronze, silver and gold. Today, most acupuncturists use 
disposable stainless steel needles ranging in length (0.5–100 mm) and 
gauge (0.12–0.30 mm). The depth of insertion varies from shallow 
(1–2 mm) to deeper needling (50–60 mm). Variable methodology 
can lead to different responses. For example, we have found that 

electroacupuncture (EA) at the acupoints overlying the deep somatic 
nerves exerts inhibitory effects on cardiovascular reflex responses, 
while EA at those overlying the superficial nerves does not, suggesting 
that point specificity exists in acupuncture treatment [8].

Recently, Peplow and Baxter performed a literature review on 
electroacupuncture for control of blood glucose in diabetes [5]. Only 
two studies were found using EA in human subjects, and they indicated 
that electroacupuncture treatment lowered the blood glucose level in 
obese patients and healthy subjects [9,10]. 

EA at 15 Hz for 30 minutes at Zusanli and Zhongwan’s acupoints 
lowered the blood glucose level in fasted type I [11,12] and II diabetic 
rats [13-15] as well as in fasting, normal rats [16]. Additionally, at these 
same acupoints in hyperglycemic rats, EA resulted in decreased glucose 
levels with elevated serotonin and endogenous opioids [11,17]. 

Interactions between the Autonomic Nervous System 
and Diabetes

The autonomic nervous system (ANS) - subdivided into the 
parasympathetic and sympathetic branches - is crucial in regulating 
glucose metabolism, thus mediating insulin secretion and absorption. 
Studies have indicated that ANS impairment shares an interchangeably 
causal relationship with diabetes.

One potential cause for elevated sympathetic activity is the genetic 
polymorphism of beta-2 and -3 adrenoreceptor genes which have 
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been directly associated with diabetes [18]. Sympathetic overactivity 
may also be caused by the activation of the renin-angiotensin system, 
contributing to hypertension in diabetic patients with chronic renal 
failure [19]. Hyperinsulemia – a promoter of diabetes - can also trigger 
the sympathetic system, increasing peripheral resistance and sodium 
retention, increasing the risk for hypertension [19]. Moreover, cardiac 
autonomic remodeling has also been demonstrated in diabetic rats [20]. 
Effective refractory period (ERP) typically shortens during sympathetic 
stimulation, but unlike their healthy counterparts, the diabetic rats 
displayed increased heterogenous atrial ERP and altered sympathetic 
nerve histology (seen through tyrosine hydroxlase staining), thus 
making them more susceptible to atrial fibrillation [20].

In retrospect, sympathetic overactivity causes the diabetic heart to 
metabolize fatty acids instead of glucose, resulting in insulin resistance, 
accumulation of lipid metabolites, increase in oxidative stress and 
myocardial fibrosis [21]. These conditions decrease contractile capacity 
in addition to abnormal diastolic and systolic function. To compensate 
for this decrease in systolic function, the sympathetic nervous system 
(SNS) is activated, initiating the diabetic heart to increase sympathetic 
tone [21]. Furthermore, as epinephrine and norepinephrine are known 
markers for sympathetic stimulation, elevated levels were found in 
type I diabetic patients at high risk for chronic renal failure and the 
progression of nephropathy [19]. In patients with type II diabetes, 
sympathetic overactivity often contributes to insulin resistance, 
stimulating skeletal muscle alpha- and beta-adrenergic receptors, 
thus decreasing vasodilation and contributing to the development of 
hypertension [22-25]. Hyperglycemia – directly linked with caloric 
intake and body mass index – may explain further why the prevalence 
of hypertension is higher in type II versus type I diabetic patients [26].

Considering the other opposing branch of the ANS, the 
parasympathetic system stimulates pancreatic beta cells to secrete 
insulin, whereas the sympathetic branch blocks the secretion of 
insulin [23]. Vagal impairment can lead to sympathetic overactivity, 
consequently promoting the reabsorption of sodium, increasing stroke 
volume, heart rate and vascular resistance [19]. These all serve as risk 
factors for cardiovascular disease and hypertension, viable players in 
the formation of diabetes. Studies have also indicated that young adults 
with impaired vagal reactivation tend to be more hyperinsulinemic 
[23]. Additionally, chronic hyperglycemia promotes progressive 
autonomic neural dysfunction in a manner paralleling the development 
of peripheral neuropathy [27]. Interestingly enough, neuropathy is first 
seen in the longest, autonomic neural fiber, the vagus nerve. This is 
often seen in patients with cardiac autonomic neuropathy (CAN) [27]. 
The initial parasympathetic denervation and increased sympathetic 
tone leads to nocturnal hypertension in diabetics, shortly followed by 
sympathetic denervation or orthostatic hypotension. One of the earliest 
symptoms of CAN is heart rate variability, but further progression of 
this disease can lead to arrhythmias and sudden cardiac death [28].

Autonomic nervous system dysfunction underlies obesity by 
decreasing insulin sensitivity and endothelial function while increasing 
oxidative stress, myocardial fibrosis and causing hyperinsulemia 
and hypertension; these are all mechanisms associated with the 
development of diabetes [29]. However, the diabetic condition and 
sympathetic overactivity are in close interaction, and possessing one 
of the conditions exacerbates the other. It is clear that the sympathetic 
nervous system plays a key role in both the pathogenesis and 
progression of diabetes and metabolic syndrome (Figure 1).

Over the past decade, we have examined the central neural 
regulation of sympathoexcitatory reflex by acupuncture in different 

regions of brain, including the rostral ventral lateral medulla (rVLM), 
hypothalamic arcuate nucleus (ARC), midbrain ventrolateral 
periaqueductal gray (vlPAG) nuclei, medullary nucleus raphé pallidus 
(NRP) and dorsal horn and intermediolateral column of the spinal 
cord.

EA Inhibition of Neural Activity in the rVLM
The rVLM plays a critical role in the regulation of sympathetic 

outflow and blood pressure (BP) [30]. Inhibition of neuronal 
function in this nucleus results in significant BP decreases [31]. We 
have demonstrated previously that both low frequency electro- and 
manual acupuncture inhibit the pressor response as well as premotor 
sympathetic neural firing in the rVLM [32]. Administration of 
naloxone (non-specific, opioid receptor antagonist) or gabazine 
(γ-aminobutyric acid or GABA type A receptor blocker) in the rVLM 
abolishes EA modulation [33]. The rVLM is an important brain stem 
region that processes somatic inputs during acupuncture stimulation. 
When compared to cardiovascular inactive acupoints (LI 6-7, G 37-
39) over superficial afferent nerves, electrophysiological studies of 
neuronal activity in the rVLM have shown that P 5-6 as well as LI 4-11 
over the deep median and radial nerves provide more afferent input to 
cardiovascular premotor sympathetic neurons in the rVLM [8]. This 
observation likely explains why acupuncture over these deep nerves 
most effectively lower elevated sympathetic outflow and BP.

Neurotransmitters in rVLM, ARC and vlPAG
Early studies suggested that EA attenuates the sympathoexcitatory 

reflex responses through the release of opioids, GABA, nociceptin and 
serotonin (or 5-hydroxytryptamine, 5-HT) in the rVLM [34-38]. We 
have demonstrated that the EA inhibition of sympathoexcitatory reflex 
response in cats is related to the activation of µ- and δ-, but not қ-opioid 
receptors in the rVLM, suggesting that endorphins, enkephalins and 
perhaps endomorphin, but not dynorphin are mainly responsible for 
EA modulation of cardiovascular responses. 

Immunohistochemical staining studies have demonstrated the 

⇧Metabolic shift
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Figure 1: Reciprocity between the autonomic nervous system (ANS) and 
diabetes. Metabolic shift can increase blood glucose levels, insulin resistance 
and lipotoxicity.  Increased blood glucose and increased insulin resistance lead 
to elevated insulin levels and insulin sensitivity, thus activating the SNS.  As 
a result, norepinephrine release and lipolysis increase, further exacerbating 
metabolic shift and lowering insulin sensitivity. In retrospect, vagal impairment 
can lead to sympathetic overactivity as well as hyperglycemia.
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presence of enkephalinergic neurons in the rVLM and endorphinergic 
neurons in the ARC that project directly to the rVLM, and that both 
neurotransmitter systems are activated by EA [39]. EA inhibits the 
sympathetic reflex response through opioid-mediated inhibition of 
glutamate in the rVLM [40]. Electrophysiological studies [41] have 
determined that reciprocal excitatory glutamatergic (NMDA and 
non-NMDA) projections exist between the ARC and vlPAG that may 
participate in the EA inhibition of sympathetic nerve activity. This 
reciprocal projection may include a cholinergic component in the ARC 
but not in the vlPAG [42].

Furthermore, EA, through presynaptic endocannabinoid CB1 
receptor stimulation, reduces the vlPAG release of GABA but not 
glutamate during EA [43]. Reduced GABA disinhibits vlPAG neurons, 
thus increasing their activity, which, in turn, through an action in the 
NRP inhibits rVLM cardiovascular sympathetic neurons and related 
sympathoexcitatory reflex responses [44]. Therefore, it is clear that 
a variety of neurotransmitter systems underlie the cardiovascular 
modulation of EA. This includes both excitatory and inhibitory 
neurotransmitters, with their importance varying between the different 
nuclei.

Long-Loop Pathway for EA Cardiovascular Modulation
The role of the hypothalamic ARC and its interaction with the vlPAG 

and rVLM in the EA-cardiovascular sympathoexcitatory responses has 
been extensively studied [8,37,45,46]. Microinjection of the excitatory 
amino acid DL-homocysteic acid (DLH) into the ARC augments the 
responses of vlPAG neurons, while microinjection of small volumes 
(50 nl) of kainic acid (KA) causes a reversible depolarization blockade 
that transiently deactivates arcuate neurons and decreases the vlPAG 
responses to splanchnic nerve (SN) stimulation [37]. Additionally, EA 
increases SN-evoked discharge of vlPAG neurons, a response that can 
be blocked by microinjection of KA into the ARC. Microinjection of 
DLH into the ARC, like EA, inhibits the sympathoexcitatory reflex 
induced by application of bradykinin to gallbladder for approximately 
30  min. Finally, microinjection of KA into the ARC blocks the 
inhibitory influence of EA on the sympathetic pressor reflex. As such, 
these results suggest that excitatory projections from the ARC to the 
vlPAG appear to be essential to the inhibitory influence of EA on the 
pressor reflex induced by SN and gallbladder afferent stimulation.

vlPAG-rVLM Projections
The vlPAG provides inhibitory input to premotor sympathetic 

neurons in the rVLM to ultimately reduce sympathetic outflow and 
reflex elevations in BP [46]. Direct axonal projections from the vlPAG 
to the medulla have been documented in tract tracing studies [47]. 
However, a vlPAG projection to the raphé, in particular the nucleus 
raphé obscurus (NRO), also exists and has been thought to form an 
indirect pathway from the vlPAG to the rVLM that is involved in 
the EA-cardiovascular response [48]. However, recent studies have 
suggested that the NRP, located more ventrally than the NRO or the 
nucleus raphé magnus, contains more cells activated during median 
nerve stimulation with EA at the P 5-6 acupoints, as judged by the 
concentration of c-Fos labeling [49]. Chemical blockade of the NRP 
with KA or kyneurnic acid transiently reverses activation of neurons in 
the rVLM during stimulation of the vlPAG as well as EA modulation 
of visceral excitatory reflexes [50]. Furthermore, the NRP inhibits 
rVLM activity, including activity of bulbospinal premotor sympathetic 
neurons. Serotonin projections from the raphé acting on 5-HT1A 
receptors in the rVLM complete the vlPAG-NRP-rVLM circuit to 
modulate cardiovascular activity [50]. Thus, an indirect connection 

from the vlPAG to the rVLM involving a serotonergic connection 
between the NRP and the rVLM plays an important role in the long-
loop modulation of cardiovascular sympathetic outflow during reflex 
visceral stimulation. These studies do not eliminate the possibility that 
direct projections between the vlPAG and the rVLM also might serve a 
functional role in EA-cardiovascular modulation. The direct or indirect 
projections from the vlPAG to the rVLM complete the long-loop 
pathway and provide an important source for the inhibitory influence 
of EA on rVLM premotor neurons and ultimately sympathoexcitatory 
cardiovascular responses [48].

ARC-rVLM Projections
As noted previously, neurons in the vlPAG receive convergent input 

from a number of somatic nerves stimulated during EA, as well as from 
the ARC. Bilateral microinjection of KA into the rostral vlPAG partially 
reverses rVLM neuronal responses and cardiovascular inhibition during 
DLH stimulation of the ARC. Conversely, depolarization blockade of 
the caudal vlPAG completely reverses arcuate-evoked rVLM responses 
[48]. In parallel studies, we have observed that arcuate neurons can be 
antidromically activated from the rVLM and that arcuate perikarya 
are labeled with a retrograde tracer microinjected into the rVLM [48]. 
Many neurons from the arcuate that project to the rVLM are activated 
by EA stimulation (c-Fos-positive) and they frequently contain 
opioid peptides, particularly β-endorphin [51]. As such, the vlPAG, 
particularly the caudal vlPAG, appears to be required for inhibition 
of rVLM neuronal activation by the ARC and subsequent EA-related 
cardiovascular activation. However, direct projections from the ARC 
to the rVLM, likely serve as an important source of β-endorphin since 
this projection contains this opioid peptide [48]. This latter observation 
is consistent with our earlier anatomical study showing that cells in 
the rVLM contain enkephalin but not β-endorphin [51]. Hence, EA-
cardiovascular responses that result from the action of β-endorphin 
on µ-opioid receptors located on rVLM sympathoexcitatory premotor 
neurons depend on this hypothalamic-medullary projection [52].

Role of Spinal Cord in Acupuncture-Cardiovascular 
Response

The spinal cord processes somatic and visceral reflexes as well as 
outputs from the central nervous system to effector organs involved 
in cardiovascular reflex regulation [53]. Anatomical and physiological 
studies indicate that the dorsal horn of the spinal cord serves as a major 
center for EA-induced analgesia [54,55]. Both low- and high-frequency 
EA at Zusanli (St 36) acupoint increase Fos immunoreactive neurons 
in the superficial laminae (I and II) in the dorsal horn of the spinal 
cord [55]. Since opioid or nociceptin-like immunoreactivity is present 
in the spinal sympathetic nuclei (i.e. intermediolateral colum, IML) 
[56,57], we have considered the possibility that EA also influences the 
neurotransmission between the brain stem and the IML [58]. In this 
regard, our studies have found that both opioid and nociceptin reduce 
the response to rVLM-induced sympathoexcitation, indicating that the 
two peptides can regulate sympathetic outflow [59,60]. In addition, 
there has been a suggestion that descending pathways from the brain 
stem (presumably to the dorsal horn of the spinal cord) may influence 
the segmental processing of somatic inputs during EA [61,62]. Afferent 
stimulation can modulate sympathetic activity through the inhibition 
of excitatory interneurons [63]. Furthermore, somatic stimulation 
can elicit excitatory and inhibitory responses in both IML and dorsal 
horn interneurons, depending on the dermatome stimulated [64]. 
These interneurons appear to form important links in the spinal cord 
circuitry involved in autonomic control [65]. Taken together, these 
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results indicate that opioid and nociceptin play a role in the processing 
of spinal cord interneuron activity in the EA response. However, spinal 
circuits controlling the cardiovascular visceral reflex responses during 
EA require further elucidation. 

Summary
EA inhibits the sympathetic outflow by modulating the activity 

of cardiovascular presympathetic neurons in the rVLM. Activation 
of neurons in the ARC of the hypothalamus, vlPAG in the midbrain 
and NRP in the medulla by EA can inhibit the activity of premotor 
sympathetic neurons in the rVLM. Glutamate, acetylcholine, opioids, 
GABA, nociceptin, serotonin, NO, endocannabinoids in the brain all 
appear to participate in the EA sympathoinhibitory response (Figure 
2). Since the ANS plays an important role in the glucose metabolism, 
modulation of sympathetic outflow are presumed to be the mechanisms 
underlying the hypoglycemic effects of acupuncture. Previous studies 
have demonstrated that EA reduces the plasma glucose levels by 
increasing insulin production and improves insulin sensitivity by 
inducing secretion of endogenous β-endorphin [66] and serotonin 
[67]. Lee et al. recently have shown that EA at ST36 acupoints induce 
a hypoglycemic effect by stimulating the cholinergic nerve in diabetic 
rats [68,69]. Taken together, these results provide a strong link between 
the central acupuncture and the treatment of diabetes.

Future Perspective
The conventional medical treatments for diabetes are not perfect 

and can lead to serious side effects [70,71]. Increasing evidence has 
demonstrated that Traditional Chinese Medicine including acupuncture 
can treat diabetes [13,72,73]. EA has been shown to lower blood glucose 
and increase insulin sensitivity with no side effects [13,15,67]. We would 
suggest that lifestyle changes and other integrative approaches such as 
acupuncture could serve as initial treatment for diabetes before drug 
therapy. In diabetic patients who already receive drug therapy, lifestyle 
modifications and alternative therapies, particularly acupuncture, can 
further reduce blood glucose and potentially allow patients to reduce 
dosages of standard hypoglycemic agents. However, further research 
comparing acupuncture with drug regimens in diabetes is required. 
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