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Abstract
While the use of sentient animals in biomedical research is known to be ethically contentious, the fact that 

scientific issues surround the practice is typically ignored. The justification for using sentient animals in research relies 
on the alleviation of human suffering that purportedly results from such studies and that such breakthroughs cannot 
occur without studying whole, intact, biological systems. As all biological systems are examples of evolved complex 
systems, we question the ability of one evolved complex system to predict outcomes for a second. A classic claim 
regarding the advances in medical care arising from the use of intact sentient animals in research is the discovery and 
development of antibacterial agents. We give a brief overview of infectious disease research in the 19th century, then 
examine the history of antibacterials in the first half of the 20th century. We focus on the use of intact sentient animals 
to test antibacterials for efficacy and side effects-which is also the primary use of animal models in drug development 
today. As the development of antibacterials is frequently cited as an illustration of the necessity of using intact animal 
models in drug development, we also examine the impact this position has had on drug development in general. The 
development of antibacterials, and drugs in general, is placed in the context of evolution, complexity science, and 
conserved processes. We conclude that the commonly related history revolving around the necessity of intact animal 
models in the development of antibacterials is not entirely accurate and that this finding has ethical, financial, legal, 
medical, and scientific ramifications.
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both human and animal health. From the discovery of antibiotics . . 
.”[25]. Similarly, the American Medical Association states: “. . . virtually 
every advance in medical science in the 20th century, from antibiotics 
and vaccines to antidepressant drugs and organ transplantation, has 
been achieved either directly or indirectly through the use of animals 
in laboratory experiments” [26]. Finally, the UK-based Understanding 
Animal Research states: “If you have ever had a vaccination, taken a 
headache pill or been given an antibiotic, you have benefited from 
animal research” [27].

While we acknowledge that many scientific advances have involved 
animals, we question the above position and view it as a sweeping 
generalization. Reality is rarely so straightforward. We will examine the 
role animal models played in the development of antibacterials in order 
to ascertain whether perhaps other examples from the above should 
also be re-examined, and to assess the ramifications of uncritically 
accepting such claims.

As the field of medicine uses words in ways that may differ from 
their common or lay usage, as well as differing among specialties, we 
will take a moment to define some terms relevant to this subject. 

• Many people refer to the medications that cancer patients receive
as chemotherapy. However, in medical science, chemotherapy
initially meant the use of a chemical to combat disease, usually 
infectious disease. Ehrlich coined the term chemotherapy in the 
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Introduction
The fact that the use of intact sentient nonhuman animals (here after 

referred to as animals) in science and biomedical research is ethically 
controversial is well known [1-6]. For example, Giles, writing in Nature 
in 2006, states: “In the contentious world of animal research, one 
question surfaces time and again: how useful are animal experiments 
as a way to prepare for trials of medical treatments in humans? The 
issue is crucial, as public opinion is behind animal research only if it 
helps develop better drugs. Consequently, scientists defending animal 
experiments insist they are essential for safe clinical trials, whereas 
animal-rights activists vehemently maintain that they are useless” 
[7]. Likewise, an editorial in Nature in 2009 states: “Animal-research 
policies need to be guided by a moral compass-a concensus of what 
people find acceptable and unacceptable” [8].

Less appreciated however, is the fact that some uses of animal 
models have been questioned on scientific grounds [1,9-23].The 
justification for currently using intact sentient animals revolves around 
the advances in medical care that have allegedly come from using them 
as models. One example of such a medical advance is the discovery 
and development of antibacterial agents, commonly referred to as 
antibiotics. Gamble summarizes the position we are referring to when 
she writes: “The case for experimenting on animals in order to advance 
medicine is that it will produce such great benefits for humanity that 
it is morally acceptable to harm animals. Throughout the 20th century, 
research using live animals has led to ground-breaking advances in 
medicine and treatment for human diseases: such as organ-transplant 
techniques, antibiotics, modern anaesthetics, the vaccine for Polio and 
the vital discovery of insulin as a treatment for diabetes . . .”[24].

We will give a few more examples of the above position so the reader 
does not think we are creating a straw man. The US-based Foundation 
for Biomedical Research states: “Animal research has played a vital 
role in virtually every major medical advance of the last century, for 
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19th century [28]. Today, the word essentially always refers to 
drugs used as cancer treatments.

• Antimicrobial drugs are chemicals that kill microbes that are 
dangerous to the organism that produces the antimicrobial. 
Antimicrobials theoretically have minimal toxic effects to 
the organism since they are primarily toxic to the invading 
microbe.

• Antibiotic is usually used to mean chemicals that kill bacteria. 
Actually the word, coined by Waksman [29], means a chemical 
produced by a microbe that is used to kill or inhibit another 
microbe. Thus, sulfonamides would not be included in this 
category because they are synthesized.

• Antibacterial is used to refer to chemicals that kill or inhibit 
bacteria.

• Antibiosis is a term used in the 19th century meaning “against life,” 
and referred to the properties of early antibacterials [30, 31].

• A medium is a solution used to grow bacteria or viruses. The 
medium can be liquid or solid and different media can be 
manufactured to grow only certain microorganisms. Minimal 
medium contains the only minimal requirements for a species 
to grow.

Materials and Methods
We surveyed the scientific and medical literature concerning topics 

relevant to animal models and the development of antibacterials and 
drugs in general. These topics included:

• Animal models

• Philosophy of science and epistemology

• Evolution

• Drug development

• Biological complex systems

• History of antibacterials and infectious diseases

We sought to place the recorded history of drug development into 
the background of evolved complex systems. This would allow us to 
determine the advantages and limits to using intact animals as models 
for humans in general, as well as the role played by animal models in 
the development of antibacterials.

Results
Animal models as evolved complex systems

Animals are used in numerous ways in science and research 
(Table 1). It will be our contention in this article that while animals 
can be successfully employed in categories 3-9 in table 1, they are 

not of predictive value for human response to drugs and disease. The 
reason for this is that animals and humans are examples of biological 
complex systems. Specifically, they are evolved complex systems, and 
one evolved complex system cannot be of predictive value for a second 
evolved complex system when the analysis involves higher levels of 
organization. These higher levels of organization are where responses 
to drugs and disease occur. We begin our analysis with an overview of 
complexity science.

Systems can be variously described. There are open systems and 
closed systems, physical and abstract systems, subsystems and super 
systems, natural or manmade systems, among others. Systems can also 
be described as simple, complicated, complex, or chaotic. We will focus 
on complex systems but will describe simple systems for the purposes 
of contrast. A simple system has few components and can usually 
be understood intuitively. Merely by looking at the system, one can 
usually understand the components and how they interact. A bicycle 
would be an example. Simple systems are nothing more than the sum 
of their parts, are not influenced by their environment and react to 
perturbations in a linear fashion. A Swiss watch, while complicated, is 
still a simple system.

Conversely, a complex system interacts with its environment-is 
dynamic-and adapts to its environment. In the case of living systems, 
the complex system may adapt by evolving. The complex system is a 
system of systems. Some of these systems may be simple but others are 
complex and even chaotic. The number of components in a complex 
system is usually very large and the components exist across a scale 
of size. The components can be grouped into modules and there 
is a hierarchy of organization. The state of a complex system is very 
dependent on initial conditions and the system contains feedback 
loops. Importantly, complex systems have emergent properties, which 
cannot be derived even with total knowledge of the components. Thus, 
reductionism can be used to study complex systems, but there are 
aspects of the system that cannot be discovered by use of reductionism 
[32-57]. 

Moreover, complex systems respond to perturbations in a 
nonlinear fashion. Redundancy and robustness are also characteristics 
of a complex system. One reason a living system is robust-resists 
change-is because of a redundancy of genes and gene products. For 
example the same protein may be the product of the exons of one gene 
or a combination of the exons of two or more genes. The process of 
adding exons together to produce proteins is called alternative splicing. 
Lastly, complex systems are non simulable. This is obviously important 
in terms of modeling [32-57].

Jensen and Arcaute summarize complexity science thusly: “The 
science of complexity emphasises the interactions between components. 
It stresses that components, most often, are heterogeneous and evolve 
in time. Complexity is concerned with the emergent properties at 
systems level originating from the underlying multitude of microscopic 

1. Animals are used as predictive models of humans for research into such diseases as cancer and AIDS. 
2. Animals are used as predictive models of humans for testing drugs or other chemicals. 
3. Animals are used as “spare parts”, such as when a person receives an aortic valve from a pig. 
Animals are used as bioreactors or factories, such as for the production of insulin or monoclonal antibodies, or to maintain the supply of a virus. 
4. Animals and animal tissues are used to study basic physiological principles. 
5. Animals are used in education to educate and train medical students and to teach basic principles of anatomy in high school biology classes. 
Animals are used as a modality for ideas or as a heuristic device, which is a component of basic science research. 
6. Animals are used in research designed to benefit other animals of the same species or breed. 
7. Animals are used in research in order to gain knowledge for knowledge’s sake. 

Table 1: Nine categories of animal use in science and research [8].
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interactions. . . . Complex Systems consist of a large number of 
interacting components. The interactions give rise to emergent 
hierarchical structures. The components of the system and properties 
at systems level typically change with time. A complex system is 
inherently open and its boundaries often a matter of convention” [58].

Barbosa-Morais, et al. [59] discovered that alternative splicing is 
important in species evolution. Hochachka and Somero summarize 
the problem Barbosa-Morais, et al. [59] addressed: “The problem, and 
in some sense the paradox, is that protein and gene sequences in the 
common chimpanzee and in humans are remarkably similar. In fact, 
human and chimpanzee proteins appear to be nearly 99% identical at 
the amino acid level, and it is widely assumed that the same percentage 
similarity prevails at the DNA level. Yet no one could mistake the two 
species as one” [60]. Barbosa-Morais, et al. [59] compared hundreds of 
thousands of genetic messages in organs from 10 different vertebrate 
species in order to gain greater appreciation for species differences. 
They discovered that evolution used alternative splicing and that had 
a dramatic effect on the structure and complexity of genetic messages. 
Just as complexity science predicted, small changes in initial conditions, 
like alternative splicing, can lead to major changes in outcomes to 
perturbations such as disease and drugs.

Likewise, changes in regulatory genes have also had a major 
impact on initial conditions. Hochachka and Somero state: “The 
differential expression and differential evolution of these kinds of 
genes [regulatory genes] supply raw material for evolutionary change 
and species specificity . . . the complexity of physiological systems in 
multicellular organisms requires ever more complex sensing, signal 
transduction, and communication, as body plans attain higher levels 
of complexity” [60]. They continue: “What these examples suggest is 
that only exceedingly minimal changes in genome sequences may be 
necessary to specify separate species, possibly with larger percentage 
changes in gene expression patterns. Of course, the longer any two 
such related lineages evolve separately from each other, the greater 
the genetic differences between them may become” [59]. Kirschner 
and Gerhart support this idea, stating: “Third, all organisms are a 
mixture of conserved and non conserved processes (said otherwise, of 
unchanging and changing processes) rather than a uniform collection 
of processes that change equally in the course of evolution. Novelty 
in the organism’s physiology, anatomy, or behavior arises mostly by 
the use of conserved processes in new combinations, at different times, 
and in different places and amounts, rather than by the invention of 
new processes . . . Most evolutionary change in the metazoa since the 
Cambrian has come not from changes of the core processes themselves 
or from new processes, but from regulatory changes affecting the 
deployment of the core processes” [61].The notion that regulatory 
genes are responsible for major changes during evolution is now more 
or less universally accepted [62, 63].Gene expression also varies greatly 
intra- and inter-species, in humans [64-67] and in animals [68-71].

Convergent evolution, the acquisition of the same trait in species 
with different evolutionary ancestors, is another reason for species 
variation. The classic example of convergent evolution is the trait of 
flight in bats, birds, and insects. Even though the trait evolved through 
different mechanisms, the outcome-the ability to fly-is shared by all. 
Another example is the eye of cephalopods, for example the octopus, 
and the eye of vertebrates. This also demonstrates the same outcome, 
but by very different mechanisms. Other examples include: blonde 
hair evolved in Melanesians by a different mechanism than it did in 
Europeans [72];ion selectivity in neuronal signaling channels evolved 
at least twice in animals [73]; and Odeen and Hastad discovered 

that birds evolved ultraviolet vision multiple times, all due to single 
nucleotide polymorphisms [74].

In addition to the above, species differences can arise due to 
mutations like copy number variants (CNVs) and single nucleotide 
polymorphisms (SNPs), a difference in the total number of genes, 
pleiotropy, transposable elements, different genes performing the same 
function and vice versa, an old gene can be used for a new function, and 
epigenetics. In the context of a complex system all of these changes are 
of major importance in terms of predicting human response to drugs 
and disease.

The above does not derail the use of animals in science, however. 
Animals can be successfully used in many ways per categories 3-9 
in table 1. Animals have a long history of contributing to science in 
the form of heuristics: guides to discovery, stimulating interest as 
a means of furthering investigation. For example, by studying sea 
sponges scientists created a synthetic hybrid material composed of 
approximately 90% minerals. Despite its high mineral content, the 
material is very flexible. Imitating the spicules of the sponge was the 
key to the strength and flexibility of the new material. The new spicules 
are also able to transmit light and maintain this property even when 
they bend [75]. 

There are some outcomes from perturbations to complex systems 
that can be predicted by using one complex system to model and 
predict such outcomes for a second. The key to this, however, is that the 
perturbation must occur at a lower level of organization. For example, 
dropping a frog out of an airplane flying at 30,000 feet above ground 
level will result in massive trauma to the frog; it will do likewise to a 
human. Perturbations that involve conserved processes are also likely 
to result in similar outcomes but there are exceptions that limit this use 
[76]. So, while animals can be used effectively in research and science, 
there is a limit to using one evolved complex system to substitute for 
another even when studying conserved processes. Krakauer et al. [77] 
, state: “Scientific theories seek to provide simple explanations for 
significant empirical regularities based on fundamental physical and 
mechanistic constraints. Biological theories have rarely reached a level 
of generality and predictive power comparable to physical theories. This 
discrepancy is explained through a combination of frozen accidents, 
environmental heterogeneity, and widespread non-linearities observed 
in adaptive processes” [77]. Because evolution imposed changes on 
complex systems (illustrated in figure 1 (used by permission of RG)), 
we will show that animal models are not of predictive value for human 
response to drugs and disease. We now turn to the antibacterials.

19th century research on infectious diseases

In order to fully appreciate the discovery and development of 
antibacterials, we need to start with a brief history of infectious disease 
research, focusing on the 19th century. The earliest antimicrobial 
was probably cinchona bark, which was used to treat malaria prior 
to the 17th century. By the end of the 18th century, Hooke had used 
a microscope to view what he would call cells. The cells were from a 
dead cork plant. Over the next several years, Hooke would describe 
many structures viewed with the microscope. During this time period, 
van Leeuwenhoek also described the bacteria and protozoa that he saw 
under the microscope.

The mid to late 1800s saw many advances concerning infectious 
diseases. By1869, Bechamphad synthesized a chemical compound, 
Atoxyl, which included arsenic. He realized arsenic was toxic and 
combined it with the dye aniline. His work was largely ignored. 
In 1870, Burdon-Sanderson noticed that culture medium that had 
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been contaminated with Penicillium mold did not grow bacteria. 
Interestingly, he worked at St Mary’s in London where Fleming would 
rediscover this same action from this mold [[78]as quoted in [79]].In 
1872, Ferdinand Julius Cohn published a landmark paper on bacteria 
and the cycling of elements. He used a classification method that 
contained the name Bacillus. Brefeld also reported that he had grown 
fungus on gelatin [80]. In 1874,William Roberts used a liquid broth 
to grow Penicillium glaucum and observed that the medium resisted 
bacteria [81]. In 1875, John Tyndall noticed that some fungi inhibited 
the growth of some bacteria, and Schroeter grewbacterial colonies 
using slices of potato as the medium.

In 1877, Pasteur and Joubert noticed that, in animals that were 
co-infected with Bacillus anthracis, anthrax did not develop as well as 
it did in the other animals [82]. Pasteur observed that: “if we could 
intervene in the antagonism observed between some bacteria, it would 
offer perhaps the greatest hopes for therapeutics” [83]. Pseudomonas 
aeruginosa and Streptococcus erysipelatis were also found to inhibit 
the growth of certain bacteria [84]. Babès and Garrénoticed that the 
secretions of certain bacteria could kill other bacteria [85,86]. Emmerich 
discerned that a guinea pig he had infected with Vibrio cholera did 
not manifest cholera as expected. He learned that the guinea pig had 
previously been infected with Streptococcus erysipelatis. He went on to 
demonstrate that anthrax could be prevented by prior infection with 
Bacillus anthracis [87].Koch developed methods for staining bacteria, 
among other things.

Prior to the agar plate methods used today, bacteria were usually 
grown in animals or in nutrient-rich broths. The broths were meat 
extracts or serum from cows, although Koch originally tried egg and 

starches [88]. These broths quickly became the standard for Koch’s lab 
although there were problems with the method: growing an isolated and 
pure strain of bacteria was essentially impossible. Koch, like Schroeter, 
noticed that bacteria would grow in slices of potato when they were left 
out for periods of time and he took advantage of this when attempting 
to grow Bacillus anthracis [88]. The potato method did not work as well 
for other bacteria, however. Koch then tried solidifying the medium by 
using gelatin. This proved unsatisfactory as the medium would melt 
on warm days and certain bacteria released the enzyme gelatinase that 
would digest the medium leaving a dish of goo.

In 1881, scientist Walter Hesse and his wife, Angelina Fannie 
Eilshemius, who assisted him, joined Koch’s lab. Fannie Eilshemius 
drew pictures of what Walter saw under the microscope. Walter asked 
her how she managed to keep the deserts she made from melting 
during the summer months and she replied that she used agar-agar, a 
product she had learned about as a child. Agar-agar, a polysaccharide 
derived from red seaweeds, has long been used for cooking in Asia. 
Walter discussed this with Koch, who added agar to his nutrient broths 
and found that the resulting solid culture medium remained solid and 
allowed growth of the microorganism [80,89,90]. Koch also replaced 
the usual flat glass plates that contained the broth with a double-
sided dish suggested by his associate, Julius Richard Petri. The Petri 
dish, with agar-based nutrient solution, became the standard used in 
microbiology [80,89]. This technique allowed Koch to isolate specific 
bacteria of which the first was Mycobacterium tuberculosis. In 1905 he 
was awarded the Nobel Prize for his work on tuberculosis. Koch also 
developed methods for obtaining pure cultures of bacteria.

In 1884, building on work that discovered that certain dyes would 
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Figure 1: Dynamics of Evolved Complex Adaptive System. Each of the tools below employed by evolution is a component or module in a complex system. The 
changes caused by evolution will effect the CAS in a nonlinear fasion. The differences among species include all of the below. The thousands of defferences between 
two species result in a species that is differently complex from its ancestors and cousins. 
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bind to cells and bacteria, Gram developed a system for identifying 
bacteria-the Gram stain. Loeffler added peptone and salt to Koch’s meat 
extract [91] as cited in [92]]. The peptone added amino-nitrogen and 
the salt raised the osmolarity of the medium. In 1885, Ehrlich described 
the inhibition of syphilis by arsenic [93].The German rabies vaccine 
was also developed in 1885. In 1888, Freudenreich observed that the 
growth of typhoid bacilli was inhibited when he attempted to grow it 
using broth in which bacteria had previously been grown [94].In 1889, 
Bouchard infected rabbits with P.aeruginosa resulting in protection 
against anthrax [95]. Beijerinck described what would become known 
as agar diffusion. He used it to study how different auxins effected the 
growth of various bacteria [96].

By the end of the 19th century, Petri dishes with agar, nutrient broth, 
and peptone were routinely being used. Selective isolation of bacteria 
was more common, using dyes and other chemicals as demonstrated 
by Ehrlich. (It would not be until the 1960s that antibacterials would be 
used in order to inhibit bacterial growth in Petri dishes, thus allowing 
isolation and growth of select bacteria [97-100].)In 1891, the diphtheria 
antitoxin was developed and in 1895, Tiberio noted that mold could 
inhibit the growth of bacteria. He demonstrated that P. glaucum 
inhibited staphylococci and other bacteria. He tested it on animals and 
reproduced the findings. Gosio noted similar properties of the mold 
in 1896 ([101]and [102] as cited in [79]). Martinus Beijerinck had 
discovered viruses and developed enrichment cultures [103,104].

Many of the above advancements were developed or discovered 
by using animals. Much was also done using in vitro methods. 
Serendipity and hard work also figured into the above breakthroughs. 
An interesting historical and scientific discussion could be undertaken 
regarding the breakthroughs cited above in terms of which were 
dependent upon using intact whole animals and or the products from 
animals. Could these breakthroughs have been accomplished without 
such uses? While such a discussion would no doubt be stimulating, 
such is not our interest here. First, there is little such a discussion 
could contribute to the ethical debate concerning the use of animals 
in science and biomedical research as society long ago accepted the use 
of important medical information obtained even in the most unethical 
of fashions. The use of information from Nazi concentration camps 
and other Nazi-conducted experiments of that era, as well as the 
data from Japanese Unit 731, are cases in point. Second, scientifically 
evaluating the role animals played in the above breakthroughs would 
require detailed technical knowledge from a variety of fields. Such are 
the things master’s theses are made from. Regardless of how detailed 
such an examination would be, the fact would remain that the use 
of animals in research today is scientifically very different from that 
of the 1800s. Third, the subject of this article is the development and 
discovery of antibacterials as occurred in the 20th century. We now turn 
to that subject.

Salvarsan

Salvarsan, meaning saving arsenic, also known as arsphenamine 
and dioxydiamido-arseno-benzol dihydrochloride, is an arsenic-
based chemical and is considered the first chemotherapy. In the early 
1900s, Schild and Wolferstan revived Béchamp’s arsenic compound 
and used it to treat skin infections [105] and sleeping sickness from 
trypanosomiasis. Arsenic compounds were already being used to treat 
equine and bovine trypanosomiasis but toxicity was a known problem. 
Wolferstan tried the compounds on rodents, monkeys, and rabbits. 
This research eventually led to the discovery of salvarsan by Ehrlich 
and Hata.

Ehrlich and Hata discovered salvarsan in 1909. It was 6th chemical 
tested in the 6th group of 100chemicalsbeing tested. The total number 
of compounds having been tested was 606, so salvarsan is frequently 
referred to as 606. Ehrlich and Hata were seeking a “magic bullet” to 
kill microorganisms, and since the toxic effects of arsenic were well 
known, they built their efforts on the element. Mercury was already 
being used to treat syphilis, caused by the spirochete Treponema 
pallidum, but there were toxicity problems thus a new drug was 
needed. The Wasserman blood test, developed in 1906, allowed 
definitive diagnosis of syphilis and confirmation of cure. Salvarsan 
was tested on a rabbit infected with Treponema pallidum and shown 
to be effective and without side effects. Human trials quickly followed 
[106]. However, toxicities like seizures, renal failure, optic neuritis, and 
fevers did, in fact, develop in humans. There were also deaths. The side 
effects, combined with the problems with preparing salvarsan, resulted 
in it not being as successful as originally hoped [107, 108]. Eventually, 
other animals were tested or treated with salvarsan and toxicities 
observed in some species [108]. Neosalvarsan (neoarsphenamine), 
compound 914, developed and marketed in 1912, had fewer problems 
and replaced salvarsan. Nevertheless, when penicillin became available, 
the arsenic-based compounds were discarded because of the toxicity 
problems. Ehrlich was awarded the Nobel Prize in 1908 for his work on 
immunity. Interestingly, the mechanism of action of salvarsan is still 
unknown [109].

Salvarsan was shown to kill bacteria and other microbes in animals. 
This will be a theme throughout this article: animal models can be used 
to demonstrate antibacterial activity. The relevant fact, in terms of our 
complex systems analysis above, is that the organism being affected by 
the antibacterials is not the human but the bacterium. The side effects 
from the antibacterial, however, affect the human. With few exceptions, 
efficacy of antibacterials can currently be demonstrated in vitro. Thus, 
the reason antibacterials appear to be exceptions to the complex 
systems rule, is that the organism being affected is not the human but 
the bacterium. When the organism in question is the human, as is the 
case for side effects from antibacterials, then the animal model fails, as 
we will see.

One exception continues to be T. pallidum, which cannot be reliably 
grown in culture medium to this day. There have been various partial 
successes over time but none reliable enough to employ routinely. 
T. pallidum obtained from humans was apparently grown in culture 
by 1906 but the technique was not perfect and then, as now, there 
were problems with virulence [108,110]. In 1919, scientists described 
salvarsan as being studied in vitro for its ability to kill parasites, 
describing it as a “powerful trypanocide and a feeble bactericide,” and 
noted that spirochetes and trypanosomes seem to react similarly to 
chemotherapies [111]. In vitro study of spirochetes was available in the 
era of salvarsan development and such studies did demonstrate that 
salvarsan was spirocheticidal [112-116].However, Ehrlich stated that 
salvarsan did not kill spirochetes in vitro [117].In light of other studies 
that claim salvarsan did kill spirochetes, we assume there were technical 
issues involved then, as there frequently are now among labs. With the 
sequencing of the T. pallidum genome [118], there is optimism for 
further research despite the inability to grow the microbe in culture.

Relevant to this discussion, some animals were more sensitive 
than others to toxicities; the rabbit originally tested apparently gave 
no indications of the toxicity problems. Thus, testing 606 on rabbits 
did not yield reliable information regarding side effects in humans. 
It appears that in vitro means of determining whether salvarsan was 
spirocheticidal were available around the time of development but 



Citation: Greek R, Hansen LA (2013) The Strengths and Limits of Animal Models as Illustrated by the Discovery and Development of Antibacterials. 
Biol Syst 2: 109. doi:10.4172/bso.1000109

Page  6  of 15

Volume 2 • Issue 2 • 1000109Biol Syst
ISSN: BSO, an open access journal

rabbits appear to have been the primary growth medium used and 
tested. Based on the above, it is difficult to claim that animals were 
necessary for the development of salvarsan, although they certainly 
were extensively used.

Prontosil

The history of sulfa drugs dates back to the dye industry where it 
was discovered that certain dyes bound to cells and or were able to 
stain bacteria. The azo dyes were known to have antiseptic properties 
([119] and [120] as quoted in [79]). This was the basis for the research 
into ascertaining whether they could be developed into antibacterials. 
Sulfonamidochrysoidine, also called KI-730 and Prontosil, was 
synthesized in 1932,by Klarer and Mietzsch who were working for 
Bayer [121]. Domagk, employed by the chemical and dye company 
I.G. Farbenindustrie, tested the sulfa-based chemical for antibacterial 
properties in animals and humans [122] and found that it was effective 
against hemolytic streptococcus infections such as Streptococcus 
pyogenes. Prontosil and its derivatives werenot effective in vitro, due 
to the fact that the active ingredients was dependent upon metabolism, 
but were effective in animals such as mice. Moreover, it was effective 
against certain streptococcal strains, but not the ones that affected 
humans [123,124].The preclinical results from other countries were also 
confusing but animal studies were eventually performed that resulted 
in very impressive data. Finally, the drug was administered to humans, 
including some suffering from puerperal infection, and shown to be 
very effective [125].The active portion of the compound turned out to 
be sulfanilamide, which had been used in the dye industry for years, 
hence was not eligible for a patent. Later sulfa drugs were shown to 
be effective against streptococcus in vitro, as the active ingredient was 
being tested. This inspired the development of more sulfa-based drugs 
[126,127].Domagk was awarded the Nobel Prize in 1939 for his work 
on the sulfa drugs.

The side effects of the sulfa drugs are minimal in most cases and 
were not cause for concern. Very little is even written about side effects 
in the early days of the administration of the sulfa drugs. The antiseptic 
effects of the azo dyes from which the sulfa drugs were developed were 
known prior to their development as antibacterials. Some studies on 
animals were very impressive in demonstrating that the animals treated 
with the sulfa drugs were not killed by bacterial infections when all the 
other animals so infected were killed. This helped to convince scientists 
that the sulfa drugs were worth pursuing. In retrospect however, 
the efficacy of the sulfa drugs vis-à-vis the impressive results from 
administration to animals, was to be suspected based on the known 
properties of the azo dyes. The unknowns concerning the sulfa drugs 
were side effects and the pharmacokinetic properties, neither of which 
can be ascertained from animal studies.

Penicillin

The interlude between the sulfa drugs and penicillin saw the 
discovery ofmore antibacterials that were effective in animals but that 
could not be administered to humans for various reasons. Tyrothrycin, 
produced by Bacillus breves, was discovered in 1939 [128-130] in an 
attempt to find a chemical active against pyogeniccocci. It was shown 
to be effective in mice but proved too toxic for humans. Gramicidin, 
also discovered by Dubos [131-134],was similarly shown to protect 
mice against infections with type III pneumococci but was toxic in 
humans [134].Both drugs could be applied topically, however. 

The biggest breakthrough in antibacterials was penicillin. Fleming 
actually rediscovered penicillin. Steffee states that: “Folklore of the 
mid-19th century encouraged the application of mold to a fresh wound 

as protection against subsequent infection” [135]. As we discussed 
above, Burden-Sanderson and others had noted that Penicillium mold 
inhibited the growth of bacteria [81,135-137]. Fleming tested penicillin 
in vitro and in vivo. He mentions rabbits in his original paper. The in 
vitro results revealed bacterial inhibition and topical application on 
rabbits was effective. There was no doubt about penicillin’s antibacterial 
property. In an attempt to ascertain the effectiveness of penicillin 
systemically, Fleming tested it in rabbits. Penicillin was eliminated, in 
the urine, very rapidly inrabbits leading Fleming to believe it would be 
ineffective for humans with systemic infections. Based on this animal 
model, he turned his attention to other projects. In reality, the very 
low concentration of the penicillin injection was responsible for rabbit 
data, not a species difference.

Fleming did however administer penicillin topically to colleagues 
and others [136,138-141], including four patients suffering from 
ophthalmic neonatorum. Three were cured [136,142,143]. Others 
also administered penicillin to patients during this time [136,143-
147]. Despite the fact all these were topical administrations, they 
did encourage Florey to continue his work on purifying penicillin. 
Henderson states that Florey:  “recalled Paine’s . . . successful topical 
treatment of ophthalmic neonatorium with a crude broth of penicillin” 
and that this gave Florey hope that a purified penicillin might be 
effective systemically [142].

Florey and Chain eventually did produce a purer penicillin than 
was previously available-the penicillin they produced was shown to 
have a strength of 5 U/mg whereas later preparations were around 
1800 U/mg [148]. Subsequently, they were encouraged by the results 
of administering their product to infected mice. The claims regarding 
animal models and the efficacy of penicillin largely center on the use of 
mice in the development of penicillin. Florey and Chain tested penicillin 
on mice showing that mice treated with penicillin did not die from 
infection as all the other mice did. The results from the mouse studies 
led to a worldwide effort to develop penicillin. But if we are to give 
animal models credit for this outcome then we must also debit animal 
models (Fleming’s rabbit) for the long delay. Moreover, as we have 
pointed out, the antibacterial properties of penicillin were not in doubt. 
In vitro, in vivo animal studies, and human administration proved it 
was antibacterial. The question revolved around what penicillin would 
do to an intact system. As we will discuss momentarily, and as we have 
pointed out previously [9,11,12], the response of an intact system to a 
drug varies greatly depending on the species and strain of the intact 
system. Florey, et al. [143, 150], were just as mistaken in believing that 
what happened in mice would be reproduced in humans as Fleming 
was in thinking the same about rabbits and humans.

A natural question arising at this time is why didn’t Fleming test 
what would turn out to be a wonder drug on humans. Weisse sates 
that Fleming was discouraged about penicillin’s possible use for many 
reasons including: “…after injection into an ear vein of a rabbit and 
with blood samples taken periodically thereafter for testing, it was 
found that penicillin was rapidly removed from the bloodstream. 
Samples taken at 30 minutes were found almost completely devoid of 
activity. Of what use might be an antibacterial agent that took several 
hours to act but was removed from the body within 30 minutes and 
inhibited by the blood with which it would obviously be mixing” ?[148].

Steffee reinforces this discouragement, stating: “Fleming 
considered penicillin a potential chemotherapeutic agent, but his early 
in-vivo investigations were discouraging. In rabbits, serum levels of 
penicillin dropped rapidly after parenteral administration, too fast to 
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allow the several hours of contact with bacteria required for an effect 
in vitro”[135].

When evaluating the role of animal models in the development 
of antibacterials, one must consider the misses as well as the hits. 
Penicillin began as a huge miss. Fleming very clearly equated response 
in humans with response in rabbits and abandoned one of the most 
life-saving drugs of all time on this basis. Steffee defends Fleming’s 
abandonment of penicillin stating: “. . . how many therapeutic 
modalities with the poor in vivo results of Fleming’s early penicillin 
trials would be offered continued funding today [135]?” Weisse also 
defends Fleming: “One might well wonder why, given the uncontrolled 
devastation of bacterial diseases, no further experiments on animals 
or humans were undertaken. The rapid disappearance from the blood 
has already been mentioned . . . Even the choice not to use animal 
experiments more extensively, a routine practice of investigators on the 
continent, could be defended by Fleming and his group. After all, there 
might be differences between humans and other animals in resistance 
or susceptibility to different infections”[148]. 

Fleming noted the differences in species’ responses to penicillin 
when he stated: “How fortunate we didn’t have these animal tests in 
the 1940’s [sic], for penicillin would probably never been granted a 
license, and possibly the whole field of antibiotics might never have 
been realized” (as quoted in [149]). Florey did the same when he stated: 
“Mice were used in the initial toxicity tests [by Florey and Chain] 
because of their small size, but what a lucky chance it was, for in this 
respect man is like the mouse and not the guinea-pig. If we had used 
guinea-pigs exclusively we should have said that penicillin was toxic, 
and we probably should not have proceeded to try and overcome the 
difficulties of producing the substance for trial in man”[150]. These 
statement were reinforced by Koppanyi and Avery [151].

Fleming did eventually administer penicillin to a friend who was 
dying in the hospital from streptococcal meningitis. Many advances 
in medicine have likewise been secondary to having no other options. 
This was in 1942 after and the mouse experiments of 1940. Florey gave 
Fleming his supply of the purified penicillin for use in his friend [148]. 
The friend improved dramatically after administration. Interestingly, 
Florey administered penicillin to a cat at the same time Fleming 
was administering it to his friend. Florey’s cat died [152]. There are 
actually numerous specie-specific responses to penicillin. Under 
certain circumstances, penicillin kills guinea pigs and Syrian hamsters 
[153,154]. In addition, penicillin is teratogenic in rats, causing limb 
malformations in offspring. This is one of the problems with using 
animal models to predict human response: Interspecies variation is to 
be expected when studying evolved complex systems. 

Fleming also rediscovered agar diffusion, a method still used to 
test antibacterials. Aminov writes: “Fleming’s screening method using 
inhibition zones in lawns of pathogenic bacteria on the surface of agar-
medium plates required much less resources than any testing in animal 
disease models and thus became widely used in mass screenings for 
antibiotic producing microorganisms by many researchers in academia 
and industry. . .”[109].This screening method essentially eliminated the 
need to test drugs for antibacterial properties on animals.

Streptomycin

Selman Waksman, a soil biologist, was awarded the Nobel Prize 
in 1952 for his discovery of streptomycin in soil samples. Waksman 
was actually co-discoverer with his graduate student Albert Schatz, 
who was recognized as an equal partner via the patent for streptomycin 
[155-158]. Waksman and Schatz were systematically looking for 

antibacterials effective against gram-negative bacilli because penicillin 
was effective only against gram-positive. Streptomycin was the first 
drug effective against tuberculosis (TB) and TB meningitis. It was 
also effective against Haemophilus influenzae. Waksman used culture 
medium and the well-plate method to test for antibacterial activity. 
Waksman, along with another graduate student, Woodruff, had 
already isolated actinomycin and streptothricin [159-161], but these 
drugs, along with clavacin, proved toxic.

Schatz used two sources for his Streptomyces griseus. Each was a 
different strain and both produced streptomycin that he then cultured. 
One came from the throat of a chicken via Doris Jones’ lab, and the 
other from a soil sample. Schatz used the one that came from the soil 
sample preferentially as it produced more streptomycin [157,162-164].
Streptomycin was tested by Waksman and others and shown to kill TB 
in vitro [165-167]. Still, some thought it was merely bacteriostatic [168]. 
Regardless of the early questions about mechanism [168], it was shown 
to be effective for treating TB. Resistance proved to be a problem and, 
although this was not initially seen in animals, it was demonstrated in 
vitro [167].

Merck had performed the animal and clinical studies of earlier 
antibacterials isolated by Waksman but streptomycin was evaluated 
at the Mayo Clinic. Guinea pigs that had been infected with TB were 
administered streptomycin and demonstrated full recovery [162]. 
Clinical trials began in 1944. Ototoxicity and renal toxicity proved to be 
problems in humans, although neither was previously seen in animal 
studies [169, 170]. Otherwise, streptomycin has few severe side effects. 
In summary, the toxicity of streptomycin was not seen in animals prior 
to release and efficacy was demonstrated in vitro.

Current practices in drug development

We will now attempt to place the above examples into the context 
of current knowledge about drug development. This is not meant to 
condemn the past based on information available only in the present. 
Rather, we want to discuss what could reasonably be expected of 
antibacterial development, in terms of safety and efficacy, even using 
current science. We will examine drug development in general then 
briefly present an example of an antibacterial.

First, we must explain how the term predict is used in science. 
We are addressing the predictive value of animal models for human 
response to drugs and disease. Predictive value can be calculated and 
is, at least in many situations, objective (Table 2). This use of predict 
differs from predicting outcomes based on a new hypothesis. Scientists 
frequently propose a hypothesis, then test it in order to compare the 

Gold Standard
GS+ GS-

Test
T+ TP FP
T- FN TN

T+ = Test positive
T- = Test negative
T = True
F = False
P = Positive
N = Negative
GS+ = Gold standard positive
GS- = Gold standard negative
Sensitivity = TP/(TP+FN)
Specificity = TN/(FP+TN)
Positive Predictive Value = TP/(TP+FP)
Negative Predictive Value = TN/(FN+TN)

Table 2: Binomial table for calculating predictive value.
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outcome in reality and the expected outcome if the hypothesis is 
true. This is fundamental science and occurs daily in universities and 
research institutions. Predictive value has nothing in common with 
testing hypotheses. People wish to know the predictive value of many 
things including lab tests, pencil and paper tests, and practices such 
as the use of drug sniffing dogs to detect drugs. Predictive value can 
also be calculated for animal models in terms of how well they predict 
human toxicity, bioavailability, and cancer among myriad other things. 
These calculations have been performed for numerous types of animal 
models and the results are clear: animal models have no predictive 
value. Animal models do have very low predictive value for human 
response to drugs in terms of efficacy [171-188],or the five properties 
of absorption (A) [189-194], distribution (D) [195,196], metabolism 
(M) [197-207], elimination (E) [208, 209], and toxicity (T) [194, 210-
221], usually referred to collectively as ADMET. Even with current 
knowledge of physiology and inter-species differences, scientists are 
unable to predict, to the standards required in medicine, essentially 
any of the above six properties. Medical science needs predictive values 
greater than or in the range of 0.9 and animal models usually give 
positive and negative predictive values in the range of 0.0-0.5 [222-
228]. This is what would be expected from chance alone. In many cases, 
calculations are not necessary as none of the drugs that were effective 
in animal models, for example neuroprotectants and a vaccine for HIV, 
were effective in humans. In light of the fact that individual humans 
respond differently to drugs, an observation that has led to the current 
emphasis on personalized medicine, it should come as no surprise that 
inter-species extrapolation fails [229]. Consider the following.

Toxicity derails many drugs in clinical trials and many drugs being 
marketed have toxicity or other problems. Cross, et al. [230]discovered 
that the dosage for one in five new molecular entities (NMEs) released 
in the US between 1980 and 1999 was changed after release onto the 
market, and that of these, four out of five were decreased for safety 
reasons. Heerdink et al. [231] found similar changes for drugs released 
in Europe. Many studies have revealed unanticipated toxicities after a 
drug has been released to the market [232].

It is estimated that 80% of all drugs that fail in development fail due 
to problems in ADMET and that 50% of those that make it to market 
have problems associated with ADMET [233]. Patterson likens the 
process of drug development to making airplanes and marketing the 
ones that do not crash[233], not a very flattering portrayal of current 
drug development. This must be considered in light of the fact that 
animal models figure prominently in this process. Many studies have 
noted the inability of animal models to predict human efficacy, which is 
usually based on animal models, or ADMET [11, 12, 177, 189-191, 193, 
195, 196, 200, 203, 207, 218-221, 233-238].

This failure is acknowledged by industry. An editorial in Nature 
Reviews Drug Discovery in 2005 states: “Clearly, one part of the problem 
[of drug research] is poorly predictive animal models . . .” [239]. 
Littman and Williams of Pfizer acknowledge: “In the new paradigm, 
studies in humans increase confidence in the relevance of novel drug 
targets and largely replace the animal efficacy models that are often 
poorly predictive of the efficacy of novel agents with unprecedented 
mechanisms of action . . .” [235]. Another editorial in Nature Reviews 
Drug Discovery in 2011 states: “Unpredicted drug toxicities remain a 
leading cause of attrition in clinical trials and are a major complication 
of drug therapy” [217]. Oliff, former executive director for cancer 
research at Merck explains: “The fundamental problem in drug 
discovery for cancer is that the model systems are not predictive at 
all”[174]. Chabner and Roberts note that: “Fewer than 10% of new 

drugs entering clinical trials in the period from 1970 to 1990 achieved 
FDA approval for marketing, and animal models seemed unreliable in 
predicting clinical success . . .” [240].

Björquist, et al. [176]., state that: “Furthermore, the compound 
attrition rate is negatively affected by the inability to predict toxicity 
and efficacy in humans. These shortcomings are in turn caused by the 
use of experimental pre-clinical model systems that have a limited 
human clinical relevance . . .” [176]. Then-U.S. Secretary of Health and 
Human Services Mike Leavitt admitted: “Currently, nine out of ten 
experimental drugs fail in clinical studies because we cannot accurately 
predict how they will behave in people based on laboratory and 
animal studies” [173]. Dixit and Boelsterli state: “Traditional animal 
toxicology tests predict in the range of less than 10% to -70% of all 
human adverse effects . . .” [210]. Zielinska, discussing animal models 
of cancer, states: “Mouse models that use transplants of human cancer 
have not had a great track record of predicting human responses to 
treatment in the clinic. It’s been estimated that cancer drugs that enter 
clinical testing have a 95 percent rate of failing to make it to market, in 
comparison to the 89 percent failure rate for all therapies . . . Indeed, 
‘we had loads of models that were not predictive, that were [in fact] 
seriously misleading,’ says NCI’s Marks, also head of the Mouse 
Models of Human Cancers Consortium . . .”[241].The above citations 
are merely a small sample of the numerous works that have expressed 
the shortcomings of animals as predictive models for humans. 

Another question relevant to this discussion is: How many useful 
drugs have been discarded because of toxicity or lack of efficacy in 
animals? Artemisinin is remarkably toxic in animals but not so in 
humans [242-244]. Diclofenac is likewise toxic in animals but not so 
much in humans [242, 245]. Acetaminophen “increases the incidence 
of induced renal adenomas in rodents” [246]. Metronidazole is effective 
against Helicobacter pylori in humans, but increases the “incidence of 
induced colon cancer in rats” [246].

Eason  et al. [214], discuss examples of drugs-carbenoxolone, FPL 
52757, and amrinone-that were toxic in humans but not the animal 
models they were tested on, and drugs that were not toxic to humans 
but were to animal models-ciprofibrate and omeprazole among others. 
They state: “Preclinical animal toxicity studies are often limited in their 
predictive value of safety in man, despite the use of metabolism and 
pharmacokinetic studies to optimize the choice of species, dose, and 
method of administration” [214]. The problem is simply inter-species 
variation. For example, chloramphenicol may cause aplastic anemia in 
humans, dogs do well with it, but cats die from it [247-249]; moreover, 
it increases lymphomas in mice but not humans [246].

Lazzarini, et al. [250]. state that the: “predictive value of animal 
studies about osteomyelitis is still unclear” [250]. They point out that 
serum levels, the ability of the antibacterial to penetrate bone and the 
pharmacokinetics (what the body does to the drug) may differ among 
species. Moreover, the dosages and dose intervals used in humans and 
animal varies in a clinically significant fashion. Of concern is their 
statement that: “By the time that a particular antimicrobial agent is 
slated for animal model studies for efficacy in curing osteomyelitis, 
toxicity studies and pharmacokinetic studies have been performed 
in animals and humans.” They also state that: “Teicoplanin and 
linezolid were successful in the treatment of osteomyelitis in clinical 
trials, despite being completely inactive in two animal model studies 
of staphylococcal osteomyelitis. Therefore, the value of animal models 
as predictors of failure should also be carefully assessed”[250].All of 
the above can be explained by the fact that animals and humans are 
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examples of living complex systems that have different evolutionary 
histories. Kehrer states: “Small differences in gene structure can make 
large differences in function”[251].

Ehrlich was looking for a magic bullet and many scientists still 
are. In light of the fact that humans and animals are evolved complex 
systems it should be clear that the magic bullet concept is outdated. A 
drug may be effective in one individual but not another. Likewise, a 
drug maybe safe for one species but not another. Narayan, et al. [252], 
state: “The time has come to move beyond product-focused ‘magic 
bullet’ therapeutic development strategies towards models that can also 
incorporate devices, tools and services to provide integrated health-
care solutions. . . . Part of the reason for this lack of progress is likely 
to have been too great a focus on developing single ‘magic bullet’ drugs 
for very complex diseases” [252].

Narayan  et al. [252], continue, discussing why magic bullets do not 
exist for mental illness: “Although serious mental illnesses are among 
the most heritable of diseases, indicating a strong biological basis, they 
arise out of the inheritance of multiple susceptibility and protective 
genes that interact stochastically and with environmental factors to 
produce phenotypes that manifest as a constellation of symptoms, 
including changes in cognition, mood, perception and dysregulation of 
autonomic, endocrine and circadian pathways. It is therefore unlikely 
that single-target drugs will adequately treat all facets of such complex 
diseases” [252].

Finally, all of the above must be placed in the context of personalized 
medicine. Physicians and researchers currently acknowledge that 
individual humans react differently to drugs and disease [253-257]; even 

monozygotic twins vary in response [258-270]. Based on this, disease 
and drug responses are being classified and approached differently 
from the past (Figure 2) [271]. The goal of personalized medicine is 
to match gene to disease or gene to drug and administer drugs that 
are both efficacious and side effect free. This is already happening for 
many diseases  (Table 3) [272]. Since humans vary intra-species in 
terms of disease and drugs, it is highly improbable that inter-species 
extrapolation will yield results of predictive value [229].

Conclusion
Animals have been successfully used as heuristics, bioreactors, and 

as a source for serum and nutrients for growth cultures, especially in the 
19th century. In the 19th century, animals were also used to demonstrate 
the various aspects of the Germ Theory of Disease and various 
physiological properties common to mammals. This was important for 
the eventual development of antibacterials. Animals were also used as 
models to assess efficacy and toxicity of newly discovered antibacterials. 
This is what is usually meant when people state that animals were used 
for the discovery and development of antibiotics. However, then, as 
now, toxicity could not be assessed using animals and efficacy could 
be assessed without animal models, especially after salvarsan. Animals 
were therefore not necessary for the development of antibacterials as a 
class even when considered in light of the technology and knowledge 
available at that time. Animal models cannot predict human response 
in terms of efficacy and ADMET now and they could not do so then. 
Antibacterials were an exception, as the organism being acted on, in 
terms of efficacy, was the bacterium, not the human. Animal models 
seem to have given the scientists involved in antibacterial development 
the confidence they needed, in terms of safety, in order to give the 
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Figure 2: Personalized medicine. Most diseases are heterogenous and the use of molecular diagnostics can divide them into biological subgroups each with their 
targets and drugs [271].



Citation: Greek R, Hansen LA (2013) The Strengths and Limits of Animal Models as Illustrated by the Discovery and Development of Antibacterials. 
Biol Syst 2: 109. doi:10.4172/bso.1000109

Page  10  of 15

Volume 2 • Issue 2 • 1000109Biol Syst
ISSN: BSO, an open access journal

drugs to humans. In light of current knowledge, this confidence was 
unwarranted.

The fact that animal models have no predictive value for safety 
and efficacy in drug development has ethical implications as, per Giles, 
society condones animal experimentation only if it improves drug 
safety and efficacy. There are also financial implications in the form 
of animal vendors who will no longer profit from the sale of animals 
to laboratories and researchers who use animals based on their having 
predictive value. The legal requirement that new drugs undergo 
testing on animals is superfluous if the testing has no predictive value. 
Moreover, as animal use in research today is predicated, in part, on 
the assumption that antibacterial development was dependent upon 
animal models for safety and efficacy, asset allocation should change 
and more attention should be paid to the fact that humans are evolved 
complex systems with all that such conditions imply.

Animals do have value in medicine and science, but not as 
predictive models. As per table 1, animals can still be successfully used 
as bioreactors, a source for replacement parts, basic research, as well 
as in other areas. But the notion that animals have predictive value for 
drug efficacy and safety based on the development of antibacterials is 
not supported by an informed reading of history, nor is it supported by 
current drug development. 

References

1. Cohen C (1986) The case for the use of animals in biomedical research. N Engl 
J Med 315: 865-870.

2. Cohen C, Regan T (2001) The animal rights debate, Rowman & Littlefield 
Publishers, Inc. 

3.  Linzey A, Regan T (2007) Animals and christianity: A book of readings Wipf & 
Stock Publishers. 

4. Regan T, Singer P (1989) Animal rights and human obligations, Prentice Hall. 

5. Dombrowski D (1997) Babies and beasts: The argument from marginal cases, 
University of Illinois Press. 

6. Dombrowski DA (2006) Is the argument from marginal cases obtuse? J Appl 
Philos 23: 223-232.

7. Giles J (2006) Animal experiments under fire for poor design. Nature 444: 981.

8. (2009) A slippery slope. Nature 462: 699.

9. Greek R, Greek J (2010) Is the use of sentient animals in basic research 
justifiable? Philos Ethics Humanit Med 5: 14.

10. Greek R, Shanks N (2009) Faqs about the use of animals in science: A 
handbook for the scientifically perplexed, University Press of America, Lanham. 

11. Shanks N, Greek R (2009) Animal models in light of evolution, Brown Walker, 
Boca Raton. 

12. Shanks N, Greek R, Greek J (2009) Are animal models predictive for humans? 
Philos Ethics Humanit Med 4: 2.

Organ or System involved Associated gene/allele Drug/drug response phenotype
Blood
Red Blood Cells G6PD Primaquine and others
Neutrophills TPMT*2 Azathioprine/6MP-induced neutropenia

UGT1A1*28 Irintotecan-induced neutropenia
Platelets CYP2C19*2 Stent thrombosis
Coagulation CYP2C9*2, *3, VKORC1 Warfarin dose- requirement
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