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Review Article

Abstract
Vascular calcification contributes significantly to the vascular damage burden in type 2 diabetes. Chronic 

hyperglycaemia is the driver of initiation and progression of vascular damage in these subjects. Enhanced oxidative 
stress is widespread in these subjects due to complex metabolic, cytokine, inflammatory and ageing factors, on the 
background of chronic hyperglycaemia. All these factors together contribute to an increased risk of vascular damage 
leading to atherosclerosis and vascular calcification. The xanthine oxidase system is a major contributor to the 
development of enhanced oxidative stress through generation of excessive free radicals. Current standard therapy is 
focused on controlling hyperglycaemia and screening/treatment of known co-morbidities. However, these therapies 
do not target oxidative stress. Allopurinol, a potent xanthine oxidase inhibitor has demonstrated beneficial effects 
on several parameters of vascular health such as reduction in oxidative stress, proteinuria, reversal of vascular 
damage, regression of ventricular hypertrophy and arresting the rate of progression of chronic kidney disease. A 
randomised clinical trial of Allopurinol for amelioration of oxidative stress, endothelial cell dysfunction and vascular 
calcification in subjects with type 2 DM may be helpful to explore its potential in this area.
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Introduction
Vascular calcification (VC) is an important component of 

vasculopathy in type 2 diabetes mellitus (DM), leading to coronary 
artery disease (CAD) and peripheral vascular disease (PVD), the 
foremost causes of mortality and morbidity, respectively, in these 
subjects [1]. Although, chronic hyperglycaemia is the primary factor 
for initiation of vascular damage, the progression of vascular disease, 
may be due to several associated factors downstream such as enhanced 
oxidative stress (OS) [2]. The increased OS in DM may be due to 
impaired anti-oxidant response and/or excessive production of free 
radicals in close approximation to the vessel wall [3]. 

Persistent OS is detrimental to the endothelial lining of the 
vessel wall and has been demonstrated to promote endothelial cell 
dysfunction and apoptosis [4]. The various mechanisms by which 
the abnormal cellular and biochemical changes in endothelial cell 
dysfunction influence the vessel wall have been discussed previously 
[5,6]. Endothelial cell dysfunction is a major intermediate event in 
the vascular pathology between OS and progressive vascular disease 
such as atherosclerosis and VC [5] of the intimal layer (atherosclerotic 
calcification) and medial arterial calcification (MAC) [7]. 

Chronic OS manifests its effects by promotion of endothelial cell 
dysfunction [6], modulation of calcifying vascular smooth muscle 
cells (VSMC) [8] and influencing osteogenic transcription factors in 
the vessel wall [9]. The OS (Figure 1) seen in subjects with type 2 DM 
may be fuelled by excessive production of free radicals from major 
metabolic pathways/processes such as oxidative phosphorylation of 
glucose, excessive generation of advanced glycation end products, 
polyol pathway, nicotinamide adenine dinucleotide phosphate-oxidase 
(NADPH) pathway [3] and xanthine oxidase systems [10]. 

Subjects with type 2 DM have been found to have elevated levels 
of xanthine oxidase, which along with NADPH pathway plays a major 
role in promotion of OS [11]. The aims of this review are i) to explore 
the xanthine oxidase system in promoting OS ii) discuss the importance 
of OS in manifestation of VC and iii) postulate a role for Allopurinol 
in the amelioration of VC, through its inhibition of xanthine oxidase. 

Xanthine Oxidase - Metabolism
Xanthine oxidase is a major metabolic enzyme from the 

molybdenum iron-sulfur flavin hydroxylase group of enzymes. It is 
composed of two monomer subunits of approximately 150 kDa with 
an approximate total size of 300 kDa [12]. It has been located in several 
body tissues such as the liver, gastrointestinal tract, brain, kidneys 
and widely distributed in the cardiovascular system with high levels 
in the endothelial cells, cardiac and skeletal muscles [13]. Xanthine 
oxidase and xanthine dehydrogenase are two inter-changeable forms 
of the same enzyme, xanthine oxidoreductase [14]. While xanthine 
dehydrogenase can reduce oxygen to superoxide and hydrogen 
peroxide, and nicotinamide adenine dinucleotide (NAD+) to NADH, 
xanthine oxidase can only reduce oxygen to superoxide [15]. 
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Xanthine oxidase and xanthine dehydrogenase play important roles 
in purine metabolism by catalyzing the conversion of hypoxanthine to 
xanthine and further to uric acid [14]. In mammals, the uric acid is 
degraded further by an enzyme uricase to allantoin, which is excreted 
in urine. Due to absence of uricase enzyme in humans, the uric acid 
cannot be further degraded and is directly handled by the kidneys 
for its excretion from the body [16]. In addition, both these enzymes 
can oxidize NADH with generation of reactive oxygen species such as 
superoxide and hydroxyl [17]. 

Xanthine Oxidase and Oxidative Stress
Xanthine oxidase system is one of the major sources of reactive 

oxygen species, which includes free radicals such as superoxide (*O2-), 
hydroxyl (*OH) and non–radical molecules such as hydrogen peroxide 
(H2O2) [18]. These oxidative molecules, with an unpaired electron 
in the outer orbit, are highly reactive and damaging when in contact 
with other cell structures and molecules [19]. Of the above radicals, 
hydroxyl radicals have an ultra-short half-life of about one nano-
second and randomly oxidize the nearest molecule/s as seen in lipid 
peroxidation and amino acid oxidation leading to enzyme dysfunction 
[20]. In physiological states, these molecules carry out important roles 
in cell signalling and ageing, during metabolic processes.

The superoxide (*O2-) generated by xanthine oxidase may react 
with nitric oxide (NO) in the vascular lumen to produce reactive 
nitrogen species - peroxynitrite (ONOO-), a highly reactive oxidant 
[18]. Peroxynitrite can potentially oxidize tetrahydrobiopterin, a 
major cofactor for nitric oxide synthase (NOS), and adversely reduce 
cellular transport of L-arginine, a substrate for the action of eNOS, to 
generate NO [21]. Chronic hyperglycaemia-induced excess formation 
of peroxynitrite plays a major role in the pathogenesis of endothelial 
cell dysfunction and vascular damage [22]. In addition, peroxynitrite 
is instrumental in oxidant-induced injury through activation of matrix 
metalloproteinase 2 (MMP-2) [23]. 

Xanthine oxidase has been reported to be an important source of 
free radicals in human cultured aortic endothelial cells [24]. Subjects 
with type 2 DM have been found to have significantly high levels of 
xanthine oxidase as compared to healthy controls [10]. The excessive 
free radical generation by xanthine oxidase in these subjects may be 
compounded by additional free radical generation by non-glucose 

dependent pathways such as NADPH and glucose dependent 
pathways such as oxidative phosphorylation, polyol/sorbitol pathway 
and advanced glycation end product pathway. Aberrations in other 
minor metabolic pathways such as uncoupling of nitric oxide synthase, 
cytokine and growth factor signal transduction and amplification, 
glutathione pathway, mitochondrial uncoupling of the respiratory 
chain or as in primary inherited mitochondrial dysfunction, may add to 
the OS burden [25], by increased production of reactive oxygen species 
(ROS) and relatively subdued antioxidant activity in these subjects.

Oxidative Stress and Vascular Calcification
Enhanced OS plays a key role in the initiation and progression of 

vascular damage from endothelial cell dysfunction to atherosclerosis 
and finally VC [26]. MAC, the characteristic calcification in subjects 
with type 2 DM leads to compromised vessel compliance, as a result 
of reduced elasticity [7]. Traditionally, MAC has been considered as a 
benign process, usually related to the ageing process, however recent 
studies have deciphered this as a slow but dynamic process of vascular 
mineralisation, with involvement and contribution from several 
cell types such as the endothelium, inflammatory cells and vascular 
smooth muscle cells (VSMC) amongst others, leading to significant 
cardiovascular functional compromise [27]. 

The manifestation and progression of MAC on the background 
of progressive OS is primarily an imbalance between inhibitors of 
VC in the vascular milieu such as inorganic pyrophosphate, matrix 
Gla protein, Fetuin A, Osteopontin and Osteoprotegerin, and the 
major promoters of VC such as endothelin-1, alkaline phosphatase, 
bone morphogenetic protein (BMP)-2, BMP-4, transforming growth 
factor (TGF-β) and receptor activator of nuclear factor kappa β ligand 
(RANKL), favouring the latter (Figure 2) [28]. 

All the adverse complications of hyperglycaemia in conjunction 
with OS may weaken the defence mechanisms in the vessel wall and 
expose the endothelial cell and subsequently the VSMC to promoters 
of VC. Chronic hyperglycaemia significantly reduces life expectancy 
by promoting the pathogenesis and progression of CVD, and the 
processes of ageing [29]. Free radical damage and enhanced OS has 
been hypothesized as an important pathway of ageing by a cumulative 
process of OS of the cellular constituents and apoptosis [30]. 

Hemodynamic forces such as vascular sheer stress and 
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compromised compliance as a result of arteriosclerosis have been 
proposed to increase oxidative stress in the vessel wall [31]. It has been 
long recognised that atherosclerosis and VC are more likely to manifest 
in high pressure/wall tension arteries as compared to low pressure 
vessels such as arterioles and veins [7]. Enhanced laminar sheer stress 
may facilitate processes of atherosclerosis and VC by additional 
mechanisms such as activation of cellular signalling pathways, pro-
inflammatory cytokines, VSMC hypertrophy and differentiation and 
modulation of extracellular matrix [32]. These adverse processes in the 
vessel wall may be fuelled by enhanced oxidative stress.31 As compared 
to non-diabetics, patients with DM have enhanced burden of vascular 
disease, with more extensive atherosclerosis, poor compensatory 
remodelling, greater plaque progression, and decrease in luminal size 
though with similar girth of the external elastic layer [33]. 

Enhanced ROS formation, such as hydrogen peroxide, one of the 
key modulators of processes of atherosclerosis and calcification, has 
been implicated in these processes and high levels of hydrogen peroxide 
have been found in calcified vessel wall, providing circumstantial 
evidence of its involvement [34]. Hydrogen peroxide is one of the most 
stable of the ROS and has been demonstrated to influence the processes 
of atherosclerosis and VC through modulation of signalling pathways, 
mobilisation of pro-calcification proteins such as bone morphogenic 
protein (BMP) -2 and BMP 4, promoting the processes of phenotypic 
differentiation of VSMC into calcifying cells and activation of the 
inflammatory cytokine network such as tumor necrosis factor – α 
(TNF - α) [9]. 

Hydrogen peroxide may potentially modulate parallel processes 
of VC by its influence on other signalling cascades in the vascular 
lumen [34]. The two major signalling cascades, which are activated 
by increased oxidative stress (H2O2) to promote osteoblastic and 
chondrocytic differentiation in the vessel wall are the Runx2 and 
the BMP-2 pathways [9]. These two pathways are distinct with each 
capable of inducing VC on their own, when stimulated [34]. BMP-2 
and BMP-4 are members of the transforming growth factor (TGF- 
β) group of cytokines and are expressed by several cells in the body 
including endothelial and VSMCs in the vascular lumen and share the 
same receptor [35].

In physiological state, these BMP-2 and BMP-4 proteins are known 
to modulate several cellular processes incorporating development of 
the cardiovascular system, angiogenesis, inflammatory response to 
vessel wall injury and VC [34]. The expression of BMP-2 may be up 
regulated by several stimuli such as chronic hyperglycaemia, cytokine 
activation by TNF-α and enhanced oxidative stress especially with 
increased levels of H2O2, amongst others [36]. In view of its high 
vascular permeability and potential adverse effects due to its paracrine 
action, the levels of H2O2 is tightly controlled in the vascular lumen by 
potent anti-oxidants such as catalase and glutathione peroxidise [37]. 

In normal conditions, when exposed to pathological stimuli, 
the VSMCs have inherent potential for phenotypic transformation, 
proliferation and migration to site of injury to facilitate vasculature repair 
processes [32]. However, in presence of enhanced vascular damage 
due to persistent OS and/or hyperglycaemic milieu, the processes of 
phenotypic differentiation and regulation may be disconcerted, leading 
to abnormal differentiation and transformation of the VSMC into 
other mesenchymal lineages such as osteoblasts, chondrocytes and 
adipocytes, which facilitates processes of atherosclerosis and VC [38]. 
In addition to NADPH, Xanthine oxidase is a major contributor to 
increased OS in the vascular lumen and reduced NO levels, especially 
in type 2 DM subjects [10]. 

Oxidative stress induced VSMC differentiation is carried out by 
the action of H2O2, which promotes osteogenic transformation of the 
calcifying VSMCs, through regulation of the osteogenic transcription 
factor Runx2 by AKT signalling [9]. Runx2 is one of the major 
transcription factors in the modulation of osteoblast and chondrocyte 
differentiation and activity and can potentially induce several 
osteogenic molecules such as alkaline phosphatase, bone sialoprotein 
and osteopontin [39]. The manifestation of H2O2 induced VSMC 
calcification through Runx2, in experimental models, is independent 
of VSMC apoptosis and/or BMP-2 activation [9]. 

The pathogenesis of VC in DM is multifactorial with different 
distinct processes working in a disconcerted manner as a result of 
complex metabolic, cytokine, inflammatory and ageing factors [4]. 
Chronic hyperglycaemia, on its own, may promote apoptosis of vascular 
cells (endothelial cells and VSMC) and in conjunction with increased 
oxidative stress, the impact may be enhanced [40]. The apoptosis of 
the vascular cells may provide a trigger for TNF- α stimulation, which 
induces BMP-2 secretion from the remaining vascular cells [34]. 
BMP-2 is known to activate the homeobox homolog (Msx2) and Wnt 
signalling pathways in the vasa-vasorum, the concentric network of 
blood supply to the large arteries [41]. These pathways promote the 
process and promoters of mineralisation in the vessel wall, by induction 
of osteogenic enzymes and matrix proteins at the site of activation, 
leading to MAC [36]. These pathways may be fuelled by progressive 
oxidative stress, which may facilitate enhanced progression of VC in 
subjects with DM [40]. 

Experimental models have demonstrated a direct apoptotic effect 
of xanthine oxidase, in addition to increased OS, on the endothelial and 
VSMC [42]. The high levels of xanthine oxidase in subjects with type 
2 DM may reflect the increased oxidant activity, on the background 
of chronic hyperglycaemia.10 Recently, it has been demonstrated 
in experimental models that xanthine oxidase plays a key role in 
transformation of macrophages into foam cells and thus promote the 
processes of atherosclerosis and VC [43]. 

Xanthine oxidase also promotes enhanced production of uric 
acid, an independent marker of increased cardiovascular mortality in 
subjects with type 2 DM [44]. Uric acid induced CRP (C – reactive 
protein) expression in the endothelial and VSMC cells [45], may 
potentiate the inflammatory component of the vascular disease in 
type 2 DM, further exacerbating the pro-calcification milieu on the 
background of chronic hyperglycaemia and OS.

Current Anti-oxidant Therapies
Given the key role of OS in the initiation and progression of various 

components of vascular disease such as endothelial cell dysfunction, 
atherosclerosis and VC, an effective anti-oxidant therapy is vital in 
the management of vascular complications of DM. Unfortunately, 
no specific therapy is currently available to fill this void. However, 
some of the therapies employed in management of co-morbidities of 
diabetes may indirectly decrease the OS burden as a manifestation of 
their pleiotropic effect. Some of these therapies such as angiotensin-
converting enzyme (ACE) inhibitors [46], angiotensin receptor 
blockers (ARB) [16] and aldosterone blockers (spironolactone) 
[47,48], in addition to control of hypertension, may activate eNOS 
levels in the vascular lumen and thus increase bioavailability of NO. In 
addition to their known action as potent anti-lipidemic agents, statins 
also modulate eNOS in the vascular lumen [49]. Benfotiamine, an 
important agent in the treatment of diabetic neuropathy, may reduce 
OS by its inhibitory action on ROS formation and activation of eNOS 
[50].
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In addition to the current widely used medications, there are other 
agents, which are being studied for their efficacy as potential antioxidant 
agents. Some of these agents such as L-propionyl-carnitine, which has 
intracellular superoxide scavenging properties, have demonstrated 
protective effects on DNA damage in the mitochondria, in experimental 
models [51]. Pentoxifylline, a potent inhibitor of phosphodiesterases 
and platelet aggregation, has demonstrated significant antioxidant 
properties in a small cohort of type 2 DM subjects [52]. Bioflavonoids 
have demonstrated dose-dependent, potent antioxidant, free-radical-
scavenging and DNA cleavage properties [53]. Along with the above 
mentioned agents, reports from small studies have demonstrated 
significant anti-oxidative activity of alpha-lipoic acid [54], Vitamin C 
and E [55], which all need to be examined in bigger cohorts. Recently, 
a number of small studies have reported potent anti-oxidant activity of 
Allopurinol, in subjects with type 2 DM [56] and those without [57].

Current Therapies for Vascular Calcification
In spite of high prevalence of VC in chronic diseases such as 

Diabetes and chronic kidney disease, there are no specific therapies 
available for treatment of VC. In uncomplicated diabetes subjects 
with no stigmata of any diabetic complication, the current approach 
is to maintain good glycemic control, optimum blood pressure and 
lipid parameters. Improvement in endothelial cell dysfunction by 
maintaining good glycemic control has been demonstrated to retard 
the rate of coronary calcification progression in people with type 2 
diabetes [58]. 

ACE inhibitors have been successfully used for control of blood 
pressure and microalbuminuria in type 2 diabetes, however, their 
use in prevention of VC is limited due to conflicting evidence from 
experimental studies with some demonstrating beneficial effects [59] 
and some not [60]. In people with advanced kidney disease, non-calcific 
phosphate binders such as lanthanum carbonate has been shown to 
have beneficial effects on progression of coronary calcification in 
a recent small study [61], however, another pilot study [62] which 
examined sevelemer, another preferred non-calcific phosphate binder 
and Rosuvastatin, did not show any significant benefit on coronary 
calcification with either of these agents. 

In a recently published study [63], Cinacalcet, a calcimimetic, 
in combination with small dose of vitamin D, demonstrated 
beneficial effects in prevention of coronary calcification in people 
on haemodialysis, as compared to vitamin D alone. In another study 
[64], vitamin D in either high or low dosage had no effect on the rate 
of progression of coronary calcification. Bisphosphonates may have 
beneficial effects in prevention of coronary calcification especially in 
those with abnormal mineral metabolism [65]. Although encouraging, 
beneficial agents such as lanthanum, Cinacalcet and Bisphosphonates 
have to be examined in bigger studies and their beneficial effects are 
limited to patients with advanced kidney disease and abnormal bone/
mineral metabolism. As diabetes subjects are known to have VC in 
early stages with normal mineral metabolism [66], these agents are less 
likely to be useful in this setting. 

The Therapeutic Potential of Allopurinol
Allopurinol is a potent inhibitor of xanthine oxidase and has 

been in clinical use for over five decades, primarily in the treatment 
of gout [67]. On administration, Allopurinol is oxidized by xanthine 
oxidase to oxypurinol, its active form. At low levels, Allopurinol 
competitively inhibits xanthine oxidase by acting as a substrate, 
however, at increased levels, it acts as a non-competitive inhibitor 

[68]. The accidental discovery of the role of xanthine oxidase in the 
production of superoxide, paved the way for more research in this area 
for development of several other potent xanthine oxidase inhibitors of 
different classes and the exploration of potential anti-oxidant effect of 
Allopurinol [69-86]. Apart from its established use in gout and tumor 
lysis syndrome, the pleiotropic effects of Allopurinol is being explored 
in a number of conditions [67]. Some of the major studies examining the 
effects of Allopurinol supplementation in various vascular conditions 
have demonstrated beneficial effects in human subjects and have been 
summarised in Table 1 below.

Allopurinol has demonstrated significant cardio-protective 
potential with significant reduction in arrhythmias, myocardial 
infarction [87], and a reduction in lipid peroxidation [76], thus 
improving perioperative recovery, in patients undergoing elective 
coronary artery bypass surgery. Intra coronary administration of 
Allopurinol has been shown to improve myocardial efficiency, in 
subjects with idiopathic dilated cardiomyopathy. Allopurinol has 
also been shown to improve endothelial dysfunction and associated 
with improved clinical outcomes and survival [77]. In addition, to 
cardiovascular conditions, experimental models of cerebrovascular 
conditions have reported potential therapeutic effects of Allopurinol 
in amelioration of ischemic cerebral damage with neurological deficits 
[88], focal cerebral ischemia and hypoxic-ischemic injury [89].

Allopurinol has been reported to normalize endothelial cell 
dysfunction in a small group of type 2 DM subjects with mild 
hypertension, by reducing OS [56]. The reduction in OS by Allopurinol 
is independent of its effect on uric acid [57] and this may provide 
additional benefit in terms of reducing the OS burden. Increased 
xanthine oxidase and uric acid expression has been co-localized with 
lipid particles in atherosclerotic plaque samples [90], which may 
be circumstantial evidence of their involvement in the processes of 
calcification. The recent demonstration of the role of xanthine oxidase 
in the transformation of macrophages into foam cells and development 
of atherosclerosis, in experimental models [43], opens other plausible 
avenues for the therapeutic uses of Allopurinol in this setting. 

Allopurinol supplementation has been reported to retard the 
rate of progression of chronic kidney disease and reduction in the 
overall cardiovascular risk in subjects with kidney disease [85,91]. The 
potential benefit of Allopurinol was attributed to its amelioration of 
OS and subsequent reduction in the levels of inflammatory markers. 
In addition, Allopurinol has recently demonstrated beneficial effects 
in decreasing microalbuminuria (a state of generalized endothelial 
cell dysfunction), in a small study of type 2 DM subjects [74]. This 
finding is important as endothelial cell dysfunction is a key step in 
the pathogenesis of vascular disease in subjects with type 2 DM. 
Amelioration of endothelial cell dysfunction has been shown to be 
independently associated with decrease in the rate of progression of 
coronary calcification in type 2 DM subjects [58]. 

In context of vascular disease in DM, xanthine oxidase induced 
oxidative stress plays an important role in the initiation and progression 
of endothelial cell dysfunction, atherosclerosis and VC [9]. Though 
uric acid levels are frequently elevated in these settings [44], its direct 
role in the pathogenesis of these adverse events is not clear. In view 
of the major role of xanthine oxidase in the pathogenesis of enhanced 
oxidative stress in type 2 DM, it is conceivable that specific therapy 
aimed at negating the effect of this enzyme may help in ameliorating 
oxidative stress. In this regard, Allopurinol, a potent inhibitor of 
xanthine oxidase activity, needs further consideration to explore its 
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potential as an anti-oxidant agent in mitigation of oxidative stress and 
hence amelioration of progression of VC in type 2 DM subjects.

Conclusion
Subjects with type 2 DM harbor a great burden of vascular disease 

resulting in increased risk of cardiovascular and peripheral vascular 
disease in these subjects as compared to the rest of the population. 
Enhanced oxidative stress as a result of complex, metabolic, cytokine, 
inflammatory and ageing factors, on the background of chronic 
hyperglycaemia, predisposes these subjects to increased risk of vascular 
damage leading to atherosclerosis and vascular calcification. In the 
absence of any specific therapy for reduction of oxidative stress, these 
patients continue to depend on the extended, non-specific, beneficial 
role of associated therapies of diabetes management such as tight 
diabetes control, ACE and ARB, statins and benfotiamine. Several 
small studies have demonstrated significant, clinically important anti-
oxidant effects of Allopurinol. In the light of its potential to ameliorate 
the rate of progression of vascular calcification by a reduction in 
endothelial cell dysfunction, exploration of potential clinical benefits 
of Allopurinol in the amelioration of oxidative stress, endothelial cell 
dysfunction and VC in subjects with type 2 DM may be helpful in this 
patient group.
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